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A B S T R A C T 

The effective mass Schrodinger equation of a QD of parallelepipedic shape with a square potential well 
is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables 
wavefunctions. The expected below bandgap bound states are found not to differ very much from the 
former approximate calculations. In addition, the presence of bound states within the conduction band 
is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one 
dimension and layered states with only one dimension bounded, all within the conduction 
band—which are similar to those originated in quantum wires and quantum wells—coexist with the 
ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped 
quantum dots, often used for modeling. 

1. Introduction 

Quantum dots (QDs) are mesoscopic structures for which ab 
initio modeling, often used for bulk crystals, is difficult to apply 
[1] because they require extensive utilization of computational 
resources. The k p method may [2-4] provide a procedure for 
dealing approximately with these problems. However, this 
method can also be very costly in the use of computational 
resources [5] when considering mesoscopic structures. Although 
the cooperation of specialists in quantum calculations and device 
technology is very desirable, and is sometimes achieved [6,7], the 
development of simple models, easier to use by experimentalists 
assists technological progress effectively. 

In this regard, the use of the effective mass approximation 
(actually a 1-band variant of the k • p method) may be interesting 
for devices where the optical interaction between the QD bound 
states and the conduction band (CB) is essential. This is, among 
others, the case for intermediate band solar cells (IBSC) [8-11] 
and QD infrared photodetectors [12,13]. 

The simplicity of the model is still increased, and widely used, 
if square well potentials are considered. These potentials are 
usually the band offset (corrected by strain) between the different 
semiconductors forming the nanostructure, which for this pur­
pose are considered of sharp edges. In this paper we want to show 

how despite this simplicity the solutions can present high com­
plexity whose full discussion is facilitated by the simplicity of the 
basic model. In particular we want to show the appearance in QDs 
of virtual bound states (confined states within the CB) already 
discussed by several authors [5,14-16], filamentary and layered 
states. 

In this context, QDs have often been modeled as spherical 
potential wells [17,18], in particular when the actual QDs have 
this shape. Spherical symmetry has also been used to determine 
the optimal size of the QDs in IBSC [19] in which the electron 
confinement was produced by the band offset. Since the spherical 
geometry permits analytical solutions which are textbook exer­
cises in quantum mechanics [20], it has also been used even if the 
symmetry was known not to be spherical [21,22]. However, in 
many other cases, and in particular when the QDs are grown by 
molecular beam epitaxy (MBE) in the Stranski-Krastanov mode, 
e.g., in the commonly used InAs QDs grown in GaAs, the QDs take 
the shape of short quadrangular truncated pyramids that may be 
approximated as a parallelepipedic box [23-27] (of dimensions 
2a x 2a x 2c in this paper). 

The use of the box shape in the QD allows approximate solution of 
the time independent Schrodinger equation (TISE) by separation-of-
variables: the eigenfunctions—<P(x,y,z)=i;(x)\l/(yX(z)—are the pro­
duct of three one-dimensional functions, each one being eigenfunc­
tions of a one-dimensional Hamiltonian, in which the QD is 
characterized by a square potential well. 

This model is useful not only to describe the CB electrons but 
also to determine, by application of the appropriate effective 
masses and band offsets, the energies of VB electrons in all the 



three bands (heavy holes, light holes and split-off band) [27] that 
characterize these electrons. For the CB, the method provides a 
reasonable approximation of the eigenfunctions and thus it can be 
directly applied (much more easily than in spherical symmetry) 
to the determination of the intraband photon absorption matrix 
elements [25,26,28]. In the case of the VB, a four-band k p 
solution, still based in the box shaped symmetry, is necessary 
[27,29] for determination of the eigenfunctions and the interband 
absorption coefficient. 

However, the separation-of-variables solutions are only an 
approximation [25]. In this paper we shall use these solutions 
as a basis for the development of the described Hamiltonian so 
obtaining the exact eigenvalues and eigenfunctions; exact, of 
course, in the limits of our geometrical description of the QD, its 
square potential and in the frame of the one-electron treatment 
and the effective mass approximation. 

Section 2 presents the exact Hamiltonian we want to solve and 
describes how it is modified to accept separation-of-variables 
solutions. A perturbation Hamiltonian is then defined that trans­
forms the latter into the former. Section 3 analyzes the nature of 
the eigenvectors and eigenvalues, describing the modalities of the 
discrete spectrum and the different continua spectra found and 
finally calculates the eigenfunctions and eigenvectors for each 
modality. Section 4 studies the density of states associated to 
each discrete or continuum spectrum modality. Section 5 com­
pares the spherical symmetry solutions to the box shaped 
symmetry used in this paper. Finally Section 6 draws some 
conclusions. 

2. The exact and separation-of-variables potentials 

2.2. The Schrodinger equation 

The time-independent Schrodinger equation (TISE) is 

+E = V(r) 0) 2m* W 

where the right side term is the band edge position (with changed 
sign if it refers to holes). The asterisk indicates that an effective 
mass is used. The energy origin is arbitrary and for the calcula­
tions the zero is set at the bottom of the potential well inside the 
QD (which is at the dot material conduction band edge) and U 
outside it. In symbolic language (V=for all, A =and, v =or), 

V(r)-. 
OV |x| < O A \y\ < O A \z\ < c 
¡J V |x| >av \y\ >av \z\ >c (2) 

However, for presentation purposes, the zero shall be set at the 
barrier material conduction band edge, which means that U must 
be subtracted from all the energy results. The reason for taking 
the origin of potential at the QD CB bottom is explained in the two 
following sections. 

2.2. One dimensional solutions 

discussion is provided e.g. in [25]. For E<U (the subindex x is 
dropped in this subsection) bounded solutions, different from the 
trivial f(x)=0, are even (cos(fcx)) or odd (sin(fcx))harmonic func­
tions inside the well flanked by fading exponential functions 
outside it (exp(-Kx) V x > a). Solutions may only exist for certain 
values of the wavenumber kn for which the non-fading exponen­
tial solution is canceled. The energy £„, fading coefficient K„ and 
fc-values are related by 

En = r fe„/2m* = U-h¿K¿
n/2m* (4) 

The index n denotes the different permitted energies in 
increasing order. It is a quantum number (QN). Odd QNs corre­
spond to even functions and vice versa. 

Table 1 presents the values of k for the different QNs and the 
one-dimensional energy. The CB offset and QD dimensions are 
those in [28] and are derived from the data of a prototype IBSC in 
[30] (sample SB). 

Although the effective mass is different for the dot (InAs) and 
barrier (GaAs) material, we use the dot material value across this 
paper. A straightforward modification of Eq. (1) where m* is 
position-variable would lead to a non-hermitical Hamiltonian 
[31 ]. There are several possible modifications but their discussion 
are beyond the scope of this paper. This effective mass choice is 
accurate for low QNs and less so for the extended states to be 
studied below, but still very meaningful qualitatively. 

For E > ii, the solution is harmonic with wavenumber k inside 
the potential well and also harmonic, even or odd, outside it but 
with a different value of the wavenumber ke and a phase term. 
That is, they are of the form cos{kex — 9) or sm{kex — 9). Details can 
be found, e.g. in [28]. In this case, 

En = U+h¿l<i/2m* = ( t ¥ / 2 m 

and 

(fce/fc)cot(to) = cot(fcea-0) 

(ke/k)tan(fea) = tan(fcea-0) 

(5) 

(6) 

respectively for the even and odd functions. 
For E > ii, fee can take any value and therefore it leads to a 

continuum spectrum of energies. Since the mathematics of con­
tinuum spectra is rather complicated, it is common to assume 
that the wavefunctions are restricted to a large but finite region (a 
segment of length 21, with large I, for one-dimensional cases, or a 
big parallelepiped for three-dimensional ones) and assume peri­
odic conditions there. This leads [28] to 

keL-6 = ñn/2 (7) 

where ñ is an integer, odd for the even solutions and even for the 
odd solutions. 

Neglecting the variation of 6 the permitted values of kex are 
separated Afee = Jt/21 that is small as long as L is big (with respect 
to a or c). However, only a numerable set of fee-values are now 
permitted and the new QN, ñ, has now appeared. 

The functions ¿(x), i//(y), £(z) are defined by 

h2 d^/dx2 

2m* C 
+EX 

V|x| <a 
Vlxl >a 

(3) 

and similarly for i//(y), £(z) (in the latter case using c instead of a as 
the well boundary). 

The position of the origin of potential at the QD CB bottom is 
common in textbooks for one dimensional square potential wells. 
It also fits with our choice in the last section. 

Finding the solutions for ¿(x) (or for i//(y), £(z)) constitutes a 
simple exercise of differential equations. In this context, a 

Table 1 
Values of k (multiplied by the potential well half-width) and one-dimensional 
energy for the CB offset and QD dimensions in [28]. Energies are with respect to 
the barrier material CB bottom. 

n 

kxa, kzc 
E0 (eV) 

x-,y-eigenf 

1 

1.299 
-0 .439 

unctions 

2 

2.579 
-0.338 

3 

3.806 
-0 .180 

4 

4.810 
-0.0045 

z-eigenfunctions 

1 

0.968 
-0.338 

2 

1.695 
-0 .059 

i/=0.473 eV; m*=0.0294mP; a=8 nm; c=3 nm. 



Due to the hermitical property of the Hamiltonian, any two 
eigenfunctions, bound or extended, are strictly orthogonal. For 
easier handling, the eigenfunctions must be normalized. This is 
easy for bound functions (it may be calculated analytically). 
Strictly speaking, extended states cannot be normalized (at least 
in the ordinary sense) but this difficulty is circumvented by 
integrating the square of the eigenfunction's absolute value in 
the interval {—L,+L). If outside the QD the harmonic function has 
amplitude one, this integration is approximately L (and the 
wavefunction norm is L1/2) if L is much larger than the QD 
dimensions. L it is arbitrarily chosen but any measurable magni­
tude has, under this model, an expression containing L that 
cancels out the L dependence. 

2.3. The perturbation potential 

By adding the one-dimensional Eq. (3) corresponding to the 
three coordinates we obtain 

h2 V<2> 
2m* <P 

where 

+E„x,„y,„z = V0(r) (8) 

*(x,y,z) = i(x)1A(y)C(z) 

Enx,ny,nz = £-x,nx ^r^y.Uy ~\~tLz,nz (9) 

The choice of the origin of potentials at the QD CB bottom, 
both in the one three-dimensional TISE Eq. (1) and the one 
dimensional ones Eq. (3) allows for the simple expression of the 
energies in Eq. (9), without caring for readjusting potential 
references. 

However, V0(r) is different from V(r). As explained in [25], it is 
the same inside the QD and outside it in front of the faces, but it 
takes the value 2LÍ in front of the edges and of 3fJ in front of the 
corners. In symbolic language, 

' OV|x| < O A \y\ < O A \z\ <c 

t/V|x| > C I A |y < O A | Z | < C 

t/V|x| < C I A |y > O A | Z | < C 

t/V|x| < C I A |y < O A | Z | > C 

2L/V|x| > CIA |y > O A | Z | < C 

2L/V|x| > C I A |y < O A | Z | > C 

2L/V|x| < C I A |y > O A | Z | > C 

3L/V|x| > C I A ly > C I A |z >c 

V0(r)-. (10) 

Thus, the exact Hamiltonian can be written as 

H = ~ 2m* V + Vo(r) + V'(r) = Ho + V'(r) 

where the (improperly called) perturbation potential is 

0V|x| < O A \y\ < a A, \z\ <c 
0V|x| >a/\ \y\ < a A \z\ <c 
0V|x| < O A \y\ > a A \z\ <c 
0V|x| < O A \y\ < a A \z\ >c 

—L/V|x| > a A \y\ > a A \Z\ <C 
—L/V|x| > a A \y\ < a A \Z\ >C 
—L/V|x| < a A \y\ > a A \Z\ >C 
-2(JV|x >aA\y\>aA\z\>c 

(11) 

V'(r) = V(r)-V0(r)={ (12) 

3. Matrix representation of the exact Hamiltonian 

In this section the exact Hamiltonian is going to be repre­
sented as a matrix in basis of separation-of-variables wavefunc-
tions and then diagonalized. 

3.1. Three dimensional basis states 

The separation-of-variables wavefunctions \nx,ny,nz} = ^nJ¡in 

£„ z = <Pnx,ny,nz a r e t n e eigenfunctions of the Hamiltonian H0. Each 
one-dimensional eigenfunction may be bound or extended. To 
distinguish this fact we can write ñx,ñy,ñz> where flx indicates that 
the x-eigenfunction is bound and ñy denotes that the y-eigenfunction 
is extended. The H0 eigenvalues are in Eq. (9) whose components may 
be found in Eqs. (4) or (5). As said before, we usually subtract U from 
the values obtained to refer the energies to the barrier material CB 
bottom. 

The set |nx,ny,nz> forms an orthonormal basis that never­
theless is somewhat involved. It is formed of purely bound states 
flx,fly,flz> (0E states), of purely extended states |ñx,ñy,ñz> (3E 

states) and of states that are mixed, with a single extended state, 
of the type ñx,ñy,ñz> (and all the circular permutations: lEz, lEx, 
lEy states) and with a two extended states |ñx,ñy,ñz> (and all the 
circular permutations: 2Exy, 2Eyz, 2Ezx states). The QN corre­
sponding to the extended states is linked, as indicated in Eq. (7) to 
a certain value of L and it may be physically more meaningful to 
use fee and the parity as wavefunction definer although for 
calculations we shall use the corresponding QN (the closest one 
of the same parity, once L is given). 

Examples of HO eigenfunctions of the 0E, IE and 2E sets are 
given in Fig. 1. 

Note that for extended states the electron tends to be outside 
the QD. 

If H0 is developed in this basis, it forms a diagonal matrix, 
although the ordering of the diagonal elements in this matrix is 
complicated. For instance we can start by ordering the finite 
number of states of the bound 0E states and then put the 3E 
states, but they are infinite, and we still have to situate the 2E and 
IE states. 

3.2. Integration in regions 

As derived from the perturbation potential in Eq. (12), the 
matrix elements of the perturbation Hamiltonian <nx i ,ny l ,n z l 

V(r)|nXi2,ny2,nZi2> require the integrations of wavefunctions 
restricted to a certain region of the space and multiplied by a 
multiple of U. This section is devoted to the calculation of these 
integrations. 

The complex conjugation necessary in quantum mechanics for 
the internal products and matrix elements is not used here 
because all the functions are real. 

In Table 2 and 3 the values of the integration inside and 
outside the QD are presented for bound one-dimensional eigen­
functions in the x and z coordinates respectively. The column to 
the left represents the internal product; for different QNs it must 
be zero. The very small values observed in some cases are to be 
considered the noise background of our calculations. For small 
QNs, the probability of finding the electron outside the QD (look 
at the cases with equal QNs) is very small, so justifying the choice 
of the QD effective mass. For large QNs it may be more spread. 
When the parity of the QNs is different, the product of wavefunc­
tions is odd and its integral is zero inside the QD. Outside it, it 
takes different signs for positive and negative abscissas. When the 
QNs are different, but of the same parity, the integrals inside and 
outside the QD balance out. 



Fig. 1. Electron density-of-probability contours, (a) bound OE (1,2,1) wavefunction; (b) filamentary lEz (1,2,8) wavefunction; (c) sheet-shaped 2Exy (5,8,1) wavefunction. 
Space units are in nm; the containing cube length is 2L—120nm. The green box represents the QD, of 1 6 x 1 6 x 6 n m 3 . The contour drawn corresponds to 0.001 times 
the maximum density of probability of the (1,1,1) OE state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Integration in regions of bound one-dimensional eigenfunctions corresponding to 
the coordinates x or y. 

QNs r»&A*< r^ínjKdx r_jhjKdx rnñjKdx 

1,2 
1,3 
1,4 
2,2 
2,3 
2,4 
3,3 
3,4 
4,4 

0 
1. 
0 
1 
0 

1 
0 
1 

:10~ 

3.47531 x 10-

0.00638387 
0.0133362 
0.0217575 
0.0267906 
0.0279778 
0.0461097 
0.059098 
0.0779097 
0.111237 
0.336536 

0.987232 
0 
0.0435151 
0 
0.944044 
0 
0.118196 
0.844181 
0 
0.326929 

0.00638387 
-0.0133362 
-0.0217575 
0.0267906 
0.0279778 
0.0461097 

-0.059098 
0.0779097 

-0.111237 
0.336536 

Table 3 
Integration in regions of bound one-dimensional eigenfunctions corresponding to 
the coordinate z. 

QNs 
r^nMdZ f-ao(nAdZ f - A k d Z STtnMdZ 

1.1 1 
1.2 0 
2,2 1 

0.000375021 
0.00328518 
0.0345654 

0.99925 
0 
0.930869 

0.000375021 
-0.00328518 
0.0345654 

For extended one-dimensional eigenfunctions of different QNs 
the orthogonality is theoretically required and well verified in our 
calculations as well. Thus, for L->co (the amplitude of ¿Sx is 
rendered zero by the normalization), 

I 

-a r-OO 

£ñjñ-x
dx+ / £ñ¿ñ'x

dx = &ñ,x 
yo " Ja 

(13) 

(14) 

and for bound/extended eigenfunctions 

£hjnxdx = 0 
I 

-a poo 

(ñjnxdx+ / Zñjñxdx = 0 
» Ja 

The y- and z-eigenfunctions behave similarly. 

3.3. The exact Hamiltonian matrix elements, eigenvalues and 
eigenvectors 

The exact Hamiltonian matrix when developed in eigenfunc­
tions of the Hamiltonian H0 of Eq. (11) is the sum of the matrix 



representation of H0, which is a diagonal matrix, and the matrix 
representation of V, described in Eq. (12). 

The matrix elements of the latter are 

(nx,ny,nz\V'\rix,riy,rizy = 

"/-« inAKdx(rZ >K,<^dy+ JT >K/^dy) ( / - (n¿n,dz+ /~ {ni{„,dz) + 

-U (nH„J^dx+ J7U^dx) / ! „ f c ^ ^ y ( / - U(n,dz+ /~CniC„,dz) + 

-2i / J<xi^"idx+Ja
 iín'ií"idx){J_<xl'

i'n''i'"idy+L *% ,M-y 

{iy^dz+i?^dz) (15) 

where no distinction has been made between bound and 
extended states. 

According to Eq. (14), the matrix elements linking a bound and 
an extended wavefunction in a given coordinate are zero. There­
fore, the only non-zero matrix elements are those belonging to 
the same set (OE, 3E etc.) of those enumerated in Section 3.1. This 
is the same as saying that the Hamiltonian matrix is the direct 
sum of the Hamiltonian matrices in these sets. In other words, it is 
a diagonal of blocs, although many of these blocs are of infinite 
dimension. 

3.3.2. Purely bound OE states 
For the dimensions and potential of our prototype cell there 

are 4 QNs for the x and y one-dimensional eigenfunctions and 
2 for the z one-dimensional eigenfunction. Thus, there are 32H0 

eigenfunctions for bound states. The eigenvalues are calculated 
with Eq. (9) using Table 1. They are represented in Fig. 2(a). The 
energy first-order approximation 

£, = £0 + <nx,ny,nz|\/'|nx,ny,nz> (16) 

is also presented. In the preceding equation £0 is used as a short 
notation for what in Eq. (8) is denoted as Enxi„yi„z. 

States with nx # ny are double degenerated. Notice that the 
first order approximation moves all the states downward. This 
shift is very little for the low energies but substantial for the high 
energies. 

An exact calculation of the perturbed Hamiltonian, that is, the 
exact one within the model limitations, can be obtained by 

calculating the matrix 

(nx,ny,nz\H\n'x,n'y,n'zy - (nx,ny,nz\H0\n'x,n'y,n'z) + (nx,ny,nz\V\n'x,riy,riz) (17) 

and obtaining (with Mathematica) the eigenvalues and eigenvec­
tors. Of course, <nx,ny,nz|H0|nx,ny,nz> is the diagonal matrix of 
elements equal to £0.The eigenvalues are represented in 
Fig. 2(b) side by side with the 1st order approximations (which 
are also in part (a) of the figure) for easy comparison. Changes are 
small but visible for the high energies. It must be stressed that, for 
the exact calculations, the energy levels cannot be related to any 
set of QNs. In fact, the eigenstates are linear combinations of the 
unperturbed Hamiltonian eigenstates that are the product of one-
dimensional wavefunctions, each with one QN. This relationship 
is represented in Fig. 3. The absolute value of the coefficient of 
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Fig. 3. Strength of the projection of the eigenstates corresponding to the exact 
Hamiltonian eigenenergy, to the left, on the H0 Hamiltonian eigenstates (above). 
Black, full projection; white, zero projection. Eigenstates are characterized by their 
energy (left, in eV). 
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Fig. 2. (a) QD well and energy eigenvalues E0 and their correction to the 1st order. The QNs corresponding to each energy line are also given, (b) Energy eigenvalues for the 
1st order approximation, the same as in part (a), and from the exact calculations for the different sets of eigenfunctions. Dark gray corresponds to the energies of the 
continuum of 3E states. Lighter and medium gray correspond to the IE and 2E states respectively, the horizontal lines showing where the continuum spectrum starts 
above the energy of the bound part of the wavefunctions. One continuum of energies starts above each horizontal line in these two groups of sets. 



\nx,ny,nzy is represented in a gray scale (1 black; 0, white). The 
numeric values are given in the Supplementary materials. 

It can be seen that, in general, there are a small number of 
dominant unperturbed states corresponding to each exact state. 
Diagonal blocks of four boxes are often found sometimes corre­
sponding to double degenerate states. The order of the unper­
turbed eigenstates on the top follows the order of the increasing 
E0 energies. 

3.3.2. One dimensional extended IE states 
This set is actually separated into three sets, lEz, lEx and lEy, 

corresponding respectively to the states extended in z, x and y and 
bound in the remaining variables. Let us examine first the lEz 
states. The eigenvalues of H0 are, according to Eqs. (11) and (5), 

E0=Ex+Ey+(u+h2k2J2m*}-U = E00 + h2k2J2m* (18) 

Note the energy in this equation is with respect to barrier 
material CB bottom; this results from subtracting U from the 
energies with respect to the QD CB bottom (the two Us cancel). 
The second zero subindex in £0o indicates that kez is zero. 

The matrix elements have now two bound and one extended 
function; that is, using Eq. (13) they are 
<ñx,ñy,ñz V'\ñ'x,ñ'rñ'7y = (ñx,ñy\V\ñ'x,ñ'y}Sñzñ,where 

(ñx,ñy\V'\ñ'x,ñyy = 

\í-a ^ „ < d x ( r : ihyih-dy+ IT ^K-dy) +" 

(ill ZnJn-dx+ JT ínJ«„dx) £ , i^n-dy 

(19) 

This matrix is independent of kez, which appears in Eq. (18). 
In this case, the exact Hamiltonian matrix is, 

(ñx,ñy,ñz\H\ñ'x,ñy,ñ'zy = 

{(nx,ny\H00\rix,riyy + (nx,ny\V'\rix,riyy +h2k2
ez/2m*jSñziK (20) 

where < nx,ny \H001 n'x,n'y > is the diagonal matrix of elements equal 
to £00. In this equation, ke is linked to ñz by Eq. (7) where, for large 
values of ñz, 6 may be neglected. Otherwise, Eq. (6) is to be used. 

The eigenvalues of H00+V are represented in Fig. 2(b) in the 
sector labeled lEz. In total there are 4 x 4 = 1 6 states; many of 
them degenerate. According to Eq. (20), they are the threshold of 
a set of continuous states rising upwards. This is clearly repre­
sented in the lower energy state by a light gray rectangle, but it 
should be noted that a separate continuum emanates from each 
state in this plot sector. 

The development of the 16 2-dimensional (2D) eigenfunctions 
on the 16 \nx,nyy states is presented in the Supplementary 
materials. The 3D eigenfunctions are in this case the product of 
the 2D eigenfunctions times the ID extended (in/out phase 
harmonic) wave corresponding to kez. 

A comparison with the position of the thresholds analyzed 
above when the Hamiltonian is H0 is presented in the 
Supplementary materials. They are actually located much further 
above: the perturbation potential brings them down substan­
tially. However, they approach but do not invade the barrier 
material bandgap. This may be a general rule that could be 
mathematically proven. We have not attempted to do it. The 1st 
order approximation gives closer values (see Supplementary 
materials) but in most cases not very much. 

For the lEx and lEy sets, an analogous treatment is developed. 
In this case, there are 4 x 2 = 8 %,nz> states and the same for 
nX}nzy. They appear in Fig. 2(b) and are the thresholds of series of 

continuous spectrum states. The development of the two-

dimensional eigenstates in %,nz> the £00 and £10 and approx­
imations can also be found in the Supplementary materials. 

3.3.3. Two dimensional extended 2E states 
This subsection actually deals with three sets, 2Exy, 2Eyz and 

2Ezx, corresponding respectively to bound states only in z, x and y 
and extended in the remaining variables. Let us examine first the 
2Exy states. The eigenvalues of H0 are 

EQ=Ez,nz + (u+h2k2
ex/2m*^ + (u+h2k2

ey/2m*^-U 

= E000 + h2k2
xl2m* + h2k2yl2m* (21) 

The subtracted U sets the energy origin at the barrier material 
CB bottom. The second and third zero in the subindex signify that 

and key ave zero. 
The matrix elements have now one bound functions and two 

extended; that is, they are, according to Eqs. (12) and (13), 

(ñx,ñy,ñz\V'\ñ'x,ñ'rñ'z> = (ñz\
v'\ñz>5ñ„ñ'x

Sfty,ñ'y> where 

<fiz\V'\ñ'z> =-uU\¿tídz\-2uU£a¡;n¡i;,l,dx+ £° ín^dxjj (22) 

This matrix is independent of the fees, which appear in Eq. (21). 
With the exact model for 2Exy states, the Hamiltonian matrix 

development is 

<ñx,ñy,ñz|H|ñx,ñy,ñz> 

= { <nz\H000\rizy + <nz V\n'z) +ñ 2 /4/2m* + ñ2fc2
y/2m*}<5(fcex,/4)<5(fcey,/4y) 

(23) 

where <nz|H0oo|nz> is the diagonal matrix of elements of £0oo-
The eigenvalues of H000+V are represented in Fig. 2(b) in the 
sector labeled lExy. For |nz>, there are only 2 states, which are 
the threshold of a set of continuous states rising upwards 
(medium gray rectangles). The development of the two ID 
eigenfunctions on the two |nz> states is presented in the 
Supplementary materials. The 3D eigenfunctions are in this case 
the product of the ID eigenfunctions times two ID extended (in/ 
out phase harmonic) wave corresponding to the kex and key 

vectors. 
The same arguments may be applied to the 2Eyz and 2Ezx 

where the bound states are nx> and \nyy respectively. In this 
case, there are four states and four levels, which are represented 
in the corresponding sector of the Fig. 2(b) plot. Again the 
lowering of the H0oo energy levels is very substantial, more than 
in the IE sets; however, the levels do not penetrate into the 
bandgap, even though for the 2Eyz and 2Ezx sets they approach it 
closely. Details can be found in the Supplementary materials. 

3.3.4. 3E set of three-dimensional extended states 
The eigenvalues of H0 are, 

£0 = (u+h2k2
ex/2m*) + (u+h2k2

ex/2m^ + (u+h2k2
ez/2m^ -U 

= 2U+h2k2
ex/2m* + h2k2

ey/2m* + h2k2J2m* (24) 

The subtracted U sets the energy origin at the barrier material 
CB bottom. In addition, taking into account Eq. (13), the perturba­
tion matrix becomes very simple because 

iñx,ñy,ñz\V'\ñ'x,ñ'y,nzy = -2USñxKSñyñ.ySñzX (25) 

In consequence, 

(,ñx,ñy,ñz\H\ñ'x,ñ'y,ñ'z> = (h2k2
ex/2m*+h2k2

y/2m* 

+h2k2
ez/2m*)sñxXSñyiñ.SñzX (26) 

which is the same as if the QD were absent although the 
wavevectors are not plane waves but the product of three ID 



extended (in/out phase harmonic) wave corresponding to the fcex, 
key and kez vectors. Again, in this case, there is a substantial 
reduction of the H0 eigenvalues: 2iifor all of them; however, they 
do not penetrate into the bandgap, but reach its upper edge. In 
Fig. 2 they are represented by the dark gray zone. 

In the box-shaped QD, the continuous spectrum is heavily 
degenerated (as is visible in Fig. 2) and a richer wavefunction 
structure is possible. For instance, a virtual bound state (OE) may 
be combined with IE, 2E and 3E states with the same energy, 
giving a rather complex eigenfunction that is (as any eigenfunc-
tion) a stationary state. 

4. Density of states 

For one-dimensional wavefunctions, the density of states per 
unit of length in the one-dimension fe-space is 1/Afce s 2L/n. Only 
positive values of k are to be considered. 

For a single QD, the density of 3E states per unit of fc-space 
volume is 1 /AkexAkeyAkez s 8L3/7t3. Let us assume that the density 
of QDs is NQP; the volume per QD is 1/NQD. It seems reasonable to 
select it in our calculations as the volume associated to one QD. 
We are assuming that the density is low enough as to prevent any 
influence of a QD on the others. Therefore, 1 /AkexAkeyAkez s 
1/NQD7I3. Taking into account that there are NQD states per unit 
of volume, the total density of states per unit k- and r-space is 
\IAkexAkeyAkez ^É \¡n3, independent of the density of QDs. The 
states from different QDs will have their k-points intercalated in 
the continuum of ks. 

Reproducing the usual calculation, the number of states per 
unit of volume for energy below a given value is M3E(E) = 2 x 
(4/3)n(2m*E/h2) /8n3 where the first factor of 2 is due to the 
spin degeneracy and the 8 in the denominator refers to volume 
being of a sphere octant. The expression for the density of states 
per unit of energy and volume is 

g3E(E)=(2m*/h2y/2VE/2n2 (27) 

This expression is also applicable for a bulk material without 
QDs: in this case the volume refers to the full sphere but the 
density is (27i)~3. 

For a single QD, the 2E density of states per k-space unit of 
area is \IAkexAkey^4L2ln2. Let us assume that the superficial 
density of states is NQO^. The surface per QD is 1/NQPIX),. It seems 
reasonable to select this as a surface associated to one QD (it is 
assumed it does not affect the others). Thus l/AfcexAfcey = 
1/NQDXJ,7I2. Taking into account that there are NQD per unit of 
volume, the total density of states per unit of k- and r-space 
volume is \IAkexAkey s NQD/NQD,XJ,7i2 where NQDiXy/NQD =/QDz is the 
separation of QD layers in the z direction. This direction is the 
growth direction and IQDZ is a process parameter. In other 
directions, it will be lQpx=lQpy={NQ_D,xyy"il2-

The number of states per unit of volume for energies below a 
given value is M(E) = 2 x n(2m*E/h2 J/47I2/QD where the first 
factor of 2 is due to the spin degeneracy and the 4 in the 
denominator accounts for the fact that the surface under con­
sideration is a circle quadrant. E is to be counted from its 
threshold, which depends on the QN of the bound one-
dimensional state. The expression for the density of states per 
unit of energy and volume is 

g2E(E)=(m*/h2)/nl(lD (28) 

which is independent of the energy. This is the well known 
behavior of quantum wells. 

For a single QD, the IE density of states per unit fe-space length 
is 1/Afees; 21/71. The length associated to a QD is /QD. Thus 

Table 4 
Integrated density of states for the 3E, 2E, IE and OE sets in several energy 
intervals. 

States, cm"3 ; E, eV 3E 2E IE OE 

M(0.5) 8.09 x lO 1 8 7 . 6 8 x 1 0 " 1 .09x10" 9.77 x 1015 

Sum states, - 0 . 5 < £ < 0 0 0 0 5 . 8 6 x l 0 1 6 

Sum states, 0 < £ < 0.5 8 . 0 9 x l 0 l s 8 . 4 6 x l 0 l s 2.0 x 10 l s 2 . 5 4 x 1 0 " 

NQD = 4.88281 x 1015 cm"3 ; NQD,xy = 3.90625 x 1010 cm"2 ; íQD,z = 8 x 10~6 cm. 

1/Afee = ÍQD/TC. Taking into account that there are NQD states per 
unit of volume, the total density of states per unit of fe- and r-
space volume is 1/Afee s NQD/QD/7I. Note that NQD/QDZ=NQÍ,IXJ„ 
although NQD/QDx = NQD/QDy = NQD/ ̂ NQDiXy. 

The number of states per unit of volume for energies below a 
given value is M(E) = 2 x (2m*E/h2) NQ_DIQ_D/"K where the first 
factor of 2 is due to the spin degeneracy. The expression for the 
density of states is 

g(E) = (2m* /h2) 1/2NQD/QD/7tví (29) 

which tends to infinity at the energy onset. This is the well known 
behavior of quantum wires. 

Table 4 shows the integrated density of states per unit of 
volume for an interval energy interval of 0.5 eV. In the first row, 
the values of M2E and MiE are calculated for a single nz> or 
nx,%> state, respectively, for the energy interval ranging from 

the threshold to 0.5 eV above it. M0E is calculated for a single non-
degenerated (besides the spin degeneracy that is taken into 
account) state. In the rows below all the states due to all the 
levels in the interval specified are calculated. 

The density of states associated to the density-of-probability 
layers in the coordinate planes (2E states) is remarkably high as it 
is the density of states associated to the coordinate axes (IE 
states), exceeding or approaching the density of states of the bulk 
material (3E states). The totally bound states (0E) are less 
abundant. 

It is to be understood that the continuous states are strongly 
degenerated permitting a large variety of stationary wavefunctions 
formed by linear combination for a given energy of those described. 
In practice, almost all these states are empty of electrons. 

5. Spherical symmetry and the cubic case 

The current method of QD growth, consisting in growing InAs 
layers on a GaAs substrate in a molecular beam epitaxy (MBE) 
apparatus, tends to produce squat QDs. Some studies on QDs 
assume that they are spherical. This is a good approximation for 
colloidal QDs. However, the differences between squat, cubic and 
spherical QDs are substantial. 

The mathematical treatment of spherical QDs can be found in 
textbooks (e.g. [20]: the case of a central potential). The eigen-
functions takes the form <P(r,6,(p) =Yf(9,ip)fl(r) where the func­
tions Y™(9,ip) are spherical harmonics, which are labeled by the 
angular and magnetic QNs / and m respectively, and the radial 
wavefunction f¡(r) obeys to the radial equation. For a square 
potential well, the radial solution is the spherical Bessel function 
ji(kr). Bound states appear only for certain energies (those leading 
to fading solutions outside the well) below the potential well­
head. For energy above the wellhead, the spectrum is continuous 
and the asymptotic behavior of the solutions for large rs are 
spherical waves of the form sin(fer-0)/r. No virtual bound states 
are found for a large variety of potential profiles, provided that 
they tend to zero (the wellhead energy) fast enough. 



Table 5 
Eigenvalues E0 of the separation-of-variables Hamiltonian H0 presented in increasing order and 1st order approximations E due to the perturbation potential V for 
wavefunctions of the class OE (bound states). The energy origin is located at the barrier material CB bottom. The 1st order approximation is exact. 

State 

Eo(eV) 
£(eV) 

|U ,1> 

-0.0681 
-0.0890 

|2,1,1> 

0.2105 
0.1385 

1,2,1 > 

0.2105 
0.1385 

1,1,2> 

0.2105 
0.1385 

|2,2,1> 

0.4891 
0.2767 

|2,1,2> 

0.4891 
0.2767 

1,2,2 > 

0.4891 
0.2767 

|2,2,2> 

0.7677 
0.3728 

Smaller QDs are desirable for many applications and they have 
often been studied under the spherical symmetry. We analyze 
now a cubic box-shaped QD in which we set the current QD 
height ( 2 x 3 nm) for the three parallelepiped edges and leave the 
remaining parameters unchanged. For the bound states we obtain 
Table 5. In this case, the 1st order approximation coincides with 
the exact solution. The exact eigenvectors are the separation-of-
variables solutions denoted in the table. 

In contrast, the spherical QD with the same volume as the cube 
of 6 nm of side has a diameter of 7.4 nm and the s-state (/=0) 
energy is -0.0902 eV, rather close to the only below bandgap 
bound state energy of -0.0890 eV obtained for the cube. In the 
sphere this is the only bound state; neither a second s-state nor 
states with any other angular symmetry are present for the 
parameters used. Thus, the absence of virtual bound states is a 
singularity of the high symmetry of the spherical QD. 

In the cube, there are also eigenfunctions that are extended in 
one dimension or in two dimensions and bound in the remaining 
ones. Their continuous spectrum starts well inside the barrier 
material CB. Values are not reported for lack of specific interest. 
These types of solutions are also missing in the spherical QDs. 

Apparently, the spherical-wave solutions are missing in the 
cube. Actually this is not true. A spherical wave can be built as 
continuous linear combination of plane waves. All the k-vectors of 
module k are the components. In effect, let us analyze the function 

<P(r)-. <5(|fc|-fc)exp(i'fc .r)£ffc = 

sin(fer) 

2nk / exp(ifer cos$)sin$d$ 

(30) 

where & is the angle between the vectors k and r (spherical 
coordinates in the k-space are used and the polar-axis is taken to 
be in the direction of r). For the final result, the change of variables 
cos$ = u has been made. 

For large values of r the function exp(i'fc • r) is also an eigenstate 
of the box-shaped potential well and the same happens with the 
function exp(-i'/f • r). To prove it, let us go back to the one 
dimensional eigenfunctions, 

Pikxx _ 
cos(60-6e) 

ism(6e-60) 
(31) 

In the first octant (where all the space coordinates are 
positive) the exponential is developed in the eigenfunctions 
described above as (e and o mean even and odd respectively) 

pi(6xa+8ya+8za)\i, /, /, \ , ;„¡(e„+e,0+e z e) | / , /, /, \ 
pikr _ *- Kx.eAy.eAz.e / + ' ^ v ^ | Kx.eAy.eAz.o / 

cos(exo-exe)cos(eyo-eye)cos(ezo-eze) 
jpi(6xo + 6ye + em)\i, ;, ;, \ , ;pi(ú„ + úy0 + úz0) I;, ;, ;, \ li- \Kx,e>Ky,o>Kz,e / T ' C v f \ Kx,o>Ky,e>Kz,e / 

cos(6X0 - 6xe)cos (6yo - 6ye) cos(6Z0 - Qm) 

c v ' \líx,e>líy,o>líz,o / + c v ' \ líx,o>líy,e>líz,o / 

cos(exo-exe)cos(eyo-eye)cos(ezo-eze) 
pi(e„+eye+ezo)\i. ¡. ¡. \;Pi(B„+eye+em)\]. ¡. ¡. \ 
C V ' \tíX,Ortíy,OrtíZ,e / ' C V ' \tíX,Ortíy,OrtíZ,0 / 

cos(exo-exe)cos(ey0-eye)cos(ezo-eze) 
(32) 

In other octants the linear combination is somewhat different 
insofar as the de-phasing angles change the sign for the negative 
coordinate. For the wave plane traveling backwards, a slightly 
different linear combination is to be built. 

Once the plane wave is built, a linear combination of them 
leads to the spherical wave of Eq. (30). Notice that, in the context 
of this paper, the ks are restricted to the first octant in the 
fc-space. However, the same result is obtained if the linear 
combination exp(i'fc.r)+exp(-i7f.r) is integrated. 

As is well known, plane waves can also be obtained as a linear 
combination of spherical waves (see e.g., [20]). Thus the main 
difference between the spherical and box-shaped square-
potential-well QDs is that the latter presents virtual 0E bound 
states and linear and planar IE and 2E extended states, all absent 
in the spherical QD. It has to be stressed that the solutions we are 
presenting here are exact solutions for the model described. The 
same model is used for the spherical QD with only the change 
of shape. 

6. Conclusions 

In this paper, a simple Hamiltonian, associated to QDs char­
acterized by a square (in the energy axis) potential well with the 
shape of a parallelepiped, is solved exactly. The effective mass is 
taken to be the same outside and inside the QD. The adequacy of 
this model to a real QD may have several shortcomings, as 
described in the introduction, but, nevertheless, it is thought to 
approximately describe the QD energy spectrum in the vicinity of 
the CB. 

The exact solution is obtained by developing the Hamiltonian 
in a basis of separation-of-variables solutions already used in 
preceding papers. Then the Hamiltonian matrix is diagonalized 
and the eigenvalues and eigenvectors are obtained. 

Considering only the mentioned basis, several sets of states are 
found: with the wavefunctions bound in all the three dimensions 
(0E states), bound in two dimensions and extended in one (IE 
states), bound in one dimension and extended in two (2E states) 
and extended in all three dimensions (3E states). The latter 
resemble the plane waves of the barrier material without any 
QD and produce the same density of states. The wavefunction 
states extended in one or two dimensions form filaments and 
sheets of high electron density of probability (if filled with 
electron), directed along the three coordinate axes and planes. 
In this respect, they respectively present a density of states 
similar to those of the quantum wires and wells, although in 
the QD case they are inside the barrier material CB while the 
quantum wire and quantum wells start inside the bandgap. We 
think that this fact has not been clearly reported so far, perhaps 
due to the clean results found in QDs with spherical symmetry. 
However, it has to be stressed that the presence of these states 
derives from the solution of a mathematical problem that is the 
same in all but shape. As matter of fact, the density of states 
associated to the wire and well type states is high and comparable 
to that of the all-extended wavefunction states. 

These virtual bound states are of big importance because they 
are an effective means of photon absorption and emission 
between the ordinary bound states within the bandgap and the 



conduction band [32]. Transitions to the ordinary 3E states and to 
the 2E states are forbidden [25,28]. Transitions to the IE filamen­
tary states are, however, permitted and may be the second path 
for the photonic interaction. 

The 3E extended states resemble the free electron traveling 
waves, but spherical wavefunctions can be obtained from these 
plane waves (and conversely). In fact, the heavily degenerate 
continuous spectrum of the box-shaped QD allows for a large 
variety of stationary states; e.g., plane waves, spherical waves or a 
combination of those with bound (OE), filamentary (IE) and 
planar (2D) states. 

The use of spherical waves for the evaluation of the optical 
elements of matrix, which is the natural choice in spherical 
symmetry, is much more complicated than the use of the 
separation of variables wavefunctions, which is the natural choice 
for box-shaped QDs. 

The exact solution is very similar in energy and wavefunction 
to those obtained in the separation-of-variables approximation 
for low energy bound states, in particular for those lying within 
the bandgap. The differences are strong, in particular in energy, 
for states high in the barrier material CB. This is interesting 
because it validates the several studies on sub-bandgap photon 
absorption among bound states based on the separation-of-
variables approximation. On the contrary, the few studies on 
bound to one-dimensional (0E->1E) extended states (the only 
bound to extended transitions with non-zero elements of matrix) 
must be revisited. In all cases, the use of the first order perturba­
tion, which is easy to handle, may be of practical value even if not 
totally exact. However, the highest energies in the separation-of-
variables approximation are severely decreased in the exact 
calculation (or even in the first order approximation). 
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