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A B S T R A C T 

In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems 
is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the 
generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault 
has been detected, and assuming some basic a priori knowledge about the set of possible failures in the 
plant, the isolation task is then formulated as a type of on-line statistical classification problem. The pro
posed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, 
one test for each possible fault. This isolation method is characterized by deriving for the unidimensional 
case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. 
Simulation examples illustrate the applicability of the proposed scheme. 

1. Introduction 

In the last three decades, system control theory has experienced 
an important evolution thanks to the advances on computer con
trol of complex processes (Astróm et al., 2001; Nise, 2011). Since 
the design of control systems is getting more systematic, the auto
matic task of responding to abnormal events in a process is becom
ing a new important challenge. This task gets more involved due to 
the confluence of an increasing complexity of modern plants and 
the need of quick diagnosis procedures (Blanke et al., 2003; Chiang 
et al., 2001; Korbicz et al., 2004). Hence, fault diagnosis schemes 
must be improved in order to reliably support human operators 
in the management of malfunctions. The problem of fault diagnosis 
involves the timely detection of an abnormal event (fault detec
tion), diagnosing its causal origins (fault isolation) and then taking 
appropriate supervisory control decisions and actions to bring 
the process back to a normal, safe, operating state (fault accommo
dation) (Ding, 2008; Iserman, 2006; Venkatasubramanian et al., 
2003). 

Fault Detection and Isolation (FDI) have deserved much atten
tion from different perspectives (Chen and Patton, 1999; Palade 
et al., 2006; Simani et al., 2003). In general, the analytical tools em
ployed so far for FDI can be classified into two main categories. On 
the one hand, stochastic discrete-time models inherited from the 
signal estimation and linear control fields have successfully com

bined statistical schemes (mainly hypothesis testing) with geomet
rical tools in the design and characterization of FDI algorithms for 
linear systems (Basseville and Nikiforov, 1993; Gertler, 1998; Iser
man, 2006). On the other hand, deterministic continuous-time 
models coming from the adaptive and robust control community 
have proved to be suitable for nonlinear system modelling, where 
detection and isolation algorithms rely on the use of diagnostic 
observers to generate residuals whose profiles are evaluated (Al
eo rta-García and Frank, 1997; Frank, 1996; De Persis and Isidori, 
2001; Polycarpou and Trunov, 2000; Zhang et al., 2005; Zhang 
et al., 2002). Recent research is also being focused on the design 
of diagnosis schemes for nonlinear discrete-time stochastic sys
tems either using computationally demanding particle filters 
(Tafazoli and Sun, 2006; Zhang et al., 2005) or adaptive estimators 
(Xu and Zhang, 2004). 

The use of continuous-time stochastic models in system fault 
diagnosis provides a novel framework for taking into account sys
tem and sensor noises and disturbances, in order to construct new 
detection and isolation algorithms (Castillo et al., 2003; Castillo, 
2006; Castillo and Zufiria, 2009; Münz and Zufiria, 2005; Münz 
and Zufiria, 2009). The seminal work in Castillo et al. (2003) devel
oped an initial study on both the detection and the isolation prob
lems. An extended characterization of the detection problem was 
later derived in Castillo and Zufiria (2009). The present paper 
accomplishes a parallel characterization task concerning the isola
tion problem. 

Here, the fault isolation (FI) problem is addressed for a class of 
continuous-time stochastic models, where the stochastic frame
work will prove to be specially suitable for formulating and solving 



the isolation problem. Although there are approaches which inte
grate detection and isolation in a unified process (see Venkatasubr-
amanian et al., 2003 and references therein), typically, the fault 
detection and isolation tasks are accomplished sequentially: fault 
isolation goes into effect after a fault is detected, with the objective 
of determining the location/type of the fault (Zhang et al., 2005; 
Zhang et al., 2008). The fault isolation task is aimed to determine 
the particular type of fault among a set of known (or partially 
known) possible fault types, and to determine its location (the par
ticular faulty subcomponents among the set of all subcomponents 
under consideration) (Zhang et al., 2005; Zhang et al., 2008). This 
paper addresses only the discrimination of the actual and previ
ously detected fault among a list of possible faults in the system, 
been detected. This objective within such stochastic framework 
will naturally allow for the formulation of isolation as a classifica
tion or statistical decision task, or more generally, as a pattern rec
ognition problem (Bishop, 2006; Duda et al., 2001). 

Precisely, the nominal part will be in general a nonlinear time-
variant system, perturbed by a random process which character
izes the model uncertainty. Additive faults will be considered (both 
abrupt and incipient) and also modelled as random processes. In 
such context, the presented FI schemes exploit the model-based 
analytical redundancy by generating a residual via a diagnostic ob
server, along the line proposed in Zhang et al. (2002) for determin
istic nonlinear uncertain systems. Such residual defines the 
fundamental feature space where the fault classification task is 
to be performed. 

It is worth mentioning that the whole residual-generation/ 
detection/isolation process can be interpreted as the typical se
quence of steps followed in a pattern recognition scheme (Bishop, 
2006; Duda et al., 2001; Fukunaga, 1990): feature extraction, fea
ture selection and statistical classification. Hence the isolation pro
cess can be seen as a special type of pattern recognition problem. 

Following standard statistical classification theory (Bishop, 
2006; Duda et al., 2001; Fukunaga, 1990), two main FI schemes 
could be developed in such context. On the one hand, well known 
Bayes rule based methods could be applied, but they would require 
the assumption that a prior distribution of possible faults to be 
available. On the other hand, a hypothesis testing based set-up 
can be constructed; this second perspective is the one employed 
in this paper. Precisely, we develop a hypothesis testing set-up on 
continuous-time statistics of the residual; this method does not re
quire any a priori assumption and, despite that its main objective is 
to discriminate a fault from a previously given list, it can also alter
natively determine that the fault type is a new unknown one. The 
development of this approach and its posterior analysis has been 
founded upon the results in Castillo et al. (2003) where fault isola
tion was first presented, and (Castillo and Zufiria, 2009) where fault 
detection was rigorously characterized. Hence, the results pre
sented in this work, applied to fault isolation, extend and complete 
those in Castillo and Zufiria (2009) and Castillo et al. (2003). 

The paper is organized as follows. In Section 2 the problem for
mulation is presented where the system model and possible faults 
are mathematically characterized. Then, the proposed FI scheme is 
put into a general context in Section 4.1, for its posterior analysis in 
Section 4.3. The practical validity of the proposed approach is illus
trated in Section 5 with two simulation examples addressing 
abrupt and incipient faults. Concluding remarks are finally exposed 
in Section 6. 

2. Problem statement 

In this section, the mathematical formulation is presented for 
both the class of systems under consideration as well as the types 
of possible faults which may affect the system. 

Let us consider a general nonlinear time-variant dynamical sys
tem described by: 

x(t) =/(x(t), u(t),t) + n(t) + B(t - Tom), 

y(t) = h(x(t),u(t),t), (1) 
x(0) = x0, 

where x(t) e Rn is the system state, which has known initial value 
x0 e ttn;u(t) e Rm is the control input; the known function 
/ : Rn x Rm x R+ -> R", / e C\ represents the dynamics of the nom
inal model; B(t - T0) is a diagonal matrix representing the time pro
file of the fault, and it is made up of the following functions as 
diagonal elements: 

T0 being the unknown instant when the fault occurs and Q a posi
tive value. Observe that for high values of Q¡ the function ft(t - T0) 
will be similar to a step function. More specifically, in the case of 
an abrupt (sudden) fault, those functions will take the form of a step 
function and in the case of an incipient (slowly developing) fault 
they will be ramp-type functions; the fault process <f> -. R+ —> Rn rep
resents the changes in the system dynamics due to a fault, it is as
sumed to be an n-dimensional stochastic process whose 
components are Gaussian generalized processes (Larson and Shu-
bert, 1979); in particular the fault process components are defined 
as 4>¡(t) = X,(t) + bi(t)Wi(t), i = 1,. . . , n, where X,(t) is a continuous 
in mean squared (abbreviated MS-continuous) Gaussian random 
process, £>,{t) is a positive and square integrable deterministic func
tion and W,(t) is White Gaussian Noise (WGN). Detailed properties 
and implications of the Gaussian models can be found in Larson and 
Shubert (1979) and Duda et al. (2001). The uncertainty random vec
tor f] -. R+ —> R", which gathers external disturbances and modelling 
errors, corresponds also to an n-dimensional stochastic process 
whose components are of the same type. Statistical independence 
between the uncertainty and the fault processes is also assumed. 
The derivatives of stochastic system (1) are interpreted as mean 
square (MS) derivatives. 

Gaussian generalized processes (see Larson and Shubert, 1979) 
are considered in the model with the aim to account for the widest 
variety of cases, preserving the ubiquitous Gaussianity condition. 
The hypotheses of MS-continuity and WGN (see Larson and Shu
bert, 1979) are needed to assure the existence of the stochastic 
integrals involved in the isolation approach presented in this 
paper. 

Finally y(t) e Rq is the measurable output, and the nonlinear 
mapping h -. Rn x Rm x R —> Rq can represent different output 
availability situations (where output disturbances are not consid
ered). If x can be computed fromy, u and t via an implicit function 
theorem reasoning, this is equivalent to a full state availability; this 
is a standard assumption in most nonlinear deterministic system 
diagnosis schemes (Darkhovski and Staroswiecki, 2003; Li and 
Zhou, 2004; Mattone and De Luca, 2006; Polycarpou and Vemuri, 
1995; Polycarpou and Helmicki, 1995; Polycarpou and Trunov, 
2000; Trunov and Polycarpou, 2000; Zhang et al., 2004; Zhang 
et al., 2002), and it is also assumed in this paper. Nevertheless, 
the presented results can be generalized to the cases where the 
pair/, h allows for the construction of a robust observer which pro
vides an accurate estimate of x with much faster dynamics than the 
proposed detection scheme. See (Reble et al., 2007) and references 
therein where the design of fast observers is addressed, and refer
ence (Münz and Zufiria, 2009) where the observation error is for
mulated and its implications are analytically illustrated. 



3. Residual generation 

Once a fault is detected in the system, for instance applying the 
Fault Detection (FD) schemes proposed in Castillo and Zufiria 
(2009), the next step is to find out as much information as possible 
concerning such a fault, in order to fix it or at least to avoid its 
consequences. 

The isolation scheme proposed here is based on the analysis of 
the residual signal obtained from the process plant and a diagnos
tic observer, since such residual gathers basic information about 
the fault affecting the system. The choice of the diagnostic observer 
will depend on the characteristics of the system, and it is aimed to 
get a residual as easy to analyze as possible. In Jiang et al. (2002), Li 
and Zhou (2004), Venkatasubramanian et al. (2003), Witczak et al. 
(2002), and Zhang et al. (2002) and references therein, the existing 
work on the design of appropriate diagnostic observers for fault 
detection and isolation is illustrated. 

Taking into account the structure of system (1), a convenient 
diagnostic observer can be constructed following the basis of the 
Luenberger observer, that is, the diagnostic observer is determined 
by the nominal part of the model plus a stabilizing term (see Zhang 
et al., 2002; Castillo and Zufiria, 2009): 

*(t) = ¿(x(t)-x(t))+/(x(t) ,u(t) , t ) , x(0)=x0 , (2) 

where x(t) e ttn is the state estimation and the matrix A is chosen 
to be a diagonal matrix (for the sake of simplicity) with negative 
diagonal elements in order to assure the diagnostic observer con
vergence: A = diag(l! ln), with l¡ < 0, i = 1 n. In the deter
ministic context, the selection of appropriate values for A has 
been addressed in Willsky (1976) and references therein; also, diag
nostic observers (2) have been improved to get faster FDI schemes 
(Li and Zhou, 2004). Here, as a first step, the basic structure is em
ployed looking for a simple compromise between fast response and 
numerical stability. 

Note that since the state availability is assumed (see previous 
section), in (2) the function /(*(•), •, •) is used instead of/(x(-),-, •) 
as it would correspond to a proper Luenberger observer. Such sub
stitution does facilitate the residual generation. 

Subtracting the diagnostic observer (2) from the system (1), and 
since the MS derivative is a linear operator, the differential equa
tions system explaining the evolution of the residual process 
e(t) = x(t) - x(t) is obtained, namely 

é(t)=Ae(t)+t](t) + B(t-T0)^t), e(0) = 0. (3) 

This residual process contains fundamental information con
cerning the fault, that is the existence or not of a fault in the plant 
and, in affirmative case, about the fault features. As it will be seen 
later, while there is no fault in the system (and t]{t) is a WGN) e(t) 
is a multidimensional Ornstein-Uhlenbeck stochastic process (Lar
son and Shubert, 1979), whose analysis has proved to be crucial in 
the detection procedure presented in Castillo and Zufiria (2009), 
and also constitutes the key of the isolation schemes presented 
here. 

4. Isolation scheme 

In this section we develop the proposed isolation scheme. We 
start considering some preliminary issues. 

4.1. Preliminaries 

The isolation scheme proposed in Section 4.3 is grounded on the 
following detection assumptions: 

Assumption 4.1. The fault has been previously detected in the 
plant modelled by system (1) with any detection method - see 
(Castillo and Zufiria, 2009) for an example - at the time instant Td. 

Assumption 4.2. The detection time Td is close enough to the fault 
occurrence time T0. 

Concerning the isolation problem, the initial assumptions are: 

Assumption 4.3. A list of possible faults is available: 

{$1,$2,...,$,}, (4) 

with known (except for T0) time profile functions ft¡(-), k = 1 /, 
and totally determined fault processes 4>k{t), k = 1 /. 

The probability distribution for each fault process <f>k{t) will be 
denoted by p{<f>k{t); ^k) where <Pk is the label which determines 
each fault. Hence, the corresponding moments or derived distribu
tions will follow the same notation (e.g., p(e(t); <Pk), £[e(t); <Pk], 
etc.). In general, fe-th fault will be referred either by process <f>k{t) 
or by its label <Pk. 

Assumption 4.4. The faults in the list (4) can occur just one at a 
time. 

In practice, this assumption can be minimized if the isolation 
scheme is able to address unknown faults (e.g., the sum of known 
ones). 

Assumption 4.5. The corresponding mean functions of the faults 
in the list (4) are significantly different. 

Finally, if a fault not belonging to such list is occurring, we will 
refer to that fault as "unknown fault". 

The purpose of the isolation phase is to identify which one of 
the faults in the list is the one really acting in the system (or to con
clude that a possible non-registered fault has occurred). 

The residual process (3), will have different characteristics 
depending on the occurrence time T0 and on which fault is acting 
in the system. Assuming that the feth fault occurs, the residual will 
evolve according to the following equations 

e,(t) = A,e,(t) + ti,(t) + pu(t - T0)¿w(t), e((0) = 0 , t > 0, 
¿ e { l , . . . , n } ; 

Note that the uncertainty on the value of T0 (which lies in the 
essence of the quickest detection problem (Kailath and Poor, 
1998; Poor and Hadjiliadis, 2009)) is not so relevant in this isola
tion formulation, since a previous detection step is being assumed. 
Hence, the value of T0 can be estimated (for instance t0 = T¿) so 
that the residuals are to be considered since the detection of the 
fault, that is for t > Td. Solving those equations, in case fault <Pk 

has occurred in the system at time I0, the residual components re
sult in 

e,(t)= / el^\{x)dx + [ e^-^hiix - T0)4>ki{x)dx, 
Jo JT0 

t^T0, i e { l , . . . , n } ; 

or equivalently 

e,(t)=ei(Ti)eUt-T¿ + f e^\(x)dx + /"<*<"%(* - Ta)4>ki{x)dx, 
•>Td ->Td 

t>Tit ¡ e { l , . . . , n } ; 

The analysis about the existence, continuity and Gaussianity of 
these type of integrals can be checked in Castillo (2006) and Larson 
and Shubert (1979). Since linearity preserves Gaussianity, e(t) is a 
multivariate Gaussian process (see Larson and Shubert, 1979), 
whose mean vector components are determined by 



Co 
Jo Jo 

JT0 JT0 

£[e((t);*k] = ftex>^E[i1i(x)]dx+ f e>^ pki(x - T0)E[<¡>ki(x)]dx, 
•JO JT„ 

i € {!,...,n}, 

and the covariance between two arbitrary components of the resid
ual vector (h and ¡2) under the hypothesis that fault <Pk is acting in 
the system is 

v(eh{U),e,l(t2)-<I>k)= i" / V ' ^ ^Cov(r]h(x,),r]h(x2))e
1^ %i)dx2dxx 

Jo Jo 

PkH(i\-To)Cov(4>kh(x^, 

4>kh(i2))Pkh(i2-To)eVt2 ^dx2dx, 

+ j h f'2eMH ^cov^x,),^.^)) 
Jo JT0 

xh^i-To)^ ^dx2dx, 

+ T f2e\<* ^pkh(x,-T0) 
JT0 JO 

Cov(4>ki,(xx),t]h(x2))e
k2lh ^>dx2dxx. 

Assume now that the covariance matrices associated with the 
n-dimensional processes t]{t) and <f>k{t), respectively E^ti,t2) and 
£Vk(ti, £2). are known. In addition, since we are assuming indepen
dence between faults and the system uncertainty (see Section 2), 
the last two terms in the preceding covariance expression must 
be zero. 

Therefore, the probability distribution followed by the residual 
stochastic process under the hypothesis that the fault <Pk is affect
ing the system is given by: 

e(t)±jV(mk(t),Zk(t)), 

where 

/£[ei(t);**]\ 

mk(t) 

and 

W) = 

\E[en(t);<l>k]J 

I Var(e,(ty,0k) Cov{e^t),e2{t)-<l>k) ... Cov{e^{t),en{t)\^k)\ 
Coi>(ei(t),e2(t);<Pk) Var(e2(t);$k) ... Coi>(e2(t),e„(t);<Pk) 

V Var(en(t)-<I>k) ) 

which characterize the distribution of e(t) on each instant of time, 
depending on the fault process 4>k{t) and the profile function 
h(t - T0). 

4.2. Statistical framework for detection and isolation 

Under the assumptions in Section 2, the residual e(t) is, in the 
most simple case, a multidimensional Ornstein-Uhlenbeck (OU) 
stochastic process. Hence, although it can be statistically character
ized by the distribution provided above, the analysis of optimal 
detection and isolation schemes in such context is not straightfor
ward. In Zufiria (2012) time varying additive changes in such pro
cess are considered and the associated Likelihood Ratio (LR) is 
calculated, whose analytical expression is very cumbersome. In 
general, such complicated form of the LR makes optimal detection 
schemes to be computationally too expensive. In addition, such LR 
form does not allow a straightforward implementation of on-line 
schemes, as opposed, for instance, to the CUSUM schemes in the 
Brownian motion framework. 

It is worth mentioning that the Generalized Likelihood Ratio 
(GLR) schemes proposed in Willsky and Jones (1976) for several 
types of additive faults in linear discrete-time Gaussian systems 

serve as a good reference for the design of some detection/isolation 
schemes; nevertheless, they cannot be efficiently applied for contin
uous-time multivariable OU processes in a straightforward manner. 

So far, practical FD schemes grounded on heuristic approaches 
have been successfully implemented (Castillo and Zufiria, 2009; 
Münz and Zufiria, 2009; Zufiria, 2009). Under some additional 
assumptions such as the availability of an estimate of T0, or a par
tial knowledge of fault functions (e.g. their profile) it is possible to 
derive the approximations leading to the efficient isolation 
schemes proposed in this paper (see Zufiria (2012) for more 
details). 

The scheme proposed here represents a natural extension of the 
fault detection method presented in Castillo and Zufiria (2009), by 
means of applying on the residual several hypothesis testing 
schemes in parallel, one for each possible fault; this method is spe
cially suitable for noticing faults which are not registered in the list 
(4). 

Next, this isolation approach is analyzed. 

4.3. Proposed isolation approach 

The approach proposed here employs some ideas from previous 
works in discrete-time systems (Basseville and Nikiforov, 1993; 
Willsky, 1976; Willsky and Jones, 1976) since it is based on the 
application of several hypotheses tests. One can interpret the 
parametrized distributions p{e{t); <Pk) =p$ (e(t)) as likelihood 
functions. If these functions were fully available, one could employ 
the corresponding likelihood ratios in order to optimally construct 
such tests. Unfortunately, these overall likelihood functions are 
very difficult to obtain in general. Their computation has been ad
dressed under some specific assumptions in Zufiria (2012), where 
the problems of classical detection and quickest detection (Kailath 
and Poor, 1998; Poor and Hadjiliadis, 2009) have been studied 
using also the residual e(t) of Eq. (3). In fact, the likelihood ratio be
tween the null (no fault) and the fault hypotheses is calculated 
there (generalizing some results in Arató (1982)) for the case of 
deterministic faults and fixed interval of time. Also in Zufiria 
(2012), this likelihood ratio is employed as the basis of some on
line suboptimal hypotheses tests for building fault detection 
schemes. Nevertheless, these results in Zufiria (2012) may not be 
easily extended to the general isolation problem, specially for the 
case of stochastic faults. In such case, the analysis strongly depends 
on the statistical characterization of the faults: for instance, when 
they are non-stationary or non-Gaussian processes, it seems that as 
far as we know only suboptimal isolation schemes can be effi
ciently designed. (Some specific cases, such as the detection and 
isolation of parametric faults have been addressed in Münz and 
Zufiria (2009), and a comparison of some existing schemes has also 
been performed in Zufiria (2009).) 

In this work, the analysis performed in Section 4.1, provides the 
probability density functions p(e(t);<Pk) at each instant of time t. 
Hence, based on the corresponding family of likelihood functions 
(one for each instant of time and each fault in the list (4)), different 
isolation schemes could be defined. For instance, isolation could be 
accomplished when p(e(t); <Pj) >p(e(t); <Pk), Vk^j during a pre
scribed interval of time. Nevertheless, these schemes seem solely 
appropriate when only faults from the list (4), with a full statistical 
characterization, can happen. 

Here, in order to consider that new faults not belonging to the 
list may show up, the proposed approach applies a bank of multi
dimensional hypothesis testing schemes, one for each fault in the 
list (4). Such tests are applied on the residual mean vector, in order 
to check which fault the actual residual mean vector corresponds 
to. The residual mean estimators given in Castillo and Zufiria 
(2009) have been shown in Zufiria (2012) to be valid overall likeli
hood ratio approximators, and consequently a valid residual fea-



ture; so they have been also successfully employed in Castillo and 
Zufiria (2009). Under Assumption 4.5 the set of / simple tests 

Hi : £[e(t)] = £[e(t); ^j • • • H<0 : £[e(t)] = E[e(t); *,] 

H} : £[e(t)] * £[e(t); ^ ] • • -H* : £[e(t)] * £[e(r); * , ] , 

can be applied to check if the actual residual mean corresponds to 
the expected mean when each one of the faults in the given list 
was affecting the system. Substituting <f>(t) by 4>k{t), k = 1 /, in 
(3), the distribution of the residual given the occurrence of the 
kth fault can be determined, so that the mentioned hypotheses tests 
for the means {£[e(t); <P^] £[e(í);<P¡]} can be appropriately con
structed (Fukunaga, 1990; Gertler, 1998). Given the mean vectors 
and covariance matrices one can determine the tests acceptance re
gions following, for instance, the two strategies to construct a mul
tidimensional hypothesis test presented in Castillo and Zufiria 
(2009) (component by component and squared Mahalanobis distance 
(SM-distance) based strategies). 

The test requires the construction of a mean estimator, 
/x(t) : R+ —> Rn, whose probability distribution must be deter
mined, based on the distribution of the residual process assuming 
different faults. The acceptance region for each test, Bk(t), 
k = 1 /, is obtained as a ball, which will depend on the selected 
test construction strategy, basically defined by a distance d(-, •), see 
(Castillo and Zufiria, 2009). Each ball Bk(t) will be centered in the 
mean of the estimator under the hypothesis that the kth fault is 
occurring, E[¡i(t); <Pk], 

Bk(t) = {U Rn/d(f,E[/i(t); **]) < ky}, (5) 

being ky such that Bk(t) fulfills the condition 

P(ji(t)eBk(t);0k) = \-y, (6) 

where the predefined small value y is the test size. 
For instance, in the unidimensional case, if choosing a Gaussian 

estimator ¡i(t)} for example one of the following 

/ia(t) = e(t); m,{t)=\jo e{x)dx, t > 0 ; 

¡ic(t) = i J^ e(x)dx, t > T; ¡id(t) = fo e»^e{x)dx, p < 0 (7) 

(see Castillo and Zufiria (2009) for details), the acceptance regions 
corresponding to each fault are 

(lk(t),uk(t)} = (E\M(t); *k] " hiy/Var(ji(t);$k), 

x£[/i(t); $k] + hjvVarMt);**)], (8) 

with k = 1 /. (hj_ is the normal distribution value such that 
P(z<h i) = l - i ) 

Hence, provided a fault, <P = <Pj, from the list (4) happens, the 
realization of the residual mean estimator will remain between 
the limits of the test corresponding to such actual fault <Pj with 
probability 1 - y, and hopefully outside the acceptance regions 
associated with the rest of the tests. 

On the other hand, provided a fault <P, which is not in the list (4) 
happens, the realization of the estimator will presumably end up 
outside the acceptance regions associated with all the faults in list 
(4). In this case the proposed isolation method will be useful to 
advertise that an unknown fault has appeared in the system. 

Therefore, based on the specified bank of tests, the 
proposed isolation decision scheme is grounded on the following 
definition: 

Definition 4.1. T\so is the first (in the infimum sense) instant of 
time for which either 

(1) fi(t) e Bj(t) and fi(t) 4 Bk(t), Vk e {1,...,/} - {/}, Vt e [T>SO-
At, T'iso]. If there exists such Viso, then it is considered that the 
j'-th fault in (4) is affecting the system (1), and T\so is the iso
lation time instant for that particular estimator realization. 

(2) ¡i(t) i Bk(t), Vk e { 1 , . . . , /}, Vt e [T{0 - St, TQ . If there 
exists such T\so, then it is considered that an unknown fault 
is affecting the system (1), and T\so is the isolation time 
instant for that particular estimator realization. 

(Note: the increments of time At and St are parameters whose 
values must be fixed previously). 

In the following we will consider the case a fault in the list (4) is 
happening, that is T\so will correspond to the first item of Definition 
4.1. Then, T]so is determined as follows: 

Proposition 4.1. Assuming a fault of list (4) is affecting the system, 
let it be 

Bo(t) = (uLA(t))c, 
and 

V = {?> rd/Vt e [T- At,T],/i(t) e Bj{t) n fuUB*(t)) }• 

Hence 

T{S0 = MV. 
T'iso will depend on the size of the intersection region among the 

different acceptance regions, which could be quite big in case there 
is not much difference among the faults processes means: the most 
the faults differ the quickest is the isolation. Note that if there were 
not much difference among the faults means, the realization of the 
residual process might remain between the limits of the tests cor
responding to more than a single fault <Pk from the list (4), with a 
significant probability. In such case, one would need to resort to 
the comparison between the corresponding likelihoods p^ (e(t)) 
in order to isolate the fault. Time T'iso will also depend on the time 
in which the residual realization gets its steady state; hence, high 
values of | ¿¡I (lt being the observer stabilizing parameter) are desir
able to speed up the convergence to the steady state of the residual 
sample path. On the other hand, \X¡\ must be small enough to guar
antee convergence of the computational numerical methods em
ployed for solving the differential equations; this leads to a 
trade-off. 

We proceed now to characterize and analyze the presented iso
lation scheme for unidimensional systems as well as for multidi
mensional systems where only one component of the residual is 
considered: some analytical sufficient conditions which guarantee, 
with significant probability, the isolability of a fault from a prede
fined set, are given in Section 4.4. Besides that, the probability of 
missed isolation, for unidimensional systems under certain condi
tions, is studied in Section 4.5. 

4.4. Isolability conditions for unidimensional systems 

The results presented here for unidimensional systems are also 
valid for multidimensional systems where only one component of 
the residual is considered. 

Let us define now an upperbound (in probabilistic sense) for the 
random variable T'iso, the instant of time when fault <Pj is isolated 
among the faults of set {<P^ <P¡}. 

Definition 4.2. fJ¿ = At + inf{T > Td/Wt > T Bj(t)nBk(t) = ill}. 

Definition 4.3. t{0 = At + inf{T > rd/Vt > T B,(t) n (Une{i ¡}_ 
ij}B„(t)) = 0}. 



Proposition 4.2. Observe that 

ÍL = niax{7£, k = \,...,lMi} 

Definition 4.4. If f\so < +00 then fault 4>¡ is said to be f{.0-isolable. 

Definition 4.5. If t\so = +00 then fault 4>¡ is said to be hardly iso-
lable from the set of faults {4>^ 4>i} 

Lemma 4.1. If a fault <Pj is t\so-isolable then t\so is an upperbound in 
probabilistic sense, namely with certain probability, for T\so, the isola
tion time instant of fault <Pj. That is 

P(tl e TJ; 0¡) = 1 - P(n(t) íBj(t) for some t e \PiS0 - At, t'iso\ • Q¡). 

Observe that 

• T'iso depends on each particular mean estimator realization, that 
is T\so is a random variable, whereas t\so is a deterministic value. 

• TJ is the set defined in Proposition 4.1. 
• P(fi(t) 4 Bj(t) for some t e lt]so - At, f-j 1; <P¡\ can be upper-

bounded (for systems fulfilling Assumption 4.6) following the 
reasoning in Subsection 4.5. 

Proof. By construction of the jth acceptance region B,{t) and the 
definition of T'iso, 

V 

p(vt€pto-At,7t)],Mt)eBS(t)nB5(t)...nB,(t)n...Bf(t);*,) = 

p(vt€pto-At,7y,Mt)ei%(t);*j) = 
1 - P[fi(t) íB,{t) for some t e \f{0 - At, 7^ ] ; *, D 

Next, based on the isolability concept, we develop a sufficient 
condition, aimed to guarantee, with certain probability, a fault 
isolation by the proposed scheme. 

Theorem 4.1 (Isolability sufficient condition). Let us consider 

(a) The time profile functions of two faults (¡>¡ and <Pk, that is 

• 0 if t < To 

and 

0 if t < To 

(0 iit-

W - ^ H i - ^ e - . ) ift 

e*(t-To) = 1 _ e-stíf-To) if t > To 

(where Q¡, Qk > 0); 
(b) The corresponding random processes <pj(t) and <pk(t) such that 

/j,(t - T0)£[^(t)] - ft(t - T0)£[^(t)] > 0 Vt e [T0, T0] and 

/j,(t - T0)£[^(t)] - ft(t - T0)£[^(t)] > £ Vt > r ; (9) 

e > roc(/l) limsup (h^Jvar(jj.c(t); &¡) + h^Jvar^t); &k)\ (11) 

where 
roa(/l) = - 1 , tt»¡,(/l) = -X, (oc(X) = - 1 , cod(X) = Ap. 

Observe that mc(X) >0, Vf e {a, fa, c, d}. 
(Note: X is the observer gain in the unidimensional case, and p the 

parameter in the expression of estimator ¡id.) 

Proof. For the sake of simplicity let us choose for example estima
tor ¡ia(t) = ¡i(t) = e(t) and condition (9) to delineate the main steps 
of the proof. 

• First, since 

/i(t) = e(t)= / eMt-^T¡(x)dx + [ eMt-^p(x - T0)cj>(x)dx, t 
Jo JT0 

and taking into account the linearity of the mean operator, 

E[/í(t);*,]-E[/í(t);*k]= / e 
IT, 

«•'-^Elfijix - T0)4,(T) 

ft((T - T0)<j>k(x)]dx, t > T0, 

meaning that the estimator expectations assuming fault í>¡ and 
fault <Pk differ in an integral term depending on the difference be
tween the means of the corresponding fault processes ft(t - T0)4>j{t) 
and f¡k(t - T0)4>k(t). (This is also the case for estimators ¡ib, ¡ic and 

Hd-) 
• Assumption (9) implies 

E[^t);0i\-E[^t);0k\= e ^ E ^ T - T o ) ^ ) - &(t-T0)^(T)]dT-t 

°^-^¿Ji=wr 
(The diagonal arrow / indicates that the function ^ ( 1 -ei(t~T|J>) 
grows up monotonically towards the value A¡.) 

• This result, along with condition (11), implies that 3t* > T*0 ful
filling that Vt > £* 

(1 -e^-1»)) > (h^Var(pL(t); <P¡) + hy_^/Var(^i(t); <Pk) 

and so at* > T'Q such that Vt > t* 

E\M{t);0j] -E[ji(t)-$k] > (his/var(n(t)\ty) + h^VarQUt); <¡>k)). 

(12) 

Therefore, remembering (lk(t),uk(t)] as defined in (8): 

inf{r Ss T0/yt Ss T B)(t) nBk(t) =0} = inf{r 5, T0/yt 5, % /¡(t) Ss uk(t)} = 

inf{TssTo/Vt ssT E^O^I-hiyVarMt);^) Ss£[/i(t);á>,;] +h?V^añ^tt)^)} = 

inf{Tssr0/Vt ssT E[íí(t);<f«¡]-£[/i(t);á>,J ssfiiV
/l'ar(;u(t);á>i)+fi|v

/ '̂-(/i(t);á>,í)}<r 

/?j(t - T0)£[^(t)] - ft(t - T0)£[^(t)] < 0 Vt e [T0, TJ] and 

/J,(t - T0)£[^(t)] - ft((t - T0)£[^(t)] < -£ Vt > r0; (10) 

Then, a sufficient condition to assure the existence of a finite value 
T'iso > ro such that the fault ®i Siven by P0 - To)<Pj(t) is tf0-isolable 
by the Fl scheme associated with estimator ¡i^(t), f e {a, b, c, d} (see 
Definition 4.1 and estimator proposals in Eq. (7)), is that 

3ÍJ¿o = At + inf{T > To/Vt > T Bj(t) n Bk(i) = 0} < At + t* < +00. 

We conclude that the fault 4>¡ is r¡¿-isolable from the set {4>¡, 
<Pk} by the isolation scheme described in this section (see Defini
tion 4.1) corresponding to estimator ¡i(t). 

Note that we can analytically determine the value of f\f0 solving 
in f the equation 



ls(T) = uk(T). 

That is possible thanks to the continuity of functions uk{t) and 

m That equation can be rewritten as 

E\pi(T); n ~ EM?); **] = h^Var(p(T); *,) + h^Var(MT); <Pk), 

when solving this equality it could be f sg T0, in that case 
p¿a = T0 + At; or f > T0, and then t>¿ = t + At. Obviously t>¿ - T0 

will be an upperbound of the time to be taken in the isolation of 
fault <Pj versus <Pk. 

For the cases fulfilling assumption (10), we follow the same 
reasoning using 

inf{r > To/Vt > T Uj(t) < lk(t)} 

instead. 
The same guidelines allow to prove the theorem for the rest of 

estimators ^(t) , f e {b,c,d}. D 

Corollary 4.1. I/the isolability sufficient condition given in Theorem 
4.1 fulfills for k e { ? , . . . , / } - {/'} then 3rjso and ¡t ¡s 

7Í = m a x | r ! i , k = l , . . . , i , M/} < oo, 

so fault <Pj will be t\so-isolable. 
An example of isolation in a unidimensional system, using the 

method just explained, is given in Section 5.2. 

4.5. Missed isolation probability 

According to Definition 4.1, the probability of missed isolation 
of the actual fault <Pj in a time interval is 

P(p.(t) $ Bj(t) for some t e [T - At, 7]; &j) 

= P(d(/i(t),E[/i(t); &j]) > ky{t) for some t&[T- At, 7]; <*>,•). 

For unidimensional systems, with a Gaussian mean estimator 
MO. 

d(/i(t),E[/i(t); *,]) = dM(n(t),E[n(t); *,]) 

_ | / i ( t ) -£ [Mt ) ;^ ] l 
^Var(n(t);^) ' 

(13) 

and kj = fc. 
A bound for the probability of missed isolation in an interval is 

calculated below, but under the assumption that the uncertainty 
process t]{t) and the fault process <j>(t) fulfill the following 
(memoryless in mean) condition. 

Assumption 4.6. 

E[f](t)lf]('Q),0 < £ < t] = E{t](t)\ Vt e 0 

E 0 ( t ) / ¿ ( { ) , O < { < r ] = E 0 ( t ) ] V t e l 

(14) 

(15) 

Assumption 4.7. The uncertainty process i]() and the fault process 
<p(-) are statistically independent (as established previously in 
Section 2). 

Theorem 4.2 (Missed isolation probability upperbound). As a conse
quence of Assumptions 4.6 and 4.7 the following results are derived for 
unidimensional systems. 

(1) For estimator ¡ia(t) = e(t) 

P(fJ.a(t) $ Bj(t) for some t e [T - At, 7]; <Pj) 

= p(|/ifl(t)-£(/ifl(t);0>j)| > hiy/Var(jia{t);^), 

for some t e [T - At, 7]; <£,-) < -
TVari^T);^) 

'[T-At.7] 

(2) For estimator /xb(t) = \ fQ e{x)dx 

P(pb(t) $ Bj(t) for some t € [T - At, 7]; <Pj) 

= p{\Hb(t)-EUib{t);0j)\ > h^Var{nb(t);<Pi), 

for some t e [T - At, 7]; <£,-) 

T2Viar(^(T);4>j) 
2 

m[T-At,7] 

where m ^ ^ j = min lthi^/Var(pb(t); <Pj), t e [TUT2]\. 

(3) And for estimator fj.d(t) = /0
te'><t-T'e(T)dT 

P(p(t) $ Bj(t) for some t&[T- At, 7]; <£>,•) 

= p(|/id(t)-£[/id(t);0> j]| > hyJVar(N(t); *,), 

for some í e [T - At, 7]; <£,-) 

e -^VarO^T);* , ) 

'[T-At.7] 

where, in this case, m[TuTl] = rnin ^ " ' ' ' ^ ^ ^ ^ ¿ ( t ) ; <P,-), t e [7"i, I2] | . 

Proof. See Appendix A. D 

5. Examples 

The proposed FI methods are illustrated with the following two 
examples. 

5.1. Unidimensional example 

This example illustrates the application of the proposed FI 
scheme as well as the isolability conditions on unidimensional sys
tems with incipient faults. 

Consider the system given by the differential equation: 

x(t) = sinx(t)+i/(t) + ^ ( t -To )^ ( t ) 
y(t)=x(t) , x(0) = 0, 

where r¡{t) and v(t) are independent WGN processes with zero mean 
and autocorrelation functions Rn{U, t2) = ff?á(íi -12) and 
Rv(t-¡,t2) = o2

v&{U -12), respectively. The fault in this simulation 
will occur at time T0 = 70 and it is an incipient fault with the time 
profile function 

P(t~To) = 
0 if t < T0 

1 _ e-P(t-To) ¡f t > J 

In this simulation example p = 0.05. 
The diagnostic observer presented in Section 3 will be 

x(t) = l(x(t) - x(t)) + sinx(t), 

x(0) = 0, 

with X < 0 (for instance X = -0.5 is taken). Then subtracting model 
and diagnostic observer equations the residual equation 

é(t) = Ae(t)+í/(t) + /?(t-:ro)Mt), 
e(0)=0, 
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Fig. 1. Isolation: Bank of hypotheses tests. Unidimensional example. 

is obtained. 
We have simulated the occurrence of fault <P2 given by fault 

function <fo(t) = 2t+ v(t). Applying one of the Fault Detection 
schemes proposed in Castillo and Zufiria (2009) the fault is de
tected at time Td = 73.67. 

Once the presence of a fault is detected in plant, the next step is 
to isolate it. Let us establish the following set of possible fault 
processes 

{^(t) = t + v(t), <fe(t)=2t + v(t), <fe(t)=3t + v(t)}, 

or equivalently: 4>k{t) = kt+ v(t), k = \, 2, 3, where v(t) is, as 
said before, a WGN process independent of the WGN process 
nit)-

In order to isolate the fault, the residual process distribution is 
needed for the cases when each one of the possible faults was hap
pening. In this case the residual is 

e(t) = e{TM<*<-"> + )r]{x)dx 

Td 

">f¡{T-T0)4>k{T)dT, t>Td, 

where the value £{Td,tk} is the measured value of the residual 
process at time Td under assumption the fault 4>k is affecting 
the system. Such residual is a Gaussian random process with 
mean 



E[e{t);<l>k] = e<TMe«-t-T¿ 

t 
= £{T[|,#lt}

eA 

- ke-p<t-To) 

1 

T, 1 
(-xy 

i 

- keMt-T«} 

(-xy 

<* + P) (X + pf 

Ti 

. \{eHt-Tá)-p(Tá-Ta) 

(X + pf -{¿- + P) 

Observe that for high values of t, namely asymptotically, 

t 1 
E[e(t);0, 

(-xy 

Note that since 

0</?(t-T0)£[^(t)-^(t)] / +oo, fc<j, fc,j = 1,2,3, 
t-^+co 

the isolability sufficient condition (see Theorem 4.1) is clearly satis
fied, so that we have a guarantee that the isolation approach pre
sented in Section 4.3 is able to isolate any fault 4>k from the rest 
of faults in the list. 

Since t](t) and v(t) are independent and zero mean processes 
then: 

Cozv»(ti,t2) = Covn(tut2) + p(U - TojCov^tuW^ - T0) 
= fi^t!, t2) + f$(U - T0)Rv(U,t2)f$(t2 - To). 

Therefore the variance of e(t), depending on <Pk is given by 

Var(e(t);<Pk)= f f e'<t-^R,l(x1,x2)e
Mt-^dx2dx1 

+ f [ eMt-x^ (1 - e-P^-T^)Rv(xux2) 
hi hi 

x (1 -e-P^-T°>)e^t-^>dx2dxi 

an n _p¿Ht-Ti)\_a±r[ _p2i(t-Ti> 
•ÚV-* V - d - ^ 

+ 2X + p( > 

2(X + pf > 

t^co 2X 2.X 

The preceding expressions are valid when the diagnostic obser
ver design parameter X 4 {—P,~Y}, where p is the fault time profile 
parameter. This is the case for this particular example because 
\X\ > p. Since the fault occurrence time T0 is unknown, it is substi
tuted in the given expressions by the detection time Id; therefore, 
for the sake of accuracy, it is important to consider a quick detec
tion method. 

The approximations in this example must take into account the 
time the estimator takes in reaching its steady state, for instance in 
computing P¿; an estimation of such time should be added to rep
resent a real upperbound of the isolation time. 

The acceptance regions corresponding to a collection of tests on 
the residual mean (one for each fault) are the basis of the isolation 
scheme. The acceptance region of the hypothesis testing scheme 
corresponding to the feth fault, considering the raw estimator 
p(t) = e(t) and the test size y = 0.05, results in 

(lk,uk] = (E[e(t);<Pk] -i.96^Var(e(ty,<Pk),E[e(t);<Pk] 

+1.96v/Var(e(t);«Plk)]. 

In this example, tests acceptance regions are simulated in stea
dy state, so that their intersection from Td is empty; hence, the iso
lation time will be upperbounded by Td + At + Tss, being Tss an 
approximation of the time the estimator takes in reaching its stea
dy state. 

Fig. 1 shows, in two different scales, the time evolution of the 
estimator realization and the acceptance regions. As expected, 
the residual realization e(t), once it gets its steady state, remains 
between the test limits corresponding to <P2, and outside from 
the limits determined by the rest of tests, as it can be seen in 
Fig. 1 (up). Notice that initially the error crosses the acceptance 
region of the test corresponding to fault <P^. It is necessary to wait 
until about riso = 180, the instant of time in which it is clear that 
the error remains uniquely in the acceptance region associated 
with <P2 (see Fig. 1 (down)). 

5.2. Bidimensional example 

This example illustrates the application of the proposed multi
dimensional FI approach, based on the SM-distance, to a bidimen
sional system. 

The example consists of a circuit with a nonlinear resistor, an 
inductor and a capacitor joined in parallel to a noisy resistor (see 
Fig. 2). We consider that the circuit is in space or belongs to a nu
clear plant, so that it could suffer two types of fault as a conse
quence of a radiation. 

The system equations are: 

dVc(t) 

R 
i(t) • T¿3W 

1 v0+Í>7(t) + Ad(r-r0)<Mt) 

dt =Jí(t)+¿nt) + ftí2(t-r0)fe(t) 

y(t)- m 
Vc(t) 

y(0)- Qct. 

At time I0 = 50 (known for the simulation but obviously un
known for FDI tasks) a fault <Pk occurs in the system; we consider 
that such fault can be one of the two {<P^, <P2}, given by the profile 
functions 

/ ? n ( t - r 0 ) = l 1 To) 
if t < To 

if t > To ' 

fe(t-T0) = 
0 if t < T0 

. 1 if t > T0 ' 

and the fault functions 

fait)'- 2(t) M((t-To)-i)v(t) 

h A A 

Fig. 2. Bidimensional example. Circuit. 



The random processes i](t) and v(t) are mutually independent, 
and they are distributed as WGN, with zero mean and autocorrela
tion function 

^WGN(íl;Í2) = "wGN^C-l — £2); 

where, for the sake of simplicity, a* = a\ = 1. Also, R = L = C = M= 1 
(in their corresponding units), V0 = 7 and Q = 0.01 were chosen for 
the simulation, 

Fault <P^ represents an incipient fault in the circuit provoked by 
the effect of radiation whose consequences show as a decrease in 
the initial constant voltage generated by the source voltage under 
healthy conditions. Abrupt fault <P2 could be caused due to a 
change in temperature around the capacitor, changing so the 
intensity of the thermal noise generated in the capacitor noisy 
resistor (from a constant value to a function evolving with time). 

Following the indications of Section 3 we take the diagnostic 
observer, 

d | l = -iVc(t)-f¿(t)-f¿
3(t)+^0 + l l ( í ( t ) . •m 

^ c ( t ) = l i ( t ) . 
dt 

m- m 
Vc(t) 

-HVc(t)-Vc(t)) 

Oct. 

with l-i = X2 = -0.5. 
Subtracting model and observer, the equations defining the 

residual vector given by the components 

e1(t) = i(t)-i(t), 

become 

dei(t) 

e2(t) = Vc(t)-Vc(t) 

dt 
de2(t) 

dt 

e(t) = 

^ i e i ( t ) -

• he2(t) -

ei(t) 

e2(t) 
e(0) = 

ftd(t-r0)^d(t) 

ft(2(t-r0)fe(t) 

0 , 

0 I . o<t. 

This system is linear and uncoupled, so that each one of its dif
ferential equations can be solved separately. 

Under the given assumptions on the stochastic processes r¡(t) 
and v(t), the residual e(t) will be a bivariate Gaussian random pro
cess (totally determined by its mean vector and covariance matrix) 
and it can be written as 

e(t) 
JÍ^('-)(lv(T)-

-Ad(T-r0)<MT))dT 

-Aa(T-r0)<MT))dT 

For the sake of a compromise between performance and effi
ciency we have chosen the mean estimator 

H(t) = 
ift_Te1(x)dx 

\ ft_Te2{x)dx 

where the window size T has been set to 10 for simulations. This 
process inherits the Gaussianity of the residual process due to 
the linearity of the integral. Therefore, in order to draw the pro
posed FI scheme, that is to determine the SM-distance corre
sponding to each possible fault, we determine the mean vector 
and the inverse of the covariance matrix for the estimator 
process: 

E\ji{t); 4>k} 
l£_TE[ei(T);<Pk]dT 

¡¡lTE[e2(xy,$k]dx 

Table 1 
Isolation times. 

Fault tp] 

Fault <PT 

57 
64.7 

55 
67.4 

T 
'ISO 

T 
'ISO 

T 
'ISO 

T 

= 73 
= 105 

= 67 
= 78 

Fig. 3. Isolation: Bidimensional example. Fault <Pi. Td = 57. 

120 140 

time 

Fig. 4. Isolation: Bidimensional example. Fault <Pi. Td = 64.7. 

Fig. 5. Isolation: Bidimensional example. Fault <P2- Td = 55-



Fig. 6. Isolation: Bidimensional example. Fault <P2- Td = 67.4. 

= = 2 / / Cov(eh(x1),ei2(x2))dx2dx1 ! ' I , Í 2 É { 1 , 2 } , 
I Jti-T Jt2-T 

Coviu 0 )<t t) = (C^iitlViitY'®*) c°v(f¿i(t),fh(t);$k) 

to finally determine the SM-distance 

r2
k(t) = (n(t) -E[^(t);<I>k])'Cov-\p;<I>k)(t,t)(Mt) -£[Mt);<*>/<]). 

(The corresponding specific expressions are computed in 
Appendix B.) 

5.2.3. Simulation results 
In order to determine the regions defined in (5) (see Section 4.3) 

where ky is such that Bk(t) fulfills the condition (6), the test size has 
been predefined to y = 0.05, being so ky = -2/n(0.05) ss 6. 

This example has been simulated for two detection methods 
with different response time, and the isolation method proposed 
in this work, using the SM-distance. The results are summarized 
in the following Table 1 and Figs. 3-6. 

Note that the isolation method works even in case of large 
detection times; besides, as expected, this approach takes more 
time in isolating the incipient fault <P1} specially for the case of 
slow detection. 

Also, as a consequence of approximating T0 = 50 by Td (different 
in each case) the computation of the SM-distance suffers a tran
sient phase, as it can be seen in Figs. 3-6. 

6. Conclusion 

In this paper the Fault Isolation task for a class of nonlinear sto
chastic dynamical systems has been addressed. A new fault isola
tion stochastic method has been proposed and framed in the 
context of statistical classification theory. Based on a model-based 
analytical redundancy scheme, a residual signal is obtained via a 
diagnostic observer, for its posterior analysis. Then the method 
determines the fault affecting the system through the application 
of a bank of hypotheses tests in parallel, one for each possible fault. 
This approach allows for the derivation of a rigorous isolability suf
ficient condition. 

The method has been illustrated in two simulation examples 
corresponding respectively to unidimensional and bidimensional 
systems, where the isolation of both incipient and abrupt faults 
has been accomplished. 
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Appendix A. Proof of Theorem 4.2 

We address the simplest mean estimator 

/i(t) = e(t). 

When a fault <P is affecting the system, such estimator can be 
written as the product of a deterministic function and a stochastic 
process 

e(r) = / «•*«-*>(J/(T) + /?(T - T0)4,{x))dx 
Jo 

= eit i e->^r¡(x) + fi(x -T0)<j>(x))dx, 
Jo 

by naming 

Y(t)= f e-*(n(x)+p(t-T0)4>(x))dx 
Jo 

the estimator can be rewritten as 

¡i{t)=euY{t). 

Due to (14) and (15) we first prove that process 
Z(t) = Y(t) - E[Y(t)] is a martingale (Larson and Shubert, 1979). 
As a consequence the probability of missed isolation in the interval 
[ I - At,I] will be bounded. 

Z(t) can be expressed as 

Z(t) = f e-*(i/(T) + pit - T0)<KT) - E[JJ(T) + Pit - ToHix)])dx. 
Jo 

Let Tt be the er-algebra generated by {(Í7(T),0(T)),O < x < t} 
(Billingsley, 1995). So, 

£[Z(t + At)/^t] 

= E[£e lt(.m + W-ToMx) -EWx) + fl(t-T0)4>(x)])dx 

/

t+At "I 

e a(n(x) + fi(t - T0)4>(x) - E[n(x) + fi(t - T0)4>(x)])dx/^ 
= E^e^(t,(x) + íl(t-T0)4>(x)-E[t,(x) + íl(t-T0)4>(x)])dx/^ 

/

t+At 

e *EMx) + ¡}(t - ToM-c) -E[n(x) + ¡}(t - T0)4>(x)]/Ft]dx = Z(t) 

/

t+At 

e aE[n(x) + fi(t - T0)4>(x) - E[n(x) + /?(t - T0)4>(x)]]dx 

= Z(t) + 0=Z(t), 

that is, Zit) is a martingale respect to the cr-algebra Tt. 
Note that since Z() depends on r\{-) and on <£(•), then the asso

ciated cr-algebra satisfies 

<7({Z(T), 0 < X < t}) C Tt, 

and by the martingales properties, if Zit) is a martingale with re
spect to Tt then it is also a martingale with respect to a smaller 
cr-algebra (Billingsley, 1995), that is Zit) is a martingale with re
spect to CT({Z(T), 0 sg T sg t}). 

Coming back to the probability of missed isolation of fault <Pj in 
the interval [ I - At,I] for a unidimensional system, applying the 
isolation approach described above with the raw estimator, can 
be upperbounded as follows, 



P(H(t) $ Bj(t) for some te[T- At,T] ; <%) Appendix B. Bidimensional example appendix 

= p(¥{t)-^W);n\y h forsometelT-AtTl-^ 
mam. \ /WrUMfhW) 2 ' ') BA. Estimator distribution assuming occurrence offault <£3: mean 

, ., r x vector, variances and squared Mahalanobis distance 
= P[\Y(t) -E[Y(t);$j]\ > e-A'hi^/Var(n(t);$j) for some t e[T- At,T];$A. 

E[fJ.(ty 01] =
 L T \-k lÍ l^M+^y (¿1+Si)5i K ' J 
V o 

(ih^á (2ei,T - e2ht + 2ex^2t-T> - e21^^ -2X1T- 2) 

Let us define the minimum 

••- (2eW - e21^ + 2e^(2t-T) - e2^-^ - 2X21 - 2) 

ri(t) = (n(t)-E[n(ty,1>,})'CoV\n;1>,)(t,t)(n(t)-E[n(ty,1>,}) 

m[T_atiT] = min {e-uhiy/Var(ji(t); *,), t e [ T - A t J ] } [ i ; ; r e, (T)dT _ i ;; r ^ eM, 9/¡ n ( í -T„)^dídT] 2 

_J ÜJL(2e^T — e21ir + 2e¿i(2r ^ — e21i(r r) — 2AiT — 21) 
(note that it exists thanks to the continuity of the involved func- ¿2r2 2% <• T ' ' 
tions, and compactness of the interval). 

Then, _L_ _^ (2ei2r _ e2i2t + 2eli<2t r> - e 2 « ' r> - 2A2T - 2) 

P ( | Y ( t ) - E [ Y ( t ) ; < M | > e - l t / j n / V a r ( 1 u ( t ) ;<?,-) for s o m e t e [ I - At, 71 ;* , ) D 0 c „. ,. .. . . . „. . f f ,„ ̂  
V ' l " "' 2 V \t~\ )> ¡i 1 > J. i) g2. Estimator distribution assuming occurrence of fault <P2- mean 
C P ( | Y ( t ) -E[Y(t);0¡]\ 5= m [T_AtT] for s o m e t e [T - At, 7"]; <?•,-) vector, covariances and squared Mahalanobis distance 
= P ( m a x { | Y ( t ) - £ [ Y ( t ) ; * j ] | , t e [T - A t , ! ] } 5= m(T_At,T]; # ; ) . 

- f° 
Besides that, since the uncertainty t]{t) and the fault process <j>{t) 

E\n{ty,$2]= I 0 

are both assumed to be a linear combination of a MS continuous 
process and WGN, applying results from Larson and Shubert -, _(J2 
(1979) we can conclude that the process Cop(/^(i:),/^(t); i>2) = - y ^ — f (2ei'T - e2ht + 2ei'(2t"T) 

Y(t) = / e-'an{x) + 0(T - T0)4>{x)dx 
Jo 

L2T2 2X\ 

_e«,(t-r)_2A1T-2) 

1 - I T 2 

Cov(pL2(t),n2(t); <2>2) = -2-2 - ^ - (2el2T - e2l2t + 2el2<2t ^ - e2l2<t T> is sample continuous. Consequently, the mean £[Y(t)] is also a con
tinuous function, and so the random process Z(t) = Y(t) - E[Y(t)] is 
sample continuous. -2A2T 2) 

Being Z(t) = Y(t) - E[Y(t)] a martingale and a sample continuous M2 ff2 

process, we can apply a consequence of a basic martingale inequal- + ~z^ —rr 
ity (Castillo, 2006) to get a bound for the missed detection proba- 2 

bility in the interval [7"- At,!]. Namely, 2(e^T - l ) ( t - T -T0 - i ) 

( t - T - T 0 - i ) 2 ( e ^ - l ) 
12 

t - T o - ^ 
2 

P(max{|Z(t)|,te[r-At,r]}>m [T_a t iT])<^™=^ r). , 2 T V ^ T3 t 2{e>.2r_,) 
m[T_at,T] m[T-At,T] T + [T¿ + — J (^ - To - f j - y + j + 

Therefore and taking into account that 
2 A <-7 3 4 x¡ 

Varfl(t) = e2uVarY(t), T2 2l\ C2 + U 2
 + CM) I C + -21 ; 

we can conclude that the probability of missed detection in the 
x g 2i.2T0rgl.2t _ gl.2<t T)\2 

interval [ I -A t , I ] is bounded as follows (JM M2\ 2 -o\ 

P(p(t) $ Bj(t) for some t&[T- At, T]; &j) 
+ { C + A2JT2 2ñ 

J2T 1 e'-2 

X2 X; 

- p(\H(t)-EUi(t);*j)\ > hJVarUHt);0s), 
nidim. \ 2 V 

+ e^|T + T ° t - ^ + ^ ) + l phT 

(-x.2fl ' 2 
e-2aVar(p(T);<Pj) 

forsometelT-AtJ];^) < ™ h ". , fT , 1 ^\fT,^\ 1 

This procedure can be easily extended to estimators ¡ib and ¡id, 
by noting that (ib(t) =\Y„(t) and (ia(t) = e^ fae-^e{x)dx = r

2(t) = (/i(t) -E\ji{t); <P2\)'Cov-\pL; <P2)(t, t)([i(t) -£[//(t); 0)2]) 
eptYd(t), and applying an equivalent reasoning to Yb(t) and Yd(t). 2 n2 
This procedure can be easily extended to estimators ¡ib and ¡id, \\ /t_Tei(T)dT \\ JtTe2(x)dx\ 

by noting that /^(t) =iY6(t) and nd{t) = e^fae-^e{x)dx = = Cov(p1(t),^(t);02)
 + Cov(p2(t),^2(t);02) 

epcYd(t), and applying an equivalent reasoning to Yb(t) and Yd(t). 
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