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The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD)

model is discussed. These solutions are transitional layers where some of the plasma properties change

from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity

C and propagation angle h with respect to the ambient magnetic field, the Hall-MHD model reduces to

a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The

analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations

about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate

shock waves are organized in branches in parameter space, i.e., they occur if a given relationship

between h and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a

reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the

magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between

the downstream and the upstream states as a function of the plasma properties are presented. The

organization in parameter space of localized structures including in the model the influence of finite

Larmor radius is discussed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824001]

I. INTRODUCTION

Plasma discontinuities are transitional layers where

some of the plasma properties change from one equilibrium

state to another. A procedure to study these layers consists of

constructing discontinuous solutions that satisfy the integral

form of the equations describing the plasma. For the magne-

tohydrodynamics (MHD) model, the Rankine-Hugoniot con-

ditions reveal the existence of four types of one-dimensional

steady state discontinuities. These are the tangential and

contact discontinuities, which do not propagate through

the plasma, as well as the shocks and the rotational

discontinuities.1–6 According to their propagation speeds rel-

ative to the small-amplitude MHD waves, shock waves are

commonly classified as slow, intermediate (IS), and fast. For

these waves, the upstream and downstream velocity compo-

nents normal to the shock and measured in a frame moving

with it are, respectively, greater than and less than the slow,

the intermediate, and the fast (small-amplitude) wave speeds.

All shocks satisfy the coplanarity theorem; but whereas fast

and slow shocks do not reverse the magnetic field tangential

to the shock front (the rotation angle is D/ ¼ 0), the IS does

(D/ ¼ p). MHD rotational discontinuities in isotropic plas-

mas propagate exactly along the normal component of the

Alfven speed and rotate the magnetic field component tan-

gential to the shock without changing the thermodynamic

state of the plasma.

Discontinuities can also be studied by looking for

continuous solutions of the system of ordinary differen-

tial equations obtained from the fluid model thanks to

the stationary traveling wave ansatz. This method has

been used to find the structure of intermediate shock

waves within the resistive-MHD model with7 and

without8 Hall effect as well as rotational discontinuities

in the Hall-MHD model with finite Larmor radius (FLR)

effect.9

Anisotropic pressure, an effect normally found in space

plasmas, has been also considered to extend the analysis of

the Rankine-Hugoniot conditions.10–14 A common problem

of anisotropic fluid models is related with the equations of

state used to close the system, an historically difficult issue.

Some authors avoided it by introducing two parameters that

define the plasma anisotropy downstream and upstream.11,13

However, if one is interested in the structure of the disconti-

nuity, two equations of state to close the system are more

convenient. One possibility, adopted in the present work, is

the use of the double-adiabatic model,15 which neglects the

parallel heat fluxes considered in numerical simulations by

other authors.16–18 The advantage of this simplification, only

valid in limit cases, is to gain insight into the physics of the

problem (see for instance Ref. 19). Other pressure assump-

tions based on observations or even letting the two exponents

in the equations of state as free parameters could be also con-

sidered in the model. This choice, however, was not followed

here because the system has already a large number of free

parameters (five). Further, the methodology and some of the

main conclusions of this approach does not depend on the

equations of state and would not change if these two addi-

tional parameters are included. It is also remarkable that the

double-adiabatic model is consistent with the derivation of

the Hall-MHD system with FLR effect,20 which was consid-

ered in the past to study the structure of rotational

discontinuities.9

This work discusses the existence of ISs in collision-

less plasmas, i.e., transitions from super-Alfvenic to sub-

Alfvenic flow that involve the reversing of the magnetic
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field transverse to the shock front. Its existence gave rise to

controversy in the past. Since the MHD IS wave can only

exist for D/ ¼ p, it was argued that it constitutes a singular

solution and it was rejected as non-physical.4 Later works

using the resistive MHD model showed, however, that IS

do exist and are stable.21–23 Numerical24–26 and observatio-

nal27 evidences of ISs have confirmed them. The collision-

less solutions presented here were first obtained in Ref. 28

but the physical significance was unclear for the author.

The main difference between the resistive and collisionless

intermediate shocks is related with their organization in pa-

rameter space; whereas the existence of resistive shocks

does not require any relation between the physical parame-

ters, nondissipative structures happen if certain relationship

of the shock velocity and its propagation angle with respect

to the ambient magnetic field is satisfied. Shocks solutions,

which asymptotically tend to different states at infinity, fre-

quently exhibit a constraint that relates two physical param-

eters. An example is the frequency-velocity relationship

exhibited by shocks waves in relativistic plasmas.29 The

appearance in nature of these structures is linked with their

stability properties, an issue beyond the scope of the pres-

ent work.

Thanks to the traveling wave ansatz, the double-

adiabatic Hall-MHD system leads to a pair of coupled dif-

ferential equations with a Hamiltonian structure.28 This

property allows the use of some results and tools from dy-

namical system theory. For instance, the upstream and

downstream equilibrium states are fixed points of the sys-

tem and the ISs are heteroclinic orbits joining them.

Homoclinic orbits, which start and end at the same fixed

point, are also of great interest because they represent soli-

tary waves. Simple arguments, based on the dimension of

the system and its reversibility, help to find the organiza-

tion of the ISs in parameter space. These results are impor-

tant because they do not depend on the pressure

assumptions and can also be used to obtain information

about the existence of solitary waves when FLR effects are

included [see Sec. V]. Besides their applications to plasma

discontinuities analysis, the computation of heteroclinic

orbits and the determination in parameter space of its do-

main of existence are interesting for other reasons. In first

place, since these waves are exact solutions of the fluid

model, they can be used to validate numerical codes.

Second, as it will be seen, these waves are organized in

branches that separate different regimes of bright and dark

solitary waves.

The work is organized as follows. Section II briefly

summarizes the derivation of the dynamical system that

governs the dynamics of the traveling waves and discusses

the necessary conditions for the existence of ISs. In Sec.

III, the possible upstream and downstream states of the

plasma, which correspond to the fixed points of the system,

are computed. It also presents the parameter domain where

discontinuities are expected to appear. Section IV shows

some numerical ISs and the jumps of the magnetic field as

a function of the relevant parameters. Finally, the main

results and some considerations about the FLR effects are

discussed in Sec. V.

II. BASIC EQUATIONS AND CONSIDERATIONS

A. The double-adiabatic Hall-MHD model

The purpose of this work is to present steady state self-

consistent ISs solutions of the double-adiabatic Hall-MHD

system. This model is only valid to study low-frequency phe-

nomena and it neglects the displacement current and the

electron inertia while imposing the quasineutrality approxi-

mation. Mass density q, plasma flow velocity v, and mag-

netic field B are governed by

@q
@t
þr � ðqvÞ ¼ 0; (1a)

@

@t
ðqvÞ þ r � qvvþ Pi þ Pe �

1

4p
BB� 1

2
B2I

� �� �
¼ 0;

(1b)

@B

@t
¼ r� v� B� mic

4peq
ðr � BÞ � B

� �
: (1c)

The above system is completed by assuming isotropic and

anisotropic pressure tensors for electron and ion,

respectively,

Pe ¼ peI; Pi ¼ ðpk � p?Þ
BB

B2
þ p?I (2)

and isothermal electrons (with temperature Te) and a double-

adiabatic model for the ion pressure

pe ¼ qv2
se; (3)

pk
pk0
¼ B0

B

� �2
q
q0

� �3

� Pk; (4)

p?
p?0

¼ B

B0

q
q0

� P?: (5)

Here, pk0 and p?0 are the parallel and perpendicular ion pres-

sure components at upstream (or downstream) and

vse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=mi

p
.

The analysis is restricted to one-dimensional ð@=@y
¼ @=@z ¼ 0Þ traveling wave solutions with all quantities

depending on X¼ x–Ct and satisfying the boundary

conditions

q! q0; v! 0; B! B0ðcos hiþ sin hkÞ (6)

as X! þ1 or X! �1. With these assumptions, Eq. (1a)

gives the plasma velocity component along the propagation

direction
vx

C
¼ 1� q0

q
� 1� u (7)

with u the relative specific volume. Defining the normalized

magnetic field by;z ¼ By;z=B0 sin h, the longitudinal compo-

nent of Eq. (1b) gives

Fðu; b2Þ � u� 1þ 1

2
MA sin2hðb2 � 1Þ þ P ¼ 0 (8)
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with b2 ¼ b2
y þ b2

z ,

P �Me
1

u
� 1

� �

þMi P? � 1þ ðap0Pk � P?Þ
cos2h

b̂
2
� ðap0 � 1Þcos2h

" #
;

(9)

b̂
2¼cos2hþb2sin2h;ap0�pk0=p?0;MA�V2

A=C2;Me�v2
se=C2

and Mi�v2
?=C2ðv2

?�p?0=q0Þ. Therefore, u is a function of

just b2, u¼u(b2). It can be shown that Eq. (8) can be solved

only in an interval b2
min<b2<b2

max containing b2¼1.28 An

orbit in the by–bz phase space cannot cross the inner and

outer sonic circles defined by the values b2
min and b2

max. As

shown in Ref. 28, the outer sonic circle always exists,

whereas the inner sonic circle appears only in certain param-

eter domain.

The transverse components of Eq. (1b) allows to write

vy and vz as explicit functions of by, bz, and u

vy

C
¼ sin h

cos h
½vðu; b2Þ � u�by; (10)

vz

C
¼ sin h

cos h
f½vðu; b2Þ � u�bz � ½vð1; 1Þ � 1�g; (11)

where

vðu; b2Þ � u�MA cos2hþMiðap0Pk � P?Þ
cos2h

b̂
2
: (12)

The transverse components of Eq. (1c) give28

dby

df
¼ vðu; b2Þbz � vð1; 1Þ; (13)

dbz

df
¼ �vðu; b2Þby; (14)

where the dimensionless variable f is related with X by

dX

df
¼ V2

A cos h
XiC

u: (15)

Here, VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffi
4pq0

p
is the Alfven velocity and Xi ¼

eB0=cmi is the ion-cyclotron frequency. The system (13) and

(14), which must be solved self-consistently with Eq. (8),

depends on the following 5 parameters: h, ap0, MA, Me, and

Mi. For convenience, Refs. 28 and 30 will be followed and

some of the results will be given as a function of C/VA

instead of MA.

System (13) and (14) has two properties with important

consequences in the computation of shocks and solitary waves.

First, the system is reversible because solutions are invariant

under the transformation ðf; by; bzÞ ! ð�f;�by; bzÞ. Second,

since the model has no irreversible effects, it has a

Hamiltonian structure with Hamiltonian

Hðby; bzÞ ¼
1

2

ðb2

1

vðuðaÞ; aÞda� vð1; 1Þðbz � 1Þ: (16)

This function is conserved along the orbits because it does

not dependent explicitly on f.

B. Considerations about the dynamical system

The derivation of the dynamical system (13) and (14)

from the fluid model requires setting boundary conditions as

f! þ1 or f! �1. This plasma state appears in the sys-

tem as the fixed point Q0 � ðby; bzÞ ¼ ð0; 1Þ (u¼ 1), which

has zero Hamiltonian value. Solutions connecting the fixed

point Q0 with itself (other fixed point) are called homoclinic

(heteroclinic) orbits and they represent solitary (shock)

waves.

The organization of homoclinic and heteroclinic orbits

in parameter space can be discussed taking into account sim-

ple geometrical arguments involving the dimensions of the

system and the stable and unstable manifolds of Q0. It should

be recalled that the stable (unstable) manifold of a fixed

point Qi is the set of forward (backward) in f trajectories that

terminate at Qi. Homoclinic orbits, which connect with Q0 as

f! þ1 and f! �1, must lie in the intersection of both

manifolds. For a 2-dimensional system, like system (13) and

(14), homoclinic orbits only exist if Q0 is a saddle (stable

and unstable manifolds have dimension equal to one). In this

case, both manifolds generically intersect and the homoclinic

orbits have codimension zero (the intersection is robust

under variation of the parameters). However, the saddle con-

dition is necessary but not sufficient to have homoclinic

orbits because it could happen that the orbit hits one of the

two sonic circles and Eq. (8) cannot be solved to find

u¼ u(b2).

Heteroclinic orbits, which connect Q0 with other fixed

point (say Q1), lie at the intersection of the stable manifold

of one fixed point with the unstable manifold of the other.

Therefore, a necessary condition is Q0 and Q1 to be saddles.

In addition to this, since the Hamiltonian is conserved along

the orbits, the connection is only possible if both fixed points

have the same value of H. This condition only happens for

certain combination of the parameters, making the existence

of heteroclinic orbits a codimension-one problem. For

instance, for Me, Mi, and ap0 fixed, shock waves appear in

branches h ¼ hðMAÞ in the MA � h plane (or C=VA � h).

In summary, the existence of ISs requires: (i) another

fixed point different to Q0, say Q1, (ii) both Q0 and Q1 must

be saddles, (iii) the Hamiltonian at Q1 should vanish, and

(iv) the orbit joining both fixed points cannot hits the outer

or the inner sonic circle. As we will see, the simultaneous

occurrence of all these conditions does only happen in cer-

tain parameter domain that must be computed numerically in

general.

Condition (ii) for the fixed point Q0 was studied in

Ref. 28. The sonic velocity (Cs), the firehose velocity (VF),

and the slow (Cslow) and fast (Cfast) magnetosonic velocities,

which can be explicitly written in term of the parameters of

the system, define the parameter domain where Q0 is a sad-

dle. Ordering these four velocities as C1 < C2 < C3 < C4,

Q0 is a saddle if C satisfies C1 < C < C2 or C3 < C < C4.

Figure (5) in Ref. 28 shows some examples of the stability

domains of Q0 in the C=VA � h plane.
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III. FIXED-POINT ANALYSIS AT THE UPSTREAM
AND DOWNSTREAM STATES

Simple arguments indicate the absence of shocks in sys-

tem (13) and (14) with magnetic field rotation different to 0

or p; since Q0 has magnetic field components (by,bz)¼ (0,1),

such a discontinuity would need the existence of a second

fixed point with by 6¼ 0, say Q1. According to Eq. (14), Q1

would have vðu1; b
2
1Þ ¼ 0 and then Eq. (13) reveals that it

would only be possible for parameters satisfying vð1; 1Þ ¼ 0.

One can easily check that, if vð1; 1Þ ¼ 0, system (13) and

(14) conserves b2 and the locus of the points with b2¼ 1 are

all fixed points. Therefore, a heteroclinic orbit connecting Q0

is impossible. As shown in Ref. 9, if the influence of FLR is

added in system (13) and (14), rotational discontinuities with

magnetic field rotation different to 0 and p are possible.

Once the existence of orbits connecting Q0 and a fixed

point with by 6¼ 0 has been ruled out, we pay attention to

fixed points with by¼ 0. These fixed points satisfy

Fðu; b2
z Þ ¼ 0 and vðu; b2

z Þbz � vð1; 1Þ ¼ 0 [see Eqs. (8) and

(13)]. The solutions of this pair of nonlinear algebraic equa-

tions have been investigated using the program AUTO,31

which allows the tracking of the fixed points as a parameter

is varied.

Panels (a)–(d) in Fig. 1, which all have parameter values

ap0¼ 1 and Me¼Mi¼ 0.65MA, show the bz component of

several fixed points versus the angle h for C/VA¼ 0.25, 0.7,

1.025, and 1.25, respectively. In addition to Q0, which corre-

sponds to the solid line with bz¼ 1, the system has other

branches of solutions with several turning points (denoted by

Ti in Fig. 1). For instance, at C/VA¼ 0.25, there are five turn-

ing points and a h-range with six fix points. At C/VA¼ 0.7

[see panel (b)], the turning points denoted by T1 and T5

merge and one finds four fixed points for low h values. At

higher velocities, the turning points T2 and T3 also merge

and disappear, as can be seen in panel (c). For even higher

velocity values, the turning point T4 moves to the left until it

reaches h¼ 0 and the system has only two fixed points [see

panel (d)].

AUTO also computes two-parameter curves of special

points like the turning points shown in Fig. 1. This type of

diagram allows to delimit in a h� C=VA plane the domains

with different number of fixed points. Panels (a)–(d) in

Fig. 2 show the results of this calculation for parameter val-

ues ap0¼ 1, Me¼Mi, and Mi/MA¼ 0.15, 0.4, 0.65, and 0.9,

respectively. The numbers indicate how many fixed points

can be found at each parameter domain. For instance, panel

(c) in Fig. 2 can be understood by looking at panels (a)–(d)

in Fig. 1. At velocity values below C=VA � 0:62 and increas-

ing h, one finds h-ranges with four, two, four, six, and four

fixed points. This feature can also be seen in panel (a) of Fig.

1. For C/VA above 0.62, the turning points denoted by T1 and

T5 have merged and the h-range with just two fixed points

disappear (such a merging is reflected in panel (c) of Fig. 2

by a turning point in the h� C=VA plane).

Conditions (ii) and (iii) introduced in Sec. II B are now

explored; a heteroclinic orbit is only possible if both fixed

points share the Hamiltonian value and they are saddle

points. In Figs. 3 and 4, the white (grey) regions are the pa-

rameter domains where Q0 is a saddle (center). The branches

CI=VA ¼ CI=VAðhÞ correspond to parameter combinations

with a fixed point (different to Q0) of zero Hamiltonian

value; we used blue solid lines if the fixed point is a saddle

and red shaded lines if it is a center. Therefore, solid blue

branches within a white domain satisfy conditions (i) to (iii).

For convenience, we will call CI to the velocity of these

branches. Depending on the parameters [see panels (a)–(d)

in Figs. 3 and 4], we find between two to four branches

where the fixed point share the Hamiltonian value with Q0

but only for one of them the fixed point is a saddle (there is

only one blue solid line for each panel). Even though the

great variety of fixed points found (up to six in Fig. 2), we

now see that the number of shock waves is limited. Further,

for fixed values of ap0 and the ratios Me/Mi and Mi/MA, the

branches where shocks waves are possible do not necessarily

extend in the whole h-range [0, p/2]; as shown for instance

in panel (a) of Fig. 3 or Figs. 4(a) and 4(b), the fixed point

stability behavior can change from a saddle to a center as h
is decreased. For all panels in Figs. 3 and 4, the velocity CI

FIG. 1. Fixed points for Me¼Mi¼ 0.65MA,ap0¼ 1. Panels (a), (b), (c), and

(d) correspond to velocities C/VA¼ 0.25, 0.7, 1.025, and 1.25, respectively.

FIG. 2. Number of fixed points in the h� C=VA plane for ap0¼ 1 and

Me¼Mi. Panels (a), (b), (c), and (d) correspond to Mi/MA¼ 0.15, 0.4, 0.65,

and 0.9, respectively.
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always satisfies VF < CI < Cslow, except in panel (a) of

Fig. 3 where Cslow < CI < VF. As panel (a) in Fig. 3 shows,

it can exist a fixed point (different to Q0), which has zero

Hamiltonian value and velocity between Cs and Cfast.

However, it is not possible to construct a discontinuity wave

because such a fixed point is a center.

IV. INTERMEDIATE SHOCK WAVES

Discontinuities can exist for parameter values given by

the solid blue branches CI=VA ¼ CI=VAðhÞ lying within a

white domain in Figs. 3 and 4. They can be computed by

integrating system (13) and (14) with an initial condition

along the unstable manifolds of Q0 or the one belonging to

the other connected fixed point, say Q1. Numerically, this

can be done by starting at the initial condition

Qi þ �v; (17)

where v is the eigenvector with positive real part of the

Jacobian of system (13) and (14) evaluated at the fixed point

Qi (i¼ 0 or 1) and � is a small parameter (� � 10�4 in our

calculations). The result of the integration is a heteroclinic

orbit that connects the fixed points Q0 and Q1.

Figure 5 shows the by-bz phase space for parameter val-

ues Mi¼Me, Mi/MA¼ 0.65 and h ¼ 80�. The ratio C/VA is

0.173 [see panel (c) in Fig. 3]. For clarity, we plotted the

outer inner circle (black line) and the fixed points Q0 (cross)

and Q1 (circle). Two heteroclinic orbits [labeled (a) and (b)]

connecting Q0 and Q1 can be seen (dashed red lines). To

complete the picture, we also plotted the homoclinic orbit on

Q0 (blue solid line), which is a dark solitary wave, and the

homoclinic orbit on Q1. The structure of these solutions (by,

bz, and u) versus the dimensionless spatial variable XXi=VA

are shown in the two insets. The discontinuity with label (a)

is electron-polarized and its field amplitude jBj displays a

maximum whereas (b) is ion-polarized and has a minimum

(in resemblance with the bright and the dark solitons).

Figure 6 displays another example with parameter values

Mi ¼ Me ¼ MA; h ¼ 50� and ap0¼ 1.9 [C/MA¼ 0.415 as

shown in panel (d) of Fig. 4]. In this case, there is no homo-

clinic orbit on Q1 because it hits the sonic circle.

Insets (a) and (b) in Figs. 5 and 6 illustrate the physical

meaning of the heteroclinic connection: it is a continuous

transition from one homogeneous plasma state to another

where the tangential magnetic field is reversed. They are

exact solutions of the double-adiabatic Hall-MHD model

involving jumps in the bz components of the magnetic field

and the relative specific volumes u ðu � q0=qÞ. These prop-

erties and the value of CI/VA allow to classify these solutions

as IS waves. The width d of the layer depends on the specific

value of the parameters; for instance, d is of the order of tens

of VA=Xi in Fig. 5 and a few VA=Xi in Fig. 6. Although the

variables describing the shocks are symmetric or antisym-

metric with respect the variable f, they exhibit an asymmetry

FIG. 5. by–bz phase space diagram for parameter values Mi¼Me,

Mi/MA¼ 0.65, ap0¼ 1, h¼ 80�, and CI/VA¼ 0.173. The fix points (cross and

circle), the outer sonic circle (black line), the two intermediate shock waves

(red dashed lines), the dark soliton (blue line connecting Q0), and the homo-

clinic orbit on Q1 (blue line) are shown. Inset (a) and (b) show the spatial

profiles of the shock waves.

FIG. 3. Branches CI/VA versus h where a fixed point different to Q0 have

H¼ 0. Solid blue lines indicate a saddle fixed point and dashed red line a

center. Shaded regions correspond to parameter domains where Q0 is a cen-

ter. Parameters are ap0¼ 1, Mi¼Me. Panels (a), (b), (c), and (d) correspond

to Mi/MA¼ 0.15, 0.4, 0.65, and 0.9, respectively.

FIG. 4. Similar to Fig. 3 but parameter values Mi¼Me¼MA. Panels (a), (b),

(c), and (d) correspond to ap0¼ 0.1, 0.4, 0.7, and 1.9, respectively.
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behavior with respect to the physical spatial variable X. This

is a consequence of Eq. (15), which contains the variable u
in the righthand side.

Since Q0 has (by,bz)¼ (0,1) and u¼ 1, the magnitude of

the jumps along the shocks is controlled by the fixed point

Q1. Panels (a) and (b) in Figs. 7 and 8 show the bz and u val-

ues of the fixed point Q1 corresponding to the blue solid lines

in Figs. 3 and 4, respectively. The value of bz at Q1 is always

negative, indicating a reversal of the magnetic field and the

IS nature of the solutions. Depending on the parameter, the

jump along the shock wave of the bz component can be very

large if the angle h between the direction of propagation of

the wave and the ambient magnetic field is small.

The localization in parameter space of the shock waves

gives also information about the dark and bright solitary

waves. The blue solid lines in Figs. 3 and 4, where shock

waves happen, split the h� C=VA plane in two regions where

the solitons have different polarization. To illustrate this fea-

ture, Fig. 9 shows the dark and bright solitary waves for

parameter values Me ¼ Mi; ap0 ¼ 1; Mi ¼ 0:65MA; h ¼ 80�.
In panels (a) and (b), the velocity value C/VA¼ 0.1742 is

slightly above the value corresponding to the IS

(CI/VA¼ 0.1740); whereas in panels (c) and (d), we have

C/VA¼ 0.1738 (between the velocity of the IS and the slow

magnetosonic velocity Cslow¼ 0.1736). For velocities values

above the one corresponding to the IS, the bright soliton has a

banana-like polarization with a maximum of bz at the center

of the soliton [see panel (b)]. However, for velocities between

the slow magnetosonic and the shock velocity, the bz compo-

nent of the bright soliton exhibits a minimum [panel (d)].

V. CONCLUSIONS

This work discusses the existence of discontinuities in

the double-adiabatic Hall-MHD model. Simple geometrical

arguments, based on the dimension of the stable and unstable

manifolds of the fixed points, the dimension of the system,
FIG. 7. Values of bz [panel (a)] and u [panel (b)] at fixed point Q1 versus h.

Parameter values are Mi ¼ Me; ap0 ¼ 1, and C=VA ¼ CIðhÞ=VA (see Fig. 3).

FIG. 8. Values of bz [panel (a)] and u [panel (b)] at fixed point Q1 versus h.

Parameter values are Mi¼Me¼MA and C/VA¼CI(h)/VA (see Fig. 4).

FIG. 9. Solitary waves with parameter values Me¼Mi, ap0¼ 1,

Mi¼ 0.65MA, and h ¼ 80�. Panels (a) and (b) correspond to C/VA¼ 0.1731

whereas (c) and (d) have C/VA¼ 0.1728. The bright (dashed red) and the

dark (blue solid) solitons are shown. In panels (a) and (c), the fixed point Q0

(cross) and the sonic circles (dashed black) are also displayed.

FIG. 6. Similar to Fig. 5 but parameter values Mi=Me;Mi=MA ¼ 1;
ap0 ¼ 1:9; h ¼ 50�, and CI/VA¼ 0.415. The homoclinic orbit on Q1 (not

shown) hits the outer sonic circle.
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and its reversibility, reveal that discontinuities are organized

in branches within the C=VA � h parameter space, i.e., they

have codimension equal to one. Bright and dark solitons,

however, are robust under parameter variations and have

codimension equal to zero. Also, an analysis of the existence

of fixed points allowed to ruled out the presence of rotational

discontinuities, which present a magnetic field rotation D/
different to 0 or p. However, such a solution exists if FLR

effects are incorporated.9 All the numerical solutions have

D/ ¼ p, corresponding with IS waves. We emphasize that a

rich variety of fixed points have been found but for most of

them continuous solutions cannot be constructed because ei-

ther they have not vanishing Hamiltonian value or they are

centers. The addition of a dissipative term, for instance, the

resistivity effect already considered in Refs. 7 and 8, would

break the Hamiltonian structure and would make possible

shocks solutions with an enhancement of the entropy across

the discontinuity.

A deep numerical survey varying all the parameters

(except the ratio Me/Mi¼ 1) was carried out. For fixed val-

ues of the ratios Me/Mi, Mi/MA, and ap0, a branch of ISs,

CI=VA ¼ CI=VAðhÞ, was found for velocities values

between the firehose and the slow magnetosonic velocities.

Note that the firehose velocity reduces to the shear Alfven

or intermediate velocity in the case of isotropic pressure. It

seems that the branch always occurs when the IS wave

propagates perpendicular to the ambient magnetic field

ðh � 90�Þ. However, depending on the specific parameter

values, it could cease to exist as h is decreased. Figure 3

reveals that the velocity of the wave is close to the firehose

velocity when the anisotropy parameter ap0 is equal to one.

In Fig. 3, the IS branch practically overlaps with VF but

there is still some room in between where dark and bright

solitary waves exist. The distance between VF and CI

increases with ap0 [see panel (d) in Fig. 4]. As shown in

Figs. 7 and 8, the IS wave introduce jumps for the bz mag-

netic field component and the relative specific volume u.

The value of the jump depends on the parameters and can

be very large in the case of bz when h! 0 (parallel propa-

gation). Electron polarized ISs display a jBj maximum and

ion-polarized a minimum.

Unless certain relationship between the propagation

angle h and the shock velocity is satisfied, the present

model rules out the existence of time-stationary IS. For

initial conditions violating this relationship, one may

expect time-dependent IS. The evolution of these shocks

to time-stationary structures depends on the stability of

our solutions, an aspect beyond the scope of the present

work. Recent numerical calculations reinforce the ubiquity

of intermediate shocks and they highlight their easy

excitation;32,33 simulations of the randomly driven Cohen-

Kulsrud-Burger equation show the formation of a large

number of structures with a quasi-discontinuity of the

phase and without an appreciable variation of their ampli-

tude. These structures, which approximate rotational dis-

continuities, evolve to intermediate shocks with phase

jumps close to p (see Fig. 1 in Ref. 33).

As shown in Ref. 30, the addition of finite Larmor radius

is rather challenging because it prevent an explicit relation

between the magnetic field and the normal velocity plasma

components (Eqs. (10) and (11)). From the point of view of

the dynamical system, this extension is very important

because it raises the dimension from two to four and the geo-

metrical argument presented in Sec. II B must be reconsid-

ered. It is unknown whether or not a Hamiltonian function

would exist in this case, but the system is still reversible.

This last issue is very important because the organization in

parameter space of the solitary waves (homoclinic orbits)

can be done by following Ref. 34. The fixed point Q0 can be

a center, saddle-center, saddle, or focus-focus and the exis-

tence of connecting orbits is determined by the dimension of

its stable and unstable manifolds. In principle one would

expect: (i) no solutions if Q0 is a center, (ii) branches of solu-

tions if Q0 is a saddle-center (codimension-one), and (iii) a

continuum of solutions if Q0 is a saddle or a focus-focus

(codimension-zero). For parameters making Q0 a

saddle-center, several isolated branches of homoclinic orbits

could appear (each of them with a different number of

humps). If Q0 is a focus-focus, a theorem35 shows that the

existence of one transverse symmetric homoclinic orbit

implies the existence of infinitely many others. These homo-

clinic orbits are like multiple copies of the primary orbit sep-

arated by finitely many oscillations close to Q0. The

existence of asymmetric orbits must be considered as well.

Therefore, the addition of FLR effects (even if small) dra-

matically change the character of the system and the persist-

ence of solutions computed without finite Larmor terms

cannot be guaranteed. A numerical survey keeping in mind

the organization in parameter space here introduced would

be required to explore the different possibilities.
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