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A B S T R A C T 

Computational homogenization by means of the finite element analysis of a representative volume ele-
ment of the microstructure is used to simulate the deformation of nanostructured Ti. The behavior of 
each grain is taken into account using a single crystal elasto-viscoplastic model which includes the micro-
scopic mechanisms of plastic deformation by slip along basal, prismatic and pyramidal systems. Two dif-
ferent representations of the polycrystal were used. Each grain was modeled with one cubic finite 
element in the first one whi le many cubic elements were used to represent each grain in the second 
one, leading to a model which includes the effect of grain shape and size in a limited number of grains 
due to the computational cost. Both representations were used to simulate the tensile deformation of 
nanostructured Ti processed by ECAP-C as wel l as the drawing process of nanostructured Ti billets. It 
was found that the first representation based in one finite element per grain led to a stiffer response 
in tension and was not able to predict the texture evolution during drawing because the strain gradient 
within each grain could not be captured. On the contrary, the second representation of the polycrystal 
microstructure with many finite elements per grain was able to predict accurately the deformation of 
nanostructured Ti. 

1. Introduction 

Titanium and its alloys are well-known engineering materials 
widely used in many industrial applications including medical de-
vices due to their high corrosion resistance and biocompatibility. In 
the case of implants, the required mechanical properties cannot al-
ways be obtained by alloying and other strategies, such as the 
modification of microstructure via grain refinement, are options 
under investigation. For instance, severe plastic deformation 
(SPD) [1] leads to the formation of ultra fine-grained (UFG) Ti with 
enhanced mechanical strength. In order to improve further the 
performance of nanostructured Ti, it is necessary to understand 
the corresponding deformation mechanisms and to establish mod-
els at different length scales that link the microstructure with the 
mechanical performance. Within this realm, homogenization tech-
niques are very powerful tools to relate the influence of the single 
crystal properties as well as of the texture on the macroscopic 
mechanical performance of nanostructured Ti polycrystals taking 
into account the evolution of the microstructure during 
deformation. 

Notwithstanding that a lot of work has been carried out over 
the last fifty years on the development of physically-based models 
of plastic deformation, crystal plasticity modeling and the homog-
enization of the polycrystal behavior are very active research fields 
because many issues (i.e. effect of gradients, modeling of twinning 
or the behavior of grain boundaries) remains still open. The basic 
ideas of crystal plasticity homogenization were presented in the 
pioneer work of Taylor [2] and its precise mathematical implemen-
tation was developed in the 1960s and 1970s by Hill [3], Rice [4] 
and Hill and Rice [5], Since then, the goal was to establish a general 
theory including a precise formulation for finite deformations [6,7] 
and an accurate description of the single crystal hardening evolu-
tion. Regarding the latter, the first models were phenomenological 
[8,9] and described the evolution of the critical resolved shear 
stress (CRSS) of the different slip systems as a function of the 
accumulated shear strain. More recently, microstructurally-based 
approaches were aimed at the modeling of hardening from mate-
rial state variables such as dislocations densities [10-12]. The 
adoption of a phenomenological or a microstructurally-based 
hardening model is of secondary importance in so far the actual 
problem in both cases consists on identifying the correct parame-
ters that reproduce the plastic behavior of a particular single 
crystal. 

In the case of a polycrystal, an interesting option to predict the 
macroscopic plastic response is the use of homogenization models 



based on crystal plasticity models for the grain behavior. The main 
advantage of these models over standard phenomenological 
approximations (J2 theory, etc.) is the ability to include the effect 
of texture on the anisotropic flow stress and hardening behavior. 
This is critical in materials which present strong plastic anisotropy 
or when texture controls the plastic behavior because the initial 
material is strongly textured or becomes so as a result of large plas-
tic deformations. Several approximations (either analytical or 
numerical) have been developed to determine the polycrystal 
behavior and the microstructure evolution during plastic flow. 
Most analytical formulations are based on the mean field approach 
and the simplest one is the Taylor model [2] that assumes that all 
the grains in the polycrystal present the same plastic strain. This 
leads to a very stiff response and more accurate models were 
developed in the context of Eshelby's approach [13] and of partic-
ular linearization schemes to obtain the polycrystal behavior. 
Among them, the viscoplastic self-consistent scheme (VPSC) has 
become the standard tool to homogenize the plastic deformation 
of polycrystals. This formulation, based on a ad-hoc linearization 
of the non-linear single crystal constitutive behavior and on the 
use of the linear self-consistent approximation, was first proposed 
by Molinari et al. [14] to predict the texture evolution of polycrys-
talline materials, and it was later extended and implemented 
numerically by Lebensohn and Tome [15] in the so-called VPSC 
code. 

Mean-field models (and, particularly, the VPSC approximation) 
have demonstrated their ability to predict the average flow stress 
and the texture evolution in polycrystals and they have been re-
cently used to provide constitutive equations for these materials 
within the context of multiscale simulations [16]. However, these 
models cannot capture the local stress and strain fields accurately 
(they generally use only a mean value to represent the distribution 
of fields inside the grain) and this may lead to large differences at 
the local level for highly anisotropic crystals. In addition, the statis-
tical treatment of the microstructure does not allow to analyze the 
influence of the actual grain shape and local details of the grain 
spatial distribution (i.e. clusters of second phases or grain orienta-
tions, etc). Under these circumstances, more sophisticated models 
based on computational homogenization have to be used to cap-
ture these local effects. Computational homogenization is based 
on the numerical simulation of the mechanical behavior of a repre-
sentative volume element (RVE) of the material microstructure. 
The numerical solution of the boundary problem is carried out 
using different techniques, which include the Fast Fourier Trans-
form method [17], recently extended to viscoplastic polycrystals 
[18], and the finite element method [19,20]. 

Within this context, the objective of this paper is to tune a com-
putational homogenization model to accurately predict the macro-
scopic response and texture evolution of nanostructured Ti. Two 
different approaches will be used to represent the polycrystalline 
nanostructure Ti. The first is a voxel approach in which the RVE 
is a cube formed b y N x N x N cubic elements, each one represent-
ing one single crystal. The second approximation is based on a real-
istic polycrystalline microstructure in which each crystal is 
discretized with many cubic finite elements. The accuracy of these 
two state-of-the-art numerical homogenization strategies to pre-
dict the mechanical behavior and texture evolution of polycrystal-
line nanostructure Ti will be finally compared. 

The paper is organized as follows. Section 2 presents the single 
crystal plasticity model used in the computational homogenization 
scheme and its numerical implementation in a commercial finite 
element code. Section 3 is devoted to present the different compu-
tational homogenization techniques, while Section 4 includes the 
simulation results and the corresponding comparison with exper-
imental data. 

2. Crystal plasticity model 

An implicit implementation of a crystal plasticity model has 
been carried out in the finite element code ABAQUS [21 ] as a UMAT 
subroutine. The mathematical model as well as some details about 
numerical implementation are described below. 

The model assumes a multiplicative decomposition of the 
deformation gradient into the elastic and plastic components 
(introduced by Lee and Liu [22] in the context of isotropic plastic-
ity) according to, 

F = F£'FP (1) 

where the configuration defined by Fp is called the relaxed or inter-
mediate configuration. 

From the definition of the velocity gradient, L, expression (1) 
leads to 

L = FF 1 F F +FeFpFp Fe (2) 

where V = FPFP stands for the plastic deformation rate in the 
intermediate configuration. 

If plastic deformation takes place along multiple slip systems, 
the plastic velocity gradient IP can be obtained as the sum of the 
shear rates, j'*, corresponding to each slip system a according to, 

L" = J j V sa o m (3) 

where sa and ma stand, respectively, for the unit vectors in the slip 
direction and perpendicular to the slip plane in the intermediate 
configuration. 

The crystal was assumed to behave as an elasto-viscoplastic so-
lid in which the plastic slip rate for a given slip system follows a 
power-law dependency, 

r = )'o sign(ia) (4) 

where yQ is a reference shear strain rate, ga the critical shear stress 
on the slip system a, m the rate-sensitivity exponent [23] and the 
resolved shear stress on the slip system a. 

The elastic strain was defined using the Biot lagrangian strain 
measure, Ee, given by 

Ee = (F Fe)1/2 - I (5) 

where I stands for the second order identity tensor. The symmetric 
second Piola-Kirchhoff stress tensor in the intermediate configura-
tion, S, is related with the Biot lagrangian strain according to, 

S = CE" (6) 

where C stands for the four order elastic stiffness tensor of the sin-
gle crystal. The resolved shear stress on the slip system a, xa, is ob-
tained then by the projection of the Piola stress S, on the 
corresponding slip system (both defined in the relaxed configura-
tion) as 

T a = S : sa o m (7) 

Finally, the Cauchy stress is approximated by 

a =r1FeSFeT « ReSReT (8) 

under the assumption of small elastic deformations, Re being the 
orthogonal rotation tensor obtained by the polar decomposition of 
Fe. 

The evolution of the critical shear stress ga for a given slip 
system, a, was given by 

O ) 



where r is the accumulated shear on all the active slip systems ex-
pressed as, 

r = J2 [ i f ldt 
(X J 

(10) 

where qafl stands for the latent hardening coefficients and h(T) is 
the hardening modulus. The phenomenological Voce hardening 
model - adapted for single crystals - is used for h(r), according 
to [24] 

h(r) = ho + (ho-h: a i ) 

Hardening in this model depends on four parameters, namely 
the initial critical resolved shear stress ga(r = 0) = T0, the satura-
tion shear stress %s and the initial (h0) and saturation (hs) hardening 
moduli. The model is able to reproduce the typical plastic behavior 
of single crystals including stage I and II hardening. 

2.1. Numerical implementation 

The model described above has been implemented in the finite 
element code Abaqus/Standard as a user material subroutine using 
a backward Euler implicit scheme. The starting point to obtain the 
response in any integration point at time t + At is the solution at 
time t which is given by elastic deformation gradient, F,, and the 
plastic shear strains, y®. In addition, a prediction of the deformation 
gradient in t + At, Ft+At. is given by the finite element solver based 
on the global tangent stiffness. From these values, the subroutine 
solves a set of non-linear algebraical equations formed by the dis-
cretization in time of Eqs. 4, 7, 9 and 11. This is carried out by the 
minimization of a residual function R [25], 

R(F^ A t ) =F^ A t -F t + A t F t - ^exp - A t V f ( F : + A t ) s » o m « (12) 

where the exponential map operator, exp, has been used to inte-
grate the evolution of plastic deformation gradient over the time 
increment. The minimization procedure is performed using a New-
ton-Raphson scheme which incorporates an analytical evaluation 
of the Jacobian matrix (derivatives of R). The function g" for each 
slip system is updated using the corresponding hardening laws 
(11) during the iterative procedure, leading to the updated values 
of Fe,<7 and of the internal variables ya in t + At. In addition, the elas-
to-plastic tangent stiffness matrix -required by the finite element 
solver to carry out the global iteration procedure- was obtained fol-
lowing the numerical procedure detailed in [26]. 

2.2. Particularization to nanostructured Ti 

Ti is an HCP material and its elastic behavior is defined by 5 
independent constants [27]: C n = 162.4 GPa, C33 = 180.7 GPa, 
C44 = 117 GPa, C66 = 35.2 GPa, C12 = 92 GPa and C13 = 69 GPa. 

Plastic deformation of Ti occurs by slip along prismatic, basal 
and two pyramidal systems as well as by tension and compression 
twinning [28]. Nevertheless, the stress necessary to activate twin-
ning increases rapidly as the grain size decreases [29] and twinning 
does not occur when the grain size is below 1 |j.m. As a result, plas-
tic deformation of nanostructured Ti is dominated by plastic slip 
and the crystal plasticity model included three {0001} (1120) ba-
sal slip systems, three (1010} (1120) prismatic systems, six 
{1011} (1120) a pyramidal systems, and 12 {1 011} (1123)c + a 
pyramidal systems. However, the activity of the a pyramidal sys-
tem at room temperature is very small and this system was not in-
cluded in the simulations [30]. 

The critical resolved shear stress (CRSS) of each slip system in Ti 
is highly dependent on the material purity [28]. In addition, most 

of the experimental data on the CRSS were measured by testing 
suitably-oriented large single crystals but these results cannot eas-
ily be extrapolated to obtain the properties of the grains in the 
polycrystal due to the differences in the processing route and in 
grain size. An alternative procedure was recently developed by 
Gong and Wilkinson [30], who measured the single crystal proper-
ties of commercially pure (CP) Ti by means of mechanical tests of 
micron-sized cantilever beams sculpted by focused ion beam in-
side of crystallites of a polycrystalline sample. The microbeams -
oriented to undergo single slip in a given system - were loaded 
in bending with a nanoindenter and the CRSS of the different slip 
systems were obtained for beams of 4 |j.m in depth. Although it 
is well known that these values may not be representative of the 
actual ones in CP nanostructured Ti because of the smaller grain 
size, it can be assumed the grain size influences in a similar way 
to all slip systems. Under this assumption, the ratios of the CRSS 
between different slip systems can be considered size independent 
and can be obtained from [30], leading to i b a s a l = 1 . 1 5 5 T p n s m a t i c and 
^.pyramidal _ 2 g l g p r i s m a t i c ^ T h e r e s t Qf t h g m a t e r i a l p a r a m e t e r s 

which control the plastic deformation of CP nano structured Ti 
were chosen to fit the experimental results presented in Section 4. 

3. Computational polycrystal homogenization framework 

The effective properties of CP polycrystalline nanostructured Ti 
were determined by means of the finite element simulation of an 
RVE of the microstructure. Two different representation of the 
microstructure were used. The first one is a voxel-based model in 
which the RVE is made up by a regular mesh of NxNxN cubic finite 
elements, Fig. la. Each cubic element stands for a Ti single crystal-
line grain and thus the model can include a large number of grains. 
While this is important from the statistical viewpoint, this repre-
sentation of the microstructure leads to a poor description of the 
grain shape and of the strain fields within the grains as a linear dis-
placement interpolation is used in each cubic finite element. 

Another possibility to represent the microstructure is depicted 
in Fig. lb. The finite element discretization was also carried out with 
cubic elements but each crystal was represented with many 
elements and, thus, the model includes information about the dis-
tribution of grain sizes and shapes within the polycrystal. In addi-
tion, complex deformation fields can be accounted for within each 
grain. The actual microstructure can be obtained from experimental 
data provided by sequential serial sectioning or X-ray microtomog-
raphy [31 ] or from synthetic microstructure generators. In this case, 
the open-source code Dream3D [32] was used to create the RVE 
shown in Fig. lb. The grains were equiaxed and their size followed 
a lognormal distribution with an average grain volume equal to the 
RVE volume divided by 100. Obviously, this representation is more 
accurate than the previous one but the computational cost limits 
the number of crystals in the model. In either RVE of the polycrystal, 
the orientation of the each grain was determined from the orienta-
tion distribution function (ODF) which describes the initial texture 
using a Monte Carlo lottery. Thus, the texture of the RVE can be con-
sidered representative of the actual polycrystal texture if the num-
ber of grains in the RVE is large enough. 

The effective polycrystal behavior is obtained by computational 
homogenization from the numerical simulation of an RVE of finite 
size. It is nowadays well established that the best results are ob-
tained if periodic boundary conditions are applied to the RVE 
[33] because the effective behavior derived under these conditions 
is always closer to the exact solution (obtained for an RVE of infi-
nite size) than those obtained under imposed displacements or 
forces. 

Periodic boundary conditions assume that the whole RVE de-
forms as a jigsaw puzzle and that a periodic translation of the 



Fig. 1. Representative volume elements of polycrystalline Ti. (a) Voxel model with 1000 cubic finite elements in which each one stands for a single crystal, (b) Realistic RVE 
containing 100 crystals discretized with 64000 cubic finite elements. 

RVE in the three directions fill the whole space. If the three concur-
rent edges of the cubic RVE define an orthogonal basis elt e2 and e3 

with corresponding coordinates x lt x2, x3, the periodic boundary 
conditions link the local displacement vector u of the nodes on 
opposite faces of the cubic RVE with the far-field macroscopic 
deformation gradient F according to, 

u(xi,x2,0) - u ( X U X 2 , L ) = (F - I )L 3 

u ( x j , 0, x3) - u(xj, L, x3) = (F - I)L2 (13) 

u(0,x2,x3) -u(L ,x2 ,x3 ) = (F - I ) L i 

where L is the cube length, and L, = Le,. These boundary conditions 
are implemented in the finite element simulation by means of mul-
tipoint constraints which link the displacement of each pair of 
opposite cube faces. The far-field deformation gradient F applied 
to the boundaries of the RVE is given by 

u(M,-) = (F- I )Li (14) 

where u(M,) stand for the prescribed displacements in three master 
nodes M, corresponding to three different faces of the RVE. If some 
components of the far-field deformation gradient are not known a 
priori (e.g. under uniaxial tension), the corresponding effective 
stresses a are set instead. This is carried out by applying nodal 
forces Pj to the corresponding master node M, and degree of free-
dom j according to 

Pj(Mi) = (ffej)jAj (15) 

where AF is the current area of the face perpendicular to e,. 

4. Numerical results 

The simulation strategy presented was used to simulate the 
behavior of CP nanostructured Ti produced by ECAP-C (equal chan-
nel angular pressing-conform). ECAP-C is a severe plastic deforma-
tion process in which a metal billet is pulled through a channel 
following the scheme depicted in Fig. 2. The process leads to the 
manufacturing of long billets of metallic materials with UFG micro-
structure. The billet is normally subjected to several passes and is 
rotated 90° after each pass to obtain a more isotropic texture. The 
reference system used for the ECAP-C processing x lt x2 and x3 is 
also indicated in Fig. 2 and will be used later to define the texture 
orientation and the loading paths for both tensile deformation and 
drawing. 

Processing and mechanical testing of the material was per-
formed in the Institute of Physics of Advanced Materials, Ufa State 

Fig. 2. Schematic of the ECAP-C process. 

Aviation Technical University, Russia and is detailed in [34]. The 
starting material was a CP Ti (Grade 4) in form of billets and it 
was subjected to ECAP-C processing at 200 °C for different number 
of passes (in the range 1-10). The average grain size after four 
passes or more was approximately 300 nm. 

4.1. Tensile deformation of nanostructured Ti 

The tensile behavior in the x3 direction was measured experi-
mentally after different number of ECAP-C passes, and the material 
response after four ECAP-C passes was simulated with the two 
polycrystalline models described above. In the first approach, 
Fig. la, an RVE with 1000 crystals was selected because the number 
of orientations was enough to give a very small scatter on the pre-
dicted stress-strain response. In the second approximation, Fig. lb, 
100 grains were represented by means of 64,000 cubic elements. It 
was checked that increasing the number of elements to represent 
each grain did not substantially change the accuracy of the solution. 
The final size of this model (100 crystals and 640 elements per crys-
tal) was a compromise between accuracy and computational cost: 
24 h in a 4-core computer were necessary to simulate the tensile re-
sponse up to an applied engineering strain of 1. 

The starting point of the simulation was the generation of a dis-
tribution of crystal orientations to be used in the polycrystalline 



models. Orientation distribution functions (ODF) were obtained by 
X-ray diffraction after the four ECAP passes [34] and the resulting 
pole figures in the rod direction (x3) are shown in Fig. 3a. From that 
experimental ODF equivalent textures were generated using a 
Monte Carlo lottery where the probability of a random orientation 
is weighted to reproduce the original ODF. The resulting pole fig-
ures are depicted in Fig. 3b for 1000 crystals (corresponding to 
the first model) and in Fig. 3c for 100 crystals (corresponding to 
the second approach). Both synthetic pole figures reproduce the 
main features of the experimental ODF although the limited 
number of crystals in the model (particularly for 100 grains) influ-
ences the roughness of the pole figures and the maximum 
intensities. 

The plastic behavior of the single crystals was based on the 
CRSS ratios measured by [30]. In addition, the CRSS of each slip sys-
tem was taken as the saturation stress in the Voce hardening mod-
el (T®) and RG = 0.9T*. Secondly, the hardening rates were identical 
for the three active slip systems (h^ = h0 and h"s = hs for all a).The 
hardening was assumed to be isotropic and thus qa /J = 1. And, final-
ly, the reference shear strain rate j'0 was taken to be equal to the 
applied strain rate in the experiments with a rate-sensitivity expo-
nent m = 0.1. Under these assumptions, only three independent 
parameters were necessary to fit the experimental data: h0, hs 

and a proportionality factor for all the normalized CRSSs. Fitting 
of these parameters was carried out using a trial and error strategy 
with the model with 1000 cubic crystals because of the lower 

Table 1 
Parameters defining the mechanical behavior of the slip systems in single crystals of 
CP nanostructured Ti. 

Slip system to (MPa) zs (MPa) ho (GPa) hs (GPa) 

Prismatic 232.9 258.7 2.5 89.1 
Basal 268.9 298.8 2.5 89.1 
Pyramidal a + c 609.8 677.6 2.5 89.1 

computational cost. The resulting parameters for CP nanostruc-
tured Ti single crystals are shown in Table 1. 

Two models for each type of polycrystalline representation of 
the RVE were generated. In the case of the voxel model with 
1000 crystals, the two realizations differed in the initial crystal ori-
entations within the RVE. In the case of RVE with 100 grains, the 
two models differed in the particular grain distribution and in 
the initial crystal orientations but the grain shape (equiaxial) and 
size were kept. 

Periodic boundary conditions were applied in all cases. The four 
models were subjected to tensile deformation in the rod direction 
(corresponding to the x3 axis of the textures represented in Fig. 3). 
The applied strain rate e was equal to the reference shear strain 
rate j'0. The final deformation applied was 100%, corresponding 
to a logarithmic strain e = 0.69. Thus, the applied deformation his-
tory for the simulation of the tensile tests, following Eq. (13), is gi-
ven by 

Fig. 3. Pole figures of CP nanostructured Ti in the rod direction (x3 ) after four ECAP-C passes, (a) Pole figures of experimental ODF. (b ) Pole figures obtained from experimental 
ODF using Monte Carlo lottery for 1000 crystals, (c) Idem for 100 crystals. 



u'3(M3) = eLg 
P 1 (M 3 ) =P 2 (M 3 ) = 0 
Pi(M1)=Pi(M2)=0, i = l ,2 ,3 

(16) 

The effective Cauchy stress of the polycrystal was obtained as 
the applied load on face x3 divided by current face area and the re-
sults of the four models are plotted as a function of the applied 
strain in Fig. 4, together with the experimental data. The models 
based in one voxel for each crystal were able to reproduce very 
accurately the experimental curve, although this agreement is 
obviously a consequence of the fitting of the single crystal proper-
ties to the experimental data. It is worth noting that the curves of 
the two voxel models were superposed, indicating that the size of 
the RVE (made up of 1000 crystals) was large enough to provide a 
response representative of the macroscopic behavior. The finite 
element models corresponding to 100 grains with realistic shape 
showed a softer response and the flow stress was around 5% lower 
than that computed with the models with one voxel per grain. As 
the single crystal properties were identical in all cases, these dis-
parities should be attributed to the differences in the representa-
tion the microstructure. The models in which each grain is 
represented by one single element provide a stiffer response be-
cause the deformation is overconstrained to maintain the compat-
ibility between adjacent crystals. This fact is enhanced by the poor 
representation of the strain fields because the linear finite ele-
ments cannot reproduce the strain concentrations on the grain sur-
faces. In addition, the localization of plasticity in slip bands is 
hindered, leading to a more homogeneous plastic strain distribu-
tion. This is shown in Fig. 5a and b, which depict the contour plots 
of the accumulated plastic slip r for both model types after a log-
arithmic strain e = 0.69. For the reasons indicated above, the model 
based in one voxel per grain was not able to capture the localiza-
tion of plastic deformation within the grains, leading to a stiffer re-
sponse. The effect of the discretization of each grain with many 
finite elements has been previously studied for FCC materials 
[35] and the results obtained here for a nano-grained HCP metals 
are in concordance with those studies. 

It should be finally noted the slight difference (around 3%) in the 
flow stress between the two finite element models with a realistic 
microstructure. This behavior is very likely due the limited number 
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Fig. 4. Tensile stress-strain curves in the x3 direction: experimental results from 
[34] and numerical simulations using the two representations the polycrystal, one-
voxel per grain model and multivoxel per grain model. 

Fig. 5. Contour plot of the accumulated plastic slip r in the microstructure of 
polycrystalline Ti after 100% of tensile strain, (a) RVE containing 1000 crystals, each 
one represented by one cubic finite element, (b ) RVE containing 100 crystals, each 
one represented with 640 cubic finite elements. 

of grains in the RVE (100 crystals), which leads to noticeable statis-
tical differences between them. 

4.2. Simulation of the drawing process after ECAP 

The drawing process was simulated in order to check the ability 
of the two models to predict the evolution of texture and the sim-
ulation results were compared with the experimental textures 
after drawing. The nanostructured Ti billets produced in [34] after 
six ECAP-C passes were subjected to drawing at 200 °C to produce 
rods with the longitudinal axis oriented in x3 direction (Fig. 2). The 
material was not tested at 200 °C so no actual data were available 
for the single crystal properties at this temperature. However, the 
ratios between critical resolved shear stresses were found to re-
main constant from room temperature up to 500 K [28]. Under 
these circumstances, the texture evolution can be accurately pre-
dicted using the parameters obtained at ambient temperature for 
the single crystal behavior although the actual stress values could 
be overestimated. 



The drawing process was idealized by the application of a strain 
history to the RVE that corresponds to the one underwent by the 
material at the center of the rod. Let x3 be the drawing direction 
while x! and x2 are perpendicular axes contained in the cross sec-
tion of the rod, as depicted in Fig. 2. The applied strain history con-
sists of equi-biaxial compression along the directions x^ and x2 

while the rod is stress free along the x - 3 axis. This stress state 
was obtained by imposing the same velocities ii on the master 
nodes controlling the deformation of faces 1 and 2, according to 
(Eq. (13)), 

u'i (Mi) = u2 (M2) = u = -EL0 

P2 (Mi) = P3 (Mi) = Pi (M2) = P3 (M2) = 0 
P;(M3) = 0, i = l , 2 , 3 

(17) 

The applied strain rate e was chosen to be equal to the reference 
shear strain rate j'0. The experimental drawing process led to 
reduction from billets with a cross section of 11 x 11 mm2 to a 
rod with 6 mm in diameter. This reduction of area corresponds, 
in average, to a reduction of the RVE length in directions x, and 
x2 of = I 2 = 0.4831, being L the initial length of the cubic RVE 
sides. Finally, the texture used as starting point for the simulation 
of the drawing process was the one resulting after six ECAP-C 
passes, essentially identical to the one after four passes depicted 
in Fig. 3. 

The texture measured by X-ray diffraction after the drawing 
process and the corresponding results of simulations are shown 
in Fig. 6. 

The experimental texture (Fig. 6a) corresponds to a (1010) fi-
bre texture along the rod axis (direction x3). Such texture is typical 
of CP Ti after swaging and/or drawing. The texture predictions ob-
tained with the model in which each crystal is represented by one 
cubic finite element, Fig. 6b, failed to predict the experimental tex-
ture: the pole figures predicted for directions (1010) did not pres-
ent a maximum in the x3 direction but in a ring surrounding that 
direction (at an angle of approximately 10°). On the contrary, the 
pole figures of the polycrystal model in which each grain was rep-
resented by 640 cubic elements, Fig. 6c, predicted very accurately 
the experimental texture (both qualitatively and quantitatively). 

The differences in the texture predictions between both types of 
representations of the microstructure can be traced again to the 
ability of each model to represent the deformation fields inside 
the grains. The actual orientation of each integration point in the 
FE model is obtained from the elastic rotation tensor Re (provided 
by the polar decomposition of the elastic deformation gradient Fe) 
that is linearly interpolated across the element. Thus, the crystal 
orientation is characterized by 8 values (corresponding to the 8 
Gauss points) if the single crystal is represented with one element, 
and the orientation can only vary linearly within the element. 

In order to show the real distribution of orientations in grains, 
Fig. 7 shows the third Euler angle at each element when each grain 

(1010) (1011) (1120) 13.8 
12.1 
10.5 
8.8 
7.2 
5.5 
3.9 
1.9 
1.7 
1.4 
1.1 
0.8 

Min=0.009 
Max=15.4 

(b) 

(c) 

Fig. 6. (a ) Experimental pole figures for nanostructured Ti after six ECAP-C passes fo l lowed by cold drawing, ( b ) Simulated pole figures obtained wi th the RVE containing 1000 
crystals, each one represented by one cubic finite element, ( b ) Simulated pole figures obtained wi th the RVE containing 100 crystals, each one represented wi th 640 cubic 

finite elements. 



Fig. 7. Distribution of the third Euler angle in the microstructure of an RVE of polycrystalline Ti. Picture axis corresponds to x = x,,y = x2 and z = x3 and contour plot is drawn 
on the reference configuration (a) Initial data before deformation showing the grain structure, (b ) After drawing along the z = x3 axis. 

is represented by many finite elements. The left figure corresponds 
to the initial state before drawing and shows the grain structure as 
so all the elements belonging to the same crystal have the same 
orientation. Upon deformation, the local orientation changes from 
the crystal boundary to its interior (Fig. 7 on the right). This varia-
tion of orientation within the grains influences the pole figures but 
it cannot be captured if each grain is represented by one finite ele-
ment, leading to the erroneous texture predictions of the texture 
after drawing in these latter models. 

5. Conclusions 

Two different homogenization approaches were used to simu-
late the tensile deformation and the drawing process of nanostruc-
tured Ti polycrystals. Both strategies are based on the numerical 
simulation of a periodic RVE of polycrystal microstructure by 
means of the finite element method. A single crystal plasticity 
model was developed to simulate the plastic deformation of nano-
structured Ti by slip along the basal, prismatic and pyramidal sys-
tems. Two polycrystal representations were used for the cubic RVE. 
In the first one, each crystal was modeled with a single cubic finite 
element while many finite elements were used to model each crys-
tal in the second one. Thus, this second approach accounted for the 
grain shape and size although the number of crystals within the 
RVE was much smaller. 

The models were used to simulate a the tensile deformation of 
nanostructured Ti billets processed by ECAP-C. The one-voxel-one-
grain model led to a slightly stiffer response (about 5%) which was 
traced to the poor representation of the deformation gradients 
within the grains by one finite element with linear displacement 
interpolation. This limitation of the one-voxel-one-grain model 
was, however, more important in the simulation of the texture 
evolution during drawing of nanostructured Ti billets because the 
experimental (1010) fibre texture was not captured. These prob-
lems were not found in the model which include many finite ele-
ment to represent each grain because the deformation gradients 
within each grain were adequately taken into account. Thus, in 
agreement with previous studies in FCC metals [35], it is concluded 
that a detailed resolution of the deformation fields within the nano 
grains is necessary to achieve an accurate prediction of the 
macroscopic response and, particularly, of the texture evolution. 

In addition, this study shows that standard crystal plasticity mod-
els can be successfully extended to nanostructured materials pro-
vided that the size effect is included in mechanical properties of 
single crystals. 
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