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Abstract: The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more 
objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those systern^ 
include the usage of a^optimized representation of the spectral envelope, either based on cepstral coefficients 
from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole es­
timation (Linear Prediction Coding Cepstral Coefficients) for characterization, and Gaussian Mixture Models 
for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nui­
sance mitigation techniques, such as those employed in speaker recognition, has not been widely considered in 
pathology detection labours. The present work aims at testing whether or not the employmenl|of such speaker 
recognition tools might contribute to improve system performance in pathology detection systems, specifically 
in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs^arj^Ob3tructivo Sloop 
Apnoa database^ in conjunction with GMM-based classifiers looking for a better performance. The results 
show that an improved performance might be obtained by using such approach. 

1 INTRODUCTION 

The Obstructive Sleep Apnea (OSA) is a highly 
prevalent disease affecting an estimated 2-4% of male 
population between the ages of 40-60 (Puertas et al , 
2005). It is characterized by recurrent episodes of 
sleep-related collapses of the Upper Airway (UA) at 
the level of the pharynx, and is usually associated 
to loud snoring and increased daytime sleepiness. It 
is a serious threat to an individual's health as it is 
known to be a risk factor for hypertension and, possi­
bly, cardiovascular diseases (Coccagna et al., 2006). 
Recently it has also been related to traffic accidents 
caused by somnolent drivers (Puertas et al., 2005; 
Coccagna et al., 2006; Lloberes et al., 2000), and to a 
poor quality of life and impaired work performance. 

OSA is usually detected on the basis of an analy­
sis of the patients characteristic history and a physical 
examination, though, a full overnight sleep study is 
required to confirm diagnosis. However, it involves 
the recording of neuroelectrophysical and cadiorespi-
ratory variables (ECG), as well as complex and in­
tensive post-processing of collected data. Despite the 

noticeable accuracy of such procedure (up to 90% 
(Penzel et al., 2002)), it turns out to be quite expen­
sive and time-consuming, and patients usually have 
to be in waiting lists for several years. Those issues 
have motivated the research of early diagnosis tools 
which aim for more advantageous diagnosis of the 
pathology (Alcázar et al., 2009). For instance in (Fox 
et al., 1989), acoustic cues to the automatic detection 
of OSA were found. Particularly, several articulatory, 
phonation and resonance characteristic were identi­
fied when comparing voices from OSA patients with 
those from healthy ones. With that in mind, it might 
be reasonable to consider the automatic detection of 
OSA by means of recorded voice signals. 

Traditionally, the automatic detection of patholo­
gies using voice recordings has been mainly based 
on the estimation and monitoring of perturbation pa­
rameters such as jitter and shimmer, noise measures 
as harmonic-to-noise ratio, glottal to noise excita­
tion ratio, normalized noise energy and turbulent 
noise index, among others spectral domain param­
eters (Gómez-Vilda et al., 2009) such as Mel Fre­
quency Cepstral Coefficients (MFCC) or Linear Pre-



diction Coding (LPC). All above referred features 
have been employed for different pathologies, obtain­
ing different results depending on the nature of the 
problem. For the particular of OSA detection, the rep­
resentation of the spectral envelope (either obtained 
from Fourier analysis or linear prediction) has proved 
to be discriminative for the OSA detection problem 
(Ferna´ndez-Pozo et al., 2009; Blanco-Murillo et al., 
2009). On the other hand, for classification purposes, 
the Gaussian mixture model (GMM) has become the 
standard method in speaker related applications, and 
most notably in speaker recognition systems, due to 
their capability of representing a large class of sam­
ple distributions (Reynolds, 2008), its probabilistic 
framework, its training methods scalable to large data 
sets, and high-accuracy (Campbell et al., 2006). 

Several variations, within the field of speaker 
recognition, have been proposed for training a suit­
able GMM. One of such is the Universal Back­
ground Model (UBM), which aims to represent gen­
eral speech characteristics, by training a GMM on a 
large corpus of speech representing the characteris­
tics. In this form, it is possible to derive distinc­
tive specific models coming from this rather gen­
eral one, which might behave better than a GMM 
trained directly on the dataset. Other approaches, 
aim to combine the GMM with Support Vector Ma­
chines (SVM) (Campbell et al., 2006). For this pur­
poses, the concept of Supervector is introduced, and 
which is usually referred to mapping many small-
dimensional vectors into higher-dimensional vectors 
(for instance, by stacking the mean vectors of adapted 
GMM) to feed a SVM classifier (Kinnunen and Li, 
2009). Additionally, and for improving even fur­
ther performance of the GMM-SVM based schema, 
some developments have been done to address the 
effects linked to the differences between recording 
sessions due to transmission channel mismatch, ad­
ditive noise, linguistic content, and speaker variabil­
ity (Fauve et al., 2007). For instance the Nuisance 
Attribute Projection (NAP) (Solomonoff and Camp­
bell, 2007) removes nuisance attribute-related dimen­
sions in the supervector expansion space via projec­
tions, aiming to compensate channel and speaker mis­
matches. 

However, all above referred techniques are mainly 
employed on speaker recognition tasks, while its use 
on automatic pathology detection has remained prac­
tically unexplored. Having those precedents, the aim 
of this paper is to explore the usefulness of the afore­
mentioned classifiers in the automatic detection of 
OSA. The usage of LPC-based cepstral coefficients is 
supported by the successful results obtained on vow­
els frames over continuous speech for detection of 

OSA (Elisha et al., 2011), which are worth testing 
on sustained speech records.On the other hand, for 
training the UBM on which all the GMM-based clas­
sifiers rely, a voice database recorded by Universidad 
Polite´cnica de Madrid is utilized. 

The paper is organized as follows: Section 
2 presents the theoretical background; Section 3 
presents the database, the experimental setup; Sec­
tion 4 presents the obtained results; finally Section 5 
presents the discussions as well as some conclusions 
of the work. 

2 THEORETICAL BACKGROUND 

2.1 Classification using Gaussian 
Mixture models 

Having a data vector x , a Gaussian Mixture Model 
(GMM), defined as a finite mixture of multivariate 
Gaussian components, is of the form: 

^ = Nummi%) (1) 
i=1 

where Xi are mixture weights, and 5\£( •) are Gaussian 
density functions, having mean mi and covariances Ei 

(Campbell et al., 2006). 
A general model of speech population might be 

obtained by training the GMM on a large popula­
tion. This model is termed Universal Background 
Model (UBM), and might be employed for generat­
ing more specific models. In this way, and within the 
field of pattern recognition, while considering a bi­
nary classification problem, at least two specific mod­
els are required for representing the normality (con­
trol) and pathology conditions. Consequently, two 
specific models are adapted by means of Maximum A 
Posteriori (MAP) adaptation of the UBM means (as 
it is classically done for speakers’ verification). The 
resulting pair of GMM-UBM adapted models being: 

g^Nwx ; mi
pX) (2) 

N 

gn ( x ) = ^Xi$¿( x ; mn
i ,I.i ) (3) 

i=1 

where mn
i and mi

p are the adapted means for the nor­
mal GMM-UBM model, gn(x), and the pathological 
GMM-UBM model, gp(x), respectively. 

In this manner, a log-likelihood decision func­
tion is suitable for discriminating between the two 
hypotheses: speaker belonging to control or OSA 



groups. As for the present detection problem and a 
given test sample y the latter is to be evaluated as fol­
lows: 

L(y) = log(gp{y)) — log(gn{y)) (4) 

2.2 Classification using SVM based 
Gaussian classifiers 

A Support Vector Machine (SVM) is a discriminative 
binary classifier constructed from sums of a kernel 
function K (·,·) such that: 

/(*) (5) 

where the t¡ are the ideal outputs (-1 or 1), d is a 
learned constant, åí=1 ait¡ = 0|a,- > 0, and jf, are sup­
port vectors obtained from the training set by an opti­
mization process. 

In order to exploit the discriminative power of the 
SVM and simultaneously the generalization capabil­
ities of the GMM models, the supervector concept 
is introduced. A supervector m¡, is a mapping y ( ) , 
between an utterance and a high-dimensional vec­
tor. This supervector is usually achieved by stacking 
the means of the Gaussian components of the GMM-
UBM models (Kinnunen and Li, 2009), permitting to 
define a linear Kernel: 

N , T T 

^( • , O = å ( v l S71/2m?) ( v l S71/2.mf) 
i=1 

(6) 
In this way, the decision function of Eq. (5) for a test 
sample y might be rewritten as follows: 

m= ( T L \ 

å ajtyixi) 
i=1 J 

y(/) + d=w y(y) + d (7) 

This likelihood function defines a GMM-SVM 
classifier. However, and in order to increase perfor­
mance, it might be desirable to remove the directions 
of undesired variability from supervectors before the 
SVM training. One technique combating with such 
drawback is the Nuisance Attribute Projection (NAP), 
which for a given Supervector, rh¡, is as follows: 

nij = nij — UU (8) 

where pmbU is an eigenchannel matrix, trained using 
a development dataset with a large number of speak­
ers (Kinnunen and Li, 2009). And where a GMM-
SVM-NAP system results after applying this tech­
nique. 

3 EXPERIMENTAL SETUP 

In the experiments described in this contribution two 
databases were used for the training and testing of the 
proposed classification scheme. 

3.1 Databases 

UPM database 

The database was recorded by the Universidad 
Polite´cnica de Madrid (UPM). It contains 239 normal 
voices, and 201 pathological voices with a wide vari­
ety of organic pathologies (nodules, polyps, edemas, 
carcinomas, etc.). The dataset contains the sustained 
phonation of the /aa/ Spanish vowel. The recordings 
were sampled at 50kHz, 16-bits of resolution, and 
2s long. Besides, the recordings were half-band fil­
tered and downsampled to 25kHz. The distribution 
by gender is: 226 females and 130 males. The age 
range goes from 9 to 79 years old, with a mean of 
35.5 years. To match the same conditions of the OSA 
database, only the male adults of the normal class are 
considered. This class is utilized as it provides less 
variability and a more compact GMM model than the 
Pathological class, and therefore might provide a bet­
ter representation of general speaker population. 

Obstructive Sleep Apnoea Database 

This database was recorded in the Respiratory Depart­
ment at Hospital Cĺ ın ı́ico Universitario of Ma´laga, 
Spain. It contains recordings of 80 male subjects, ex­
hibiting similar physical characteristics including age 
and Body Mass Index. Half of patients suffer from 
severe OSA, and half are either healthy or suffer from 
mild OSA. The recordings were encoded using 16 bits 
per sample and recorded at a 16kHz sampling rate. 
Audio files were pre-processed to remove the begin­
ning and ending of each utterance, while keeping the 
stable sustained segments which lasted for at least 1 
second. The speech corpus includes four phonetically 
balanced sentences specifically designed for the ap-
noea detection problem, as well as records of sus­
tained / a / vowel (Ferna´ndez-Pozo et al., 2008). This 
latter set of recordings is the only of interest in the 
present paper. 

3.2 Methodology 

A general outline of the proposed automatic pathol­
ogy detection system, is shown on figure 1, while the 
main stages are described next. 

In the Preprocessing stage, a minus one-one nor­
malization is considered so that the dynamic range 
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Figure 1: Outline of the automatic voice pathological sys-
tempresented on this work 

of the recordings remain constant. Additionally it is 
considered a short time analysis by employing 40ms 
Hammming windows, overlapped 50%. 

Next, in the characterization stage a LPC 
parametrization is employed by using 12,16 and 18 
coefficients, to characterize both UPM and OSA 
database. 

Finally, classification is performed with the 
GMM, GMM-UBM, GMM-SVM, and GMM-SVM-
NAP systems in a 11-fold crossvalidation scheme. 
For testing purpose the number of Gaussians is var­
ied between 2 to 20 to prevent overfitting and to keep 
the same ranges analyzed in (Blanco-Murillo et al., 
2011). Besides, and for validation of results, the Clas­
sification accuracy, Sensitivity (SE), Specificity (SP), 
as well as ROC curves and Areas Under ROC Curves 
(AUC) are employed. Sensitivity and specificity are 
defined as follows: 

SE 
TP 

TP-\- FN' 
SP 

TN 
TN+ FP 

where TP - True Positive or Correctly Identified Posi­
tive Instances; FP- False Positive or Incorrectly Iden­
tified Positive Instances; TN- True Negative or Cor­
rectly Identified Negative Instances; and FN- False 
Negative or Incorrectly Identified Negative Instances. 

4 Results 

The best operation point obtained for each of the pro­
posed classifier is presented next. The number of LPC 
parameters is indicated as well as the number of Gaus-
sians for which the best classification rate was ob­
tained. These are both representative of the smooth­
ness of spectral envelope, and the complexity of the 

trained model, which is related both to the number 
of dimensions of the feature space and the number of 
components included in the mixtures. 

- GMM: 18 LPC, 16 Gaussians 
- GMM-UBM: 16 LPC, 12 Gaussians. 
- GMM-UBM-SVM: 16 LPCs, 16 Gaussians 
- GMM-UBM-SVM-NAP: 18 LPC, 16 Gaussians 

Table 1 presents the Classification accuracy, Sen­
sitivity, Specificity, for the OSA detection problem 
and corresponding to each operation point for which 
the best classification rate was achieved. 

Table 1: Classification Accuracy, Sensitivity and Specificity 
for the Kay-Elemetrics and OSA databases, by using the 
GMM, GMM-UBM, GMM-SVM, and GMM-SVM-NAP 
methodologies. 

Accuracy SE SP AUC 

GMM 54 ± 10 0,60 0,5 0,54 
GMM-UBM 53 ± 10 0,52 0,53 0,57 
GMM-SVM 65 ± 10 0,57 0,75 0,77 
GMM-SVM-NAP 62 ± 10 0,57 0,68 0,63 

ROC curve for the k-nn classifier 
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Figure 2: ROC Curve for the best operation point using the 
Kay-Elemetrics and OSA databases. 

5 DISCUSSIONS AND 
CONCLUSIONS 

This paper has investigated the usefulness of 
some^ GMM-based classifiers, usually employed 
in speaker recognition, to the issue of automatic 
detection of OSA. For characterization purposes LPC 
parametrization has been employed and transformed 
according to the standard cepstral transformation. 
LPC coefficients provide uniform resolution across 



the frequency axis and straightly focus on spectral 
resonances which come as response to a linear 
system. Both aspects may be suitable to characterize 
articulation and resonance abnormalities identified 
for OSA speakers (Fox et al., 1989) on sustained 
speech records in a similar way as it was previously 
shown for vowels segments (Elisha et al., 2011). 
Results obtained for the GMM and GMM-UBM 
classifiers (see 1) can be compared to previous ones 
on MFCC parameterization (Blanco-Murillo et al., 
2011). A slight improvement is actually observed, 
which reinforces our understanding on OSA charac­
teristic patterns nature. 

The influence of the training database on the clas­
sification rates achieved by the GMM-UBM scheme 
was previously addressed in (Blanco-Murillo et al., 
2011), where it was concluded that the closesl^the 
database used to train the UBM was to the speech 
content to be finally analyzed, the better results were 
achieved even if the size of the dataset for training the 
UBM isshorter than that in an alternative database. 
Nevertheless, by the time those experiments were de-
veloped, the latter database wasn’t available, hence^ 
it was worth verifying whether the addressed conclu­
sion was correct. According to the results obtained, 
GMM-based classifiers trained on these databases 
outperform those for a specific but smaller database 
tested in that reference. Such result perfectly matched^ 
what was concluded in that reference. 

Moreover, as shown in table 1 the best classifica­
tion results were obtained when following the GMM-
SVM approach, while the worst were obtained for 
the GMM-UBM scheme. However this result does 
not hold when comparing the results in terms of the 
AUC. In this case the best performance remains with 
the GMM-SVM, while the worst is obtained for the 
most elementary GMM classifier. On the other hand, 
the NAP technique, which was intended to minimize 
the effects of the undesired variability observed in the 
GMM-SVM classifier and should have provided bet­
ter performance results, stayed in between the other 
two. The failure of the NAP method might be due to 
the difficulty in finding the spurious sources of vari­
ability within the supervector space which might have 
contributed to a reliable improvement in the accuracy 
rate. 

However, despite the results obtained when using 
the GMM-based classifiers, these are not significantly 
better than those obtained for the baseline GMM, as 
over a 10% improvement was reached in the obtained 
classification accuracy, which might encourage re­
search on using this techniques, within the field of 
automatic OSA detection. This improvement lies be-

yond the 10% confidence interval estimated for the 
classification accuracy. 

Also, and since the methodology for a correct dis­
crimination of the OSA phenomena is still an open 
issue, specially for which is the best set of fea­
tures that might improve the classification accuracy; 
the proposed approach suggests that a better perfor­
mance might be obtained in the basis of more com­
plex classifiers. It also suggests that the usage of 
the GMM-based classifiers, which are usually em­
ployed in speaker recognition, might improve further 
the efficiency as has been demonstrated before. In 
(Wang et al., 2011) a GMM-SVM classifier was uti­
lized in the detection of voice pathologies in the Kay-
Elemetring database, obtaining a classification im-
provementwhen employinga GMM-SVM rather than 
the classical GMM. 

According the obtained results, it might be reason­
able to conclude that the usage of the GMM-based 
classifiers might improve classification accuracy in 
the discrimination of OSA. There is however, much 
effort to be put into finding better characterization 
methodologies capable of correctly distinguishing the 
normality and pathology phenomena. 
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