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ABSTRACT 

In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to 
obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error 
convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching 
function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the 
state variables. 

In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global 
approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index 
and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership 
functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership 
function has been widely used in control applications. The approach developed here can be considered as a generalized version 
of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and 
remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results 
indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. 
In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The 
application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved. 

I. INTRODUCTION 

Variable structure control (VSC) is naturally attractive to 
control engineers because its basic concepts are straight 
forward and have given satisfactory performance in many 
practical areas ofindustrialelectronics.lt has attracted interest 
recently because a fast calculation and switching action has 
been realized through the progress of micro and power elec­
tronics. Variable struchre control is characterized by its ability 
to deal with non-linearities, uncertainties of control systems, 
invariance to parameters, order reduction, fluctuations and 
disturbances, decoupling design procedure and its robustness. 

The main VSC feature is to drive the state trajectory 
towards a sliding plan previously determined by computing 
the feedback control structure. It is desirable to reach simul­
taneously the sliding plane quickly, maintaining closeness to 
it, and to reduce the chattering between structures. However, 

reaching the sliding plane fast implies also a fast departure, 
unless a frequent switching between structures is allowed. 

Motivated by the similarity between fuzzy logic con­
troller (FLC) control rules and the VSC, the robustness of 
the FLC has been analyzed for nonlinear systems in this 
paper. As a result, the behavior of the fuzzy control system 
can be clarified and the relationship between the design 
parameters of the FLC and the tracking performances of the 
control system is addressed. The relationship is important 
since it gives guidance on the design parameters of the FLC to 
achieve the specified control performances [13-15, 38], 

Sliding modes (SM) are used to determine best values 
for parameters in fuzzy control rules in which the robustness 
is inherent in the VSC with SM, thereby robustness in fuzzy 
control can be improved [12, 8, 11, 16, 24, 25, 33], 

In this paper, the design of a FLC-VSC is presented 
based on the Takagi-Sugeno (T-S). fuzzy model. We will 
show how the VSC-SM, the structure of which is based on 
mathematical analysis, can be made more appropriate for 
actual implementation by introduction of fuzzy rules. 

It is well known that a robust a effective controller 
requires an accurate and efficient model. In [32], an interest­
ing method is developed to identify nonlinear systems using 
input-output data. The identification process is divided in 
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three steps; premise variables, MFs and consequent param­
eters. With respect to MFs, they a apply nonlinear pro­
gramming technique using the complex method for the 
minimization of the performance index. The main problem 
encountered is that the T-S identification method can not be 
applied when the MFs are overlapped by pairs. 

Nonlinear control systems based on the T-S model have 
attracted much attention during the last twenty years (e.g., see 
[9, 10]. It provides a powerful solution for development of 
function approximation, systematic techniques to stability 
and design of fuzzy control systems in view of fruitful con­
ventional control theory. They also allow relatively easy 
application of powerful learning techniques for their identi­
fication from data. This fuzzy method presents an alternative 
technique for representing complex nonlinear systems [43] 
and reduces the number of rules in modelling higher order 
nonlinear systems [9], 

Takagi-Sugeno fuzzy models are proved to be universal 
function approximators as they are able to approximate any 
smooth nonlinear functions to any degree of accuracy in any 
convex compact region [20, 42, 43]. It was clearly shown that 
the number of fuzzy rules increases as the approximation 
error tends to zero [22], so it becomes difficult to make use of 
the universal approximation property of T-S fuzzy modelling 
for practical purposes. Moreover, if the number of rules is 
bounded, the resulting set of functions is nowhere dense in 
the space of approximated functions [35]. These conflicting 
objectives have motivated researchers to find a balance 
between the specified accuracy and the computational com­
plexity of the resulting fuzzy model. 

Recently, great interest has been shown to tensor 
product distributed compensation (TPDC) as an established 
controller design framework, that links TP model transforma­
tion and parallel distributed compensation (PDC) framework. 
The TP model transformation converts different models to a 
common representational form [4]. In [37] the approximation 
capabilities of TP model forms is analyzed, because the uni­
versal applicability of TPDC framework strongly relies on it. 
Consequently, in a class of control problems this property 
requires the usage of tradeoff techniques between the accu­
racy and the complexity of the TP form, which is easily 
feasible within the TPDC framework, unlike in analytic 
models. 

In [31] the Higher Order Singular-Value-
Decomposition (HOSVD) based canonical form of linear 
parameter varying models is presented and a model's most 
important invariant characteristics are developed. The 
numerical reconstructibility of the canonical form using a 
routinely executable tractable uniform method is analyzed. 
Convergency theorems for given numerical reconstruction 
constraint are presented. 

In [2] a singular value-based method for reducing a 
given fuzzy rule set was discussed. The method conducts 

SVD of the rule consequents and generates certain linear 
combinations of the original MFs to form new ones for the 
reduced set. The work characterizes MFs by the conditions of 
sum normalization (SN), nonnegativeness (NN), and normal­
ity (NO). The proposed method is applicable regardless of the 
adopted inference paradigms. It discusses three applications 
of fuzzy reduction: fuzzy rule base with singleton support, 
fuzzy rule base with nonsingleton support, and the T-S model. 

In [3] a transformation method is suggested to obtain a 
trade-off between the modelling complexity and accuracy of 
the T-S model. The suggested method is aimed at finding the 
minimal number of fuzzy rules for a given accuracy of a given 
T-S model. This trade-off is conceptually obtained by the 
discarding of those rules which have weak or no contribution 
to the output. 

In [27], the authors proposed to obtain the best features 
of Mamdani and T-S models by using an affine global model 
with function approximation capabilities which maintains 
local interpretation. The suggested model is composed of 
variant coefficients which are independently governed by a 
zeroth order fuzzy inference system. This model may be 
interpreted as a generalization of the T-S model in which 
dynamics coefficients have been decoupled. They have shown 
that Mamdani and T-S models can be combined so that local 
and global interpretations are preserved. 

Several results have been obtained regarding the iden­
tification of T-S models [6] and [20]. They are based upon two 
approaches, one is to linearize the original nonlinear system 
in various operating points when the model of the system is 
known, and the other is based on the input-output data col­
lected from the original nonlinear system when its model is 
unknown. The authors in [6] use a fuzzy clustering method to 
identify T-S fuzzy models, including identification of the 
number of fuzzy rules and parameters of fuzzy MFs, and 
identification of parameters of local linear models by using a 
least squares method [30] to minimize the error between T-S 
models and the corresponding original nonlinear systems. 

The authors in [20] suggest a method to improve the 
local and global approximation of the T-S model. However, 
this complicates the approximation to obtain both targets. It 
has been shown that constrained and regularized identifica­
tion methods may improve interpretability of constituent 
local models as local linearizations, and locally weighted 
least squares method may explicitly address the trade-off 
between the local and global accuracy of T-S fuzzy models. 

In [30] a new method of interval fuzzy model identifi­
cation is developed. It combines a fuzzy identification meth­
odology with some ideas from linear programming theory. 
The idea is extended to modelling the optimal lower and 
upper bound functions that define the band which contains all 
the measurement values. The method can be efficiently used 
in the case of the approximation of the nonlinear functions 
family. In [21], a fuzzy modelling method using the relevance 



vector learning mechanism (RVM) based on a kernel-based 
Bayesian estimation is introduced. The main aim is to find the 
best structure of the T-S fuzzy model for modelling nonlinear 
dynamic systems with measurement error. The number of 
rules and the parameter values of MFs can be found as opti­
mizing the marginal likelihood of the RVM in the proposed 
fuzzy inference system. 

In [22] the authors show that rule interpolation helps in 
reducing the identification complexity as it allows rule bases 
with gaps. It is suggested that only the minimal necessary 
number of rules remain which contain the essential informa­
tion, and all other rules are replaced by the interpolation 
algorithm. This algorithm has drawbacks such as subnormal 
conclusion for certain configurations of the involved fuzzy 
sets and does not always lead to interpretable fuzzy MFs. In 
[36], a new technique for fuzzy rule interpolation was pre­
sented to combine the advantageous computational behavior 
of [22] and at the same time reduces the subnormality. 

In [1, 18, 19] new and efficient approaches are pre­
sented to improve the local and global estimation of T-S 
model. The aim is obtaining high function approximation 
accuracy and fast convergence. The main problem is that the 
T-S identification method can not be applied when the MFs 
are overlapped by pairs. The first approach uses the minimum 
norm method to search for an exact optimum solution at the 
expense of increasing complexity and computational cost. 
The second one is a simple and less computational method, 
based on weighting of parameters. 

In spite of its advantageous properties in various 
approximation aspects and in complexity reduction, it was 
shown that a-cut distance based fuzzy rule base interpolation 
has some essential deficiencies, for instance, it does not 
always result in immediately interpretable fuzzy MFs. In [5], 
an approach is presented to get rid of these disadvantages. It 
is based on the interpolation of relations instead of interpo­
lating a-cut distances, and which offers a way to derive a 
family of interpolation methods capable of eliminating some 
typical deficiencies of fuzzy rule interpolation techniques. 

In [41] a generalized version of a previous Cartesian 
approach [40] for interpolating fuzzy rules of MFs with finite 
number of characteristic points is presented. Instead of 
representing MFs as points in Cartesian spaces, they now 
become elements in the space of a square, integrable function. 
Interpolation is thus made between the antecedent and 
consequent function spaces. This representation allows an 
extended class of MFs satisfying two monotonicity condi­
tions to be accommodated in the interpolation process. 

In [23], a study has outlined a new min-max approach to 
the fuzzy clustering, estimation, and identification with uncer­
tain data. The proposed approach minimizes the worst-case 
effect of data uncertainties and modelling errors on estimation 
performance without making any statistical assumption and 
requiring a priori knowledge of uncertainties. 

Several methods are used to deal with the problem 
of optimizing MFs, which are either derivative-based or 
derivative-free methods. The derivative-free approaches are 
desirable because they are more robust than derivative-based 
methods with respect to finding global minimum and with 
respect to a wide range of objective function and MFs types. 
The drawback is that they converge more slowly than 
derivative-based techniques [34]. On the other hand, 
derivative-based methods tend to converge to local mini-
mums. In addition, they are limited to specific objective func­
tions and types of inference and MFs. The most common 
approaches are: gradient descent [28], least squares [30], 
back propagation and Kalman filtering [29], 

The rest of the paper is organized as follows. An itro-
duction to FLC-VSC is presented in Section II and a new 
method for chattering reduction is developed. In Section III, 
the design of a FLC-VSC controller is developed. Section 
IV deals with the estimation of the T-S fuzzy model. Sec­
tions V and VI entail an example of an inverted pendulum 
to demonstrate the potential, simplicity; and generality of 
the estimation method and the robustness of the chattering 
reduction algorithm. The conclusions of the effectiveness 
and validity of the proposed approach are explained in 
Section VII. 

II. VARIABLE STRUCTURE CONTROL 

The VSC is a combination of subsystems together with 
a suitable switching logic. In VSC, the design algorithm 
includes choosing the desired sliding functions which are 
formed by a choice of their parameters, as will be explained. 
Then a discontinuous control is found which assures the 
existence of the sliding modes at each point of the sliding 
plane s(x) = 0. In the final stage, the control should drive the 
system states to the sliding plane. The robustness of VSC 
stems from the property that the behavior of the controlled 
system in the sliding mode only depends on the parameters of 
the sliding mode, not on the system parameters or any distur­
bances or fluctuations. 

Let us design a VSC for n'h order controllable system 
represented by: 

x(t) = f(x(t),u(t)) ( 1 ) 

where, 

x = [y(t) y(t) ••• y(n-l)(t)]Teft" 

/ : 9T-+1 ^ 9T1, u&R 

Supposing that the system can be modeled as follows: 

y{n\t) = f{y(t),y(t),-,y{n-l)(t),u{t)) (2) 



The structure of the VSC is determined by the sign of the 
vector valued function s(x), which is defined to be the 
switching function which is assumed to be a linear one, i.e., 

s(x) = Cx,Ce3ih 
(3) 

where 

C-- [Ci C2 = 1 

where C(x) is an arbitrary (1 x n) matrix chosen such that 
s(x) = 0 defines a stable dynamic system of reduced order. 

s(x) = Cx = cly + c2y- - cn-xy (n-l) . 
•y ,(«-!) - 0 

Thus the characteristic polynomial: 

ps (A) = A"-1 + c„_i A + • • • + c2 A + cx 

will have all its roots in the negative left-side of the complex 
plane. The next step in the design of the VSC includes 
choosing the structure of the control to satisfy a reaching 
condition. There exist various structures of control algorithms 
which guarantee the existence of sliding modes. Sometimes, 
it is convenient to preassign the structure of the VSC and then 
determine the values of the controller gain. The design of 
VSC can proceed with the structure of the control u(x) as free 
or preassigned. In the free structure approach, the control 
structure can be solved by constraining the switching function 
to any one of various reaching conditions mentioned in [39]: 

If s(x) < 0 then s(x) > 0 

If s(x) > 0 then s(x) < 0 (4) 

In this article, we have proposed the following switching 
condition: 

If s(x) > 0 then s(x) = K 

If s(x) < 0 then s(x) = ~K 

If we suppose that the system can be modeled as follows: 

(5) 
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u = Ao+ Ax(t) + Bu{t) 

s(x) = Cx(t) = C(AQ + Ax(t) + Bu(t)) 

a0 +c Ax (t) + CBu(t) = a 

(6) 

CBu(t) = a-a0- CAx(t) 

it can be observed that: 

CB = [d c2 ... c„_i 1] 

CB will be always invertibe if b„ # 0 which is a necessary 
condition for the system to be controllable. 

u(t) = [CB\\a -ao- CAx(t)) = —(a-aa- CAx(t)) 

and the VSC will be: 

If s(x) < 0 then u(t) = — (K - a0 - CAx(t)) 
bn 

If s(x) > 0 then u(t) = —(-K -a0- CAx(t)) 
b„ 

(7) 

Example. Let us analyze the following unstable linear 
system: 

Y(s)--

x(t)--

1 
s2-2s + 5 

U(s) 

0 1 
-5 2 

x(t)- u(t) 

s(x) = [\ \}x(t) 

ft(A) = A + l 

K = \Q 

The control action will be: 

[1 1] [1 1] 
0 1 

- 5 2 
x(t)-a 

(8) 
= - [ - 5 3]x(0 + a = 5xi(t) - 3x2(0 + a 

Thus the control action will be, 

If i'(x) < 0 then M(0 = 5 ^ ( 0 - 3 x 2 ( 0 + 10 

If i'(x) > 0 then M(0 = 5 ^ ( 0 - 3 x 2 ( 0 - 1 0 (9) 
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Fig. 1. Chattering effect. 

Fig. 1 shows the chattering effect assuming that the 
simulation is carried out with a sampling time of 0.01 
seconds. 

2.1 Chattering reduction 

As mentioned before, the main drawback of sliding 
mode control is the chattering problem resulting from the 
switching from one value to another. In this paper, we present 
the idea of the equivalent control which yields the ideal 
sliding mode, defined as the one found by recognizing that 
s(x) = 0 is a necessary and sufficient condition for the state 
trajectory to stay on the switching surface s(x) = 0. 

In order to overcome the chattering problem, a bound­
ary layer is introduced around the switching surface.The 
resultant controller is a combination of the discontinuous one 
used to create the sliding mode outside the layer and applying 
the equivalent control method inside this layer. Therefore, it is 
suggested in this work to switch from the sliding model 
control explained previovsly to the equivalent control accord­
ing to the position of the state trajectory. The necessary and 
sufficient condition .y(x) = 0 required for the equivalent 
control to exist can be modelled as follows: 

If s(x) = 0 then s(x) = 0 

Thus, the VSC will be: 

If s(x) < 0 then s(x) > 0 

If s(x) = 0 then s(x) = 0 

If s(x) > 0 then s(x) < 0 

(10) 

(11) 

The problem is that the second condition will almost never be 
fulfilled. The solution proposed here for this problem is 

-© 0 <D S(x) 

Fig. 2. Fuzzy sets of the switching surface. 

Fig. 3. Chattering elimination applying the proposed fuzzy 
algorithm. 

converting the VSC in fuzzy control by defining three fuzzy 
sets for s(x) as shown in Fig. 2. The resultant fuzzy VSC is: 

If s(x) is M then s(x) > 0 

If^(x)isM°theni(x) = 0 

If s(x) is M+ then s(x) < 0 
(12) 

If the system is an affine one then the control action will be: 

If s(x) is M~ then u(t) = —(K-a0- CAx(t)) 
b„ 

If s(x) is M° then u(t) = —(-a0 - CAx(t)) 
b„ 

If s(x) is M+ then u(t) = —(-K -a0- CAx(t)) 
b„ 

(13) 

Now, the proposed fuzzy control is applied for the same 
system in the previous example with the same sampling time 
and the fuzzy sets shown in Fig. 2 with <I> = 1. The effect of 
the chattering can be clearly seen (see Fig. 1). The mean 
square distance of the system state trajectory to the switching 
surface for the final five seconds is 0.0089, while the same 
distance is noticeably reduced by applying the proposed anti 
chattering fuzzy controller to 9.3769e-012 (see Fig. 3 which 
obviously shows the effectiveness of suggested controller. In 
this paper, fuzzy inference is applied to switch from the 



discontinuous controller to the equivalent one by regarding 
the distance from the switching hyperplane as a variable of 
the premise of the control laws. 

III. PROPOSED CONTROLLER (FLC-VSC) 

There exist various techniques to design the FLC-VSC. 
In most of the works carried out in this field [17], [26], the 
fuzzy system is described as follows: 

• A(x)x + B(x)u (14) 

This means that the non linear fuzzy system is linearized with 
respect to the origin in each IF-THEN rule, which means that 
the consequent part of each rule is a linear function with zero 
independent term. This will in turn reduce the accuracy of 
approximating non linear systems. Moreover, in linear control 
theory, the affrne term does not affect the dynamics of the 
system, rather the input to it. In the case of fuzzy control, the 
blending of the affrne term of each rule will no longer be a 
constant but a function of the variables of the system and thus 
affects the dynamics of the resultant system. In this study, a 
design of FLC-VSC is presented based on the T-S fuzzy 
model [32], taking into account the effect of the affrne term in 
both the fuzzy system and controller. 

3.1 Fuzzy logic controller based variable structure 
controller (FLC-VSC) 

Let us consider the problem of designing a fuzzy con­
troller based on variable structure with VSC theory. It should 
be mentioned that the resultant feedback controlled system is 
an approximation of the nonlinear original system. 

Let the (ii . . . in)"1 rule of the T-S model be represented 
as: 

a(4 . . ,„) : 

^tt...t.) : 

0 
, (4 - fc) 
•*0 

0 0 

0 1 

a\ 
(4...i„) 

0 
an-\ 

0 

0 

1 
a0i...!„) 

(16) 

(!!...!„) -Bin-r, 

0 

The same MFs for the fuzzy system are used for the 
FLC-VSC controller. The fuzzy controller action for each 
systems rule can be written as follows: 

R(I...'„-). jf Xi js M'I anci %2 js M'2 anci _ _ _ 

and xn is M'n" and s(x) is M~ then 

u(t) = —-^(K-4^)-CA^h(t)) 

R(il...i„,0) . jy ^ j s Mk m c i ^ j s Mh m c i _ 

and xn is M'n" and s(x) is M° then 

"W = 7(^)(-a»1''4)-G4("!")xW) 

£(!!...!„) . jy ^ j s Mk m c i ^ Mh ancl__ _ 

and x„ is M'„" then x •• :a(!1...,). •A(il -B(il (15) 

where MJ1 (ii = 1, 2,. . . , ri) are fuzzy sets for Xb MJ? (12 = 1, 
2, . . . , r2) are fuzzy sets for X2, MJ (in = 1, 2, . . . , rn) are 
fuzzy sets for Xn. Therefore the complete fuzzy system has 
ri x r2 x . . . rn rules. The MFs of the fuzzy system are 
overlapped by pairs. 

The state vector is: 

X = [Xi X2 . . . X„J 

of n dimension, and u is a scalar input. The vectors and 
matrices in these rules are described in a canonical 
controllable form: 

R(h...z„,+) . jy X i j s j^ii m c i ^ j s Mn m c i _ 

and xn is M'n" and s(x) is M+ then 

u(t) = ——(-K- J'l h)_/^A('l 'n) C4(!1-!")x(0) 

IV. ESTIMATION OF FUZZY T-S MODEL'S 
PARAMETERS 

The T-S model [32] is based on estimating the nonlinear 
system parameters minimizing a quadratic performance 
index. The method is based on the identification of functions 
of the following form: 



/ : 9T -> 3i 
y = f(vhv2,...,v„) (17) 

Each IF-THEN rule for an nth order system can be written as 
follows: 

£0i-'») • if Vi jsM'I anci___Vn isM'n tfien 

J'h--h) , „(!!...!„), „(! i -!») , . 

where the fuzzy estimation of the output is: 

(18) 

y- ^l-I^^-^W^o4-^ 
• # • • % • • ^ • 4 ) v „ 

(19) 

where, 

<!!•..!„) . A4"* 
w (4-t . ) (V t ) 

x^-x:^-^) (20) 

and 

,,(4-i» 4)(v) = n ^ ( v ; ) 

being ^ (v,-) the membership function that corresponds to 
the fuzzy set My. 

Let {v;*, V2k, • • •, v„k,yt} be a set of input/output system 
samples. The parameters of the fuzzy system can be calcu­
lated as a result of minimizing a quadratic performance 
index: 

•/=!>*-A)2=r-^ii: 
(21) 

where 

Y = [yi y2 ••• y, 

p 
n( l - l ) 

X-

•pV'p^pV' 
P^.-.P^ 
~^$-\n...$-\nl ... 
A(n..,„)___A(n..,„)Vni 

Ol...lO(l...l) fit1-1)!, 
/-'m /-'m l̂m * * * /-'m vnm 
Q(n...rn) o(n---rn)^, 

m ynm 

(22) 

If X is a matrix of full rank, the solution is obtained as 
follows: 

J = \Y-XPf={Y- XFf (Y-XP) 

VJ = XT(Y- XP) = XTY - XTXP = 0 

p = (xTxylxTY 
(23) 

Fig. 4. Membership functions of the fuzzy system. 

The method proposed in [32] poses serious problems as it can 
not be applied in the most common case where the MFs are 

b — v 
those shown in Fig. 4. The MFs Hn(vt)-

/ \ v i ~ a i 

bi - Oi 

should verify: 

bt - Ot 
and 

are defined in an interval [a„ bt] which 

lli2(ai) = 0 Ha(bi) = \ 

rti(v!) + rt2(v!) = l 

For this case, which is widely used, it can be easily 
demonstrated that the matrix X is not of full rank and 
therefore XT X is not invertible, which makes the mentioned 
method of T-S invalid. A detailed proof can be found in 
[1, 18, 19]. 

In the case when the matrix X is not of full rank, an 
effective approach with few computational effort, based on 
the well-known parameters' weighting method, is presented in 
[1, 19]. Several nonlinear examples are included to show the 
validity and accuracy of the proposed method. The main 
target is to improve the choice of the performance index and 
minimize it. It is characterized by extending the objective 
function by including a weighting /of the norm of P vector. 

^=X(^-^)2+72X^HI7-xpll2+^2llpll (24) 

This can be rewritten as follows: 

J = \ 

= 

Y- XP\\2 + 

-
~x~ 

r 

p 

\\pf 
2 

(25) 

Y,-X„P 

Now the extended matrix Xa is of full rank, and the vector P 
can be computed as: 

P = (XT
aXay

lXT
aYa (26) 

4.1 Parameter tuning using the parameters 
weighting method 

The parameter weighting method proposed in [1] 
and [19] can also be used for parameters tuning of the T-S 



model from local parameters obtained through the identifi­
cation of a system in an operating region or from any phy­
sical input/output data. The tuning is required for control 
objectives. What is firstly required is to obtain rules of phy­
sical significance. Secondly, the overlapping rules should be 
minimized. We suppose that in this case we have a first 
estimation 

P0=lM£-P°n? (27) 

of the T-S model parameters. In order to obtain such an 
estimation, the classical least square method can be used 
around the equilibrium point. The objective is to obtain a 
global approximation of the system: 

y = Pa+ P\Vi + p\v2 • • p°v„ (28) 

Let us analyze a set of input/output system samples {vit, V2t, 
• • •, v„k,yt}- The parameters of the global approximation can 
be calculated by minimizing the following quadratic 
performance index: 

J = %{yk-hf = \Y-xgPo\ (29) 

where 

X, 

Y = [y\ yi yi 

P0 = [P°0 P? P\ 

1 Vn V2i 

1 V12 V2 2 

ym 

Pn 

V„l 

V„2 

.1 V l m V2„ 

(30) 

In this case, if we select a sufficient number of points 
distributed in the region where it is required to obtain the 
approximation, then the matrix Xg will be of a full rank and 
therefore, the solution becomes unique, and can be calculated 
as follows: 

Po—(XgXg) XgY (31) 

This first approximation can be utilized as reference 
parameters for all the subsystems. Then, the parameters' 
vector of the fuzzy model can be obtained minimizing: 

^ = IU-A)2+72I...II(^-#-!"))2 

= \\Y-Xp\\2+Y2\\pQ-p\\2 (32) 

Y 

ypo. 

X' 

yi. 
\\Y„ — X„ 

where 

p0=[P0P0...P0]
T 

r\-r2---rn 

In this case, the factor /represents the degree of confidence of 
the parameters initially estimated. In a similar way to the 
previous case, different weight factors of yf- •'"' can be used to 
each one of the parameters pf"!") depending on the reliability 
of the initial parameter p° in the specific rule. 

m r \ rn n 

/ = IU-Jt)
2+I-IIrf-!")2(^-#-!"))2 

k=\ 4=1 i„=l j=0 

= \\Y-Xp\\2+\\T(pQ-p)\\2 (33) 
2 

= \\Ya-Xap( 
Y 

.r>o. 

where T is a diagonal matrix with the weight factor yf -!"). It 
is not necessary to apply this process for all the parameters. If 
the values of some of them are known, they can be fixed 
beforehand, or we can assign them a weighting factor yf-!") 

comparatively high. 
By applying the proposed weighting of parameters 

approach for various values of y, it is aimed to examine the 
trade-off between the accuracy of the identification of the 
model and the condition number. 

4.2 Application of the proposed estimation method for 
T-S dynamic systems 

The main aim is applying the parameters' weighting 
method mentioned above for the identification of system 
parameters given by (15) and (16). This is equivalent to iden­
tifying a system described by (17) which is transformed to the 
following equation: 

X„ — J (Xi, X2, . . . , Xm U) (34) 

The objective is to find an appropriate T-S model which 
allows us to obtain the control action u as a function of the 
state variable x. Therefore, we aim at getting the best T-S 
model with the premise partly depending on state variable x 
and the consequent part that depends on both state variable x 
and control action u. Thus, as can be seen from (17) thatj is 
substituted in (34) by x„ and the v vector is substituted by the 
state vector x and the input u. This adaptation between (17) 
and (34) comes from the fact that the system variables do not 
depend on u. So, the most suitable form to obtain u is the one 
given in (35) where it can be observed that the control action 
appears only in the consequent part and not in premise part as 
desired, cio1 '"'"\ A{'l'"'n) and B{ii •!") are determined by T-S model 
given by IF-THEN rules as follows: 



Centre of gravity 

Fig. 5. Inverted pendulum system. 

-it/4 71/4 

Fig. 6. Membership functions for the angle x of the inverted 
pendulum. 

Fig. 7. Membership functions for the angular velocity of the 
inverted pendulum. 

and x„ is M'n then 

:^!1-!")+a1
(!1-!")x1-

(35) 
, ( 4 - .in),. 

>vn i i_/n 

and the new vector of parameters to be determined becomes: 

'aV] 
a\ 

,(i-i) 

(r\...rn) (r\...rn) 

, (1-1) 

„ ( ' ! • • • ' » ) 

e1'.. 
t (n - - - ' i i ) 

the angular position (in radians) 
equilibrium position (vertical axis) 
and 6 is the angular velocity, 

m 

Where 9 denotes 
deviated from the 
of the pendulum 

g(gravity acceleration) = 9 .8^^- , M(mass) of the 
sec 

cart= 1 kg, m(mass) of the pole = 0.1 kg, 1 is the distance 
from the center of the mass (m) of the pole to the cart = 0.5 m. 
Assuming that Xi = 9, x2 = 6 and u is an external force 
applied to the cart in the horizontal direction, then (36) can be 
rewritten in state space form as follows: 

V. ILLUSTRATIVE EXAMPLE 

In this section, the proposed parameters' weighting 
method mentioned above is used for the estimation of an 
inverted pendulum. Then, the suggested FLC-VSC is applied 
to control it. 

Xi 

x2 

= 0 
= x2 

= 0 

gsin(xi)- -cos{xi)\ 
u + mlx\sin(xx)\ 

M + m J 
4 mcos2 (xi)^| 
3 M + m J 

5.1 Estimation of an inverted pendulum using the 
proposed parameter weighting method 

Consider the problem of estimating an inverted pendu­
lum (see Fig. 5) using the above mentioned estimation 
methods. The inverted pendulum can be represented as 
follows: 

gsint 
u + mld sind 

M + m 
., 4 mcos 

3 M + m 

(36) 

Firstly, the model of the inverted pendulum is estimated in 
three operation points for both the angle and its derivative. 
The universe of discourse of the angle and the angular 

velocity -n 

T' 
rad rad. and [-5,5] — , respectively. Both MFs 
sec 

for the angle x and its derivative x are shown in Figs 6 and 7 
respectively. If we apply the T-S method directly to this 
example, then the condition number of the matrix X is 
3.4148e +015, which shows clearly a non reliable result. 
Using the parameter weighting method with weighting factor 
7=0.01, the the inverted pendulum fuzzy model can be 
represented as follows: 



(37) 

Su : If [xi is Ml) and (x2 is M\) then 

x2=-8.1994 + 3.4151x1-0.2006x2-1.0443M 

Su :If(xi is Ml) and (x2 is M\) then 

x2 = -8.3766 + 3.0426X! + 0.0000x2 - 1 .0443M 

Su : If (xi is Ml) and (x2 is Ml) then 

x2=-8.1994 + 3.4151x1+0.2006x2 -1 .0443M 

521 :If(xi is Mi ) and (x2 is M\) then 

x2=-0.0251 + 5.5416x1-0.0085x2-1.5332M 

522 :If(xi is Ml) and (x2 is Ml) then 

x2 = 0.0225 + 6.1796x1-0.0000x2-1.5332M 

S2i :If(xi is Ml) and (x2 is M\) then 

x2=-0.0251 + 5.5416x1 + 0.0085x2-1.5332M 

S31: If (xi is Ml) and (x2 is M\) then 

x2=8.1236 + 3.8634x!+0.2363x2-1.0903M 

Si2 :If(xi is Ml) and (x2 is Ml) then 

x2=8.0313 + 3.6645x1-0.0000x2-1.0903M 

S33: If (xi is Ml) and (x2 is Ml) then 

x2=8.1236 + 3.8634x! - 0.2363x2-1.0903 

The resultant mean square error from this approximation is 
0.0013. In this case, the condition number of the extended 
matrix Xa becomes 1.4569e +004, thus improving the 
reliability of results. By using the identification with the 
classical minimum square method in an interval close to the 
equlibrium point 

Xi e -n n x2e[-2.5,2.5] 

The linear model of the system in this interval is: 

x2= 0.0092 +15.2665X!-0.0000x2 -1 .4187M 

This approxiamtion gives us an idea of the quantative rela­
tion among various variables. Comparing these parameters 
with those obtanied in the previous fuzzy model, it is 
evident that its values are, in general, far enough from its 
physical ones. Moreover, if we compare the parameters of 
various adjacent subsystems, it can be clearlied verify that 
they are quite different. The tuning of parameters method is 
applied; taking as a reference the parameters obtained 
through minimum square method with a weighting factor 
Y= 0.01 *np, where np is the number of samples used in the 
identification. As it can be seen when a22 ^ 0 it does not 
fulfil an important characteristic of the existence of an insta­
ble equilibrium point, which is also the objective of control 
xi = x2 = M = 0. In order that the point xi = x2 = u = 0 
becomes an equlibrium one in the fuzzy model, a22 should 
be zero. To achieve this target, we can either fix the value of 
this parameter or assign it a very large weighting factor as 

explained in Section 4.1. In this case, a weighting factor of 
lOO/has been assigned to this parameter and finally the 
fuzzy model becomes: 

Su : If (xi is Ml) and (x2 is M\) then 

x2= 0.1642 + 15.0164x1-0.3271x2 -1 .2458M 

S12 :If(xi is Ml) and (x2 is Ml) then 

x2=0.4848 + 14.6366x1+0.0002x2-1.1546M 

Sn :If(xi is Ml) and (x2 is Ml) then 

i 2 = 0.1642+ 15.0162*!+0.3272x2-1.2458M 

S21: If (xi is Ml) and (x2 is M\) then 

x2=-0.0073 + 15.4272xi+0.0172x2-1.4291M 

522 :If(xi is Ml) and (x2 is Ml) then 

x2 = 15.5778*! -0.0003x2 -1 .4536M 

523 :If(xi is Ml) and (x2 is Ml) then 

x2= -0.0072 + 15.4287xi-0.0170x2 -1 .4291M 

S31: If (xi is Ml) and (x2 is M\) then 

i2=-0.0001 + 15.1478xi+0.3000x2-1.3232M 

532 :If(xi is Ml) and (x2 is Ml) then 

x2 = -0.2646 +14.9965xi + 0.0080x2 - 1 .2568M 

533 :If(xi is Ml) and (x2 is Ml) then 

i2=-0.0942 + 15.1516xi-0.2821x2-1.3232M 

(38) 

The mean square error is 0.0333 which represents the 
equilbrium point of the physical system, i.e., a22 = 0. It can be 
clearly noticed in this model that the distance between 
adjacent subsystems is relatively small. It can also be noticed 
that the distance between the parameters of various adjacent 
control rules is relatively small. This in turn, strengths the 
hypothesis of designing a local control algorithm for each 
subsystem. 

As observed, the results obtained through the parameter 
weighting method are always better than with the original T-S 
method. In fact, the proposed method correspond to the best 
possible result using TS method when the interval covering 
tends to totality, but this limit is not achievable since the 
problem would no longer be solvable. 

5.2 Control of an inverted pendulum using the 
proposed FLC-VSC 

The control of the inverted pendulum is a widely used 
performance measure of a controller, since this system is 
unstable and highly nonlinear. The objective is to maintain the 
inverted pendulum upright with 6 despite small disturbances 
due to wind or system noises. The aim is to move the pendu­
lum to its instable equilibrium position, i.e., X\ = x2 = u = 0. 

In this section, the proposed FLC-VSC is applied 
to stabilize and eliminate the chattering in the inverted 
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Fig. 8. Transient response of the inverted pendulum subjected to 
an initial condition. 

pendulum estimated by the parameter weighting method. 
Supposing that the desired switching function is: 

s(x) = [l l]x(0 (39) 

The boundary layer is 0.5 and K=10. The proposed FTC-VSC 
becomes: 

R(u> : If Xi is M\ and x2 is M\ and s is M~ 

then u = -7.4609 +11.43 6 7 ^ + 0.5285x2 

R(no): If Xi is M{ and x2 is M\ and s is M° 

then u = 0.0966 +11.4367^ + 0.5285x2 

R(u+>: If Xi is M\ and x2 is M\ and s is M+ 

tf*enw = 7.6541+ 11.4367*1+0.5285*2 

'• (40) 

R(ii ) :If Xi is Mi and x2 is M\ and s is M 

thenu = -7.5061 + 11.2244x1 +0.5155x2 

R(iw>: If Xi is Mi and x2 is M\ and s is M° 

thenu = -0.0851 + 11.2244x1 +0.5155x2 

R(ii+>: If Xi is Mi and x2 is M\ and s is M+ 

;/ienw = 7.3359+ 11.2244xi+0.5155x2 

Fig. 8 shows the transient response of the inverted pendulum 
controlled by the proposed FTC-VSC controller subjected to 
an initial condition of 30°. The results obtained show that the 
system is stabilized by applying the proposed FTC-VSC. 
Fig. 9 shows the robustness of the proposed controller 
subjected to disturbances of 5°, -3° and 9° respectively. 
Fig. 10 shows several trajectories of the system for several 
initial conditions. 

2 3 4 5 6 
Time (seconds) 

Fig. 9. Transient response of the inverted pendulum subjected to 
disturbances. 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Angle (rad.) 

Fig. 10. Trajectories of the states of the system for several initial 
conditions. 

VI . C O N C L U S I O N 

A design of a FTC-VSC with new functions for chat­
tering reduction without sacrifycing invariant properties 
are proposed. The main feature of the proposed method is that 
the switching function is added as an additional fuzzy vari­
able and will be introduced in the premise part of the fuzzy 
rules together with the state variables. 

The robustness of any control design depends mainly 
on the modelling accuracy of the controlled system. The main 
problem encountered in modelling #a T-S model is that it can 
not be applied when the MFs are overlapped by pairs. 



An estimation approach has been developed to 
improve the local and global approximation and modelling 
capability of T-S identification methodology. The parameter 
weighting method has been proposed to reduce the error 
between the original system and the identified one. We show 
that parameter tuning of the weighting method is an effec­
tive method in the optimization of T-S fuzzy model. This 
variety of proposals for approximating T-S model can be 
seen as an advantage so that its parameters can be approxi­
mated to a linear model in an equilibrium point, which gives 
these parameters a physical sense and allows that their 
values become close to other parameters in adjacent rules. 
Thus, the similarity and closeness between the parameters 
in adjacent rules have the great advantage of ignoring the 
modeling error. 

It should be noted that the systems modeled by apply­
ing the T-S model are smooth without large variations 
between adjacent subsystems. Moreover, the identification 
with the methodology of parameters tuning penalizes the 
distance to the initial parameters of the system. We can then 
conclude that the modeling error is very small with respect 
to the control effect, therefore it can be considered negligi­
ble and thus we can design a controller for each subsystem. 
This result can be generalized in a similar manner to any 
system of any dimension. It can also be noted that the 
distance between the parameters of various adjacent con­
trol rules is relatively small. This in turn, strengths the 
hypothesis of designing a local control algorithm for each 
subsystem. 

An inverted pendulum mounted on a cart is chosen 
to evaluate the robustness, effectiveness and remarkable 
performance of proposed approach and the high accuracy 
obtained in approximating nonlinear systems in comparison 
with the original T-S model. Simulation results indicate the 
potential, simplicity and generality of the algorithm. In this 
paper, we prove that these algorithms converge very fast, 
thereby making them very practical to use. The application 
of the proposed FTC-VSC shows that both alleviation of 
chattering and robust performance are achieved. 
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