
Towards the Automatic Generation of Card Games through
Grammar-Guided Genetic Programming

Jose M. Font
Universidad Politecnica de

Madrid, Spain
jm.font@upm.es

Tobias Mahlmann
IT University of Copenhagen,

Denmark
tmah@itu.dk

Daniel Manrique
Universidad Politecnica de

Madrid, Spain
dmanrique@fi.upm.es

Julian Togelius
IT University of Copenhagen,

Denmark
julian@togelius.com

ABSTRACT
We demonstrate generating complete and playable card games
using evolutionary algorithms. Card games are represented
in a previously devised card game description language, a
context-free grammar. The syntax of this language allows
us to use grammar-guided genetic programming. Candidate
card games are evaluated through a cascading evaluation
function, a multi-step process where games with undesired
properties are progressively weeded out. Three representa-
tive examples of generated games are analysed. We observed
that these games are reasonably balanced and have skill ele-
ments, they are not yet entertaining for human players. The
particular shortcomings of the examples are discussed in re-
gard to the generative process to be able to generate quality
games.

1. INTRODUCTION
Can a computer program design a complete game? The two
main game genres, where automatic game design has been
attempted, are board games and simple 2D arcade games.
In board games, the early work of Hom and Marks [9] was
followed by Browne’s Ludi system which managed to evolve
a board game of sufficient novelty and quality to be sold
commercially [1]. A system generating simple arcade games
was proposed by Togelius and Schmidhuber [15] which was
followed up by work by Smith and Mateas [13] and Cook and
Colton [3]. In a related genre, Mahlmann et al. have defined
a GDL for turn-based strategy games [11]. In all of these ex-
amples, the space of games was searched using evolutionary
algorithms, except Smith and Mates who use answer set pro-
gramming and constraint solving. An overview of research
on modelling and generating game rules can be found in a
recent tutorial by Nelson [12].

A central question when generating games is how to repre-

sent a potential solution. There are several important con-
siderations when devising a rule representation system, or a
Game Description Language (GDL), for a particular game
genre: the expressivity of the language (all games that you
wish to be able to generate should indeed be expressible in
the language), the compactness of the language, its human-
readability, and how easily it can be searched by a search
algorithm such as an evolutionary algorithm. In this con-
text, rules can be seen as a type of content.

A second question when generating games is how to au-
tomatically evaluate generated games; this is particularly
important when using a search-based approach such as ar-
tificial evolution, but also games generated e.g. by a solver-
based approach such as answer set programming need to be
evaluated at some point. Unlike many other types of con-
tent, it seems very hard to do any meaningful evaluation at
all without actually playing the game. This leaves us with
the question of how to play a completely unseen game. This
question has been investigated within the General Game
Playing competition, where algorithms are tasked with play-
ing a number of unseen human-designed games (specified in
a very detailed and verbose GDL) [10]. While various tech-
niques have been attempted, the only technique that had no-
table success is Monte-Carlo Tree Search (MCTS). MCTS
is a recently developed game-playing algorithm with very
broad applicability [2].

This paper builds on a recent paper, which defined the core
of a GDL for card games, and showed that it could be used
to describe and generate working versions of the well-known
card games blackjack, UNO and a somewhat simplified ver-
sion of Texas hold ’em poker [5]. The language is defined as
a context-free grammar, where each derivation is a syntacti-
cally valid game description which can be used to generate
a game which is “playable” (it does not break the game en-
gine). We use the previously defined card GDL to generate
complete card games using an evolutionary algorithm and
a set of specially designed fitness functions partially based
on simulated playouts using both random play and MCTS
which we combine through cascading elitism. We are not
yet attempting directly to create entertaining games. We
have instead set ourselves a couple of more modest targets
which we regard as almost-necessary but not sufficient con-
ditions for entertaining games, namely games that: (1) Can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148668755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be won or lost within a reasonable time; (2) usually present
a choice of legitimate moves to each player each turn; (3)
do not usually end in a draw; (4) do not unfairly advantage
any particular player (position around the table); and (4)
reward skilled play over random play.

2. THE CARD GAME DESCRIPTION LAN-
GUAGE

We developed a context-free grammar called Gcardgame to
generate a description language for card games [5]. This
means that every word in the language codifies a set of fea-
tures and specifications that define a card game. Besides
their own rules, all card games contained in this language
share a fixed set of basic axioms, that represent the main
components of a game. These axioms define the the number
of players in the game (P), the locations where card can be
placed during the gameplay (L) and the locations where to-
kens can be places (K). Tokens are virtual representations
of coins or chips that can be bet during the gameplay. Possi-
ble card locations are players’ hands (H), a standard French
deck of cards (D) and face-up table locations (T).

Every game in the language defines its own rules that, ad-
hering these axioms, compose a playable card game. A card
game is defined as a set of stages, a ranking and a set of
winning conditions. Every stage comprises a set of con-
ditional rules in the form “if antecedent then consequent”.
Antecedents are conditions that, when fulfilled, trigger ac-
tions specified in consequents which modify the game state.
The ranking specifies the values of every card and card com-
bination in the game. Winning conditions determine which
player wins the game.

This grammar was intentionally designed with a set of high-
level instructions, in order to allow the generation of a great
variety of original games as well as known card games. The
grammar Gcardgame is capable of modelling Texas hold ’em
poker, blackjack and UNO; it has been verified before, that
many random expansions of the grammar are playable [5].

3. THE EVOLUTIONARY SYSTEM
Grammar-Guided Genetic Programming (GGGP) is an evo-
lutionary technique that uses a context-free grammar to gen-
erate the language whose words are the whole set of individ-
uals that codify a solution to a given problem [6, 4, 8, 7].
In this paper, GGGP on the grammar Gcardgame is used to
generate card games. Figure 1 provides an overview over the
evolutionary system. First, a population of I individuals is
created through a mixed initialization process. This means
that the first three individuals in the population are the
manually coded versions of Texas hold ’em poker, blackjack
and UNO. The remaining individuals (I − 3) are randomly
generated following the restrictions defined by Gcardgame.
This mixed initialization allows the evolutionary process to
generate variations of both handcoded games and entirely
novel ones. The population is evaluated using a cascading
elitist fitness function inspired by [14]. This function per-
forms four sequential evaluation steps for every individual,
removing it from the population if it codifies a drawish, over-
fitted or non-playable game, and evaluating it otherwise.
The algorithm implements a roullette wheel based opera-
tor, and both Whigham’s crossover and mutation operators.

Mixed
initialization

Cascade fitness evaluationCascade fitness evaluation

PlayablePlayable
?

DrawishDrawish
?

Selection,
Crossover and
Mutation

Replacement

Evaluate

NO

NO

YES
YES

Repeat for every individual

Too
ruled?

NO
YES

Figure 1: Description of the evolutionary system for
generating card games.

The generated offspring is reinserted into the population.
Notice that all individuals are grammatically valid, so there
is no need to check if they are well formed. The evolutionary
process ends when an individual (that is not Texas hold ’em
poker, blackjack and UNO) with a target fitness score less
or equal than a fixed score has been created.

The cascading evaluation function selects the pool of indi-
viduals to use for reproduction on the basis of a non-linear
combination of four fitness evaluations [14]. E playouts are
run on every individual’s codified game. Players are sim-
ulated by naive agents that randomly choose their actions
during the gameplay. The data gathered during these play-
outs is used to perform the following evaluations:

• If any game has not properly finished at least once, its
codifying individual is removed from the population.

• Every individual whose game ended draw in more than
the 20% of the playouts is also removed.

• If the game has a number of stages higher than 10, it
is also removed.

• The remaining individuals are given a fitness score by
means of the following equation: fitness = |wingap−
W |+ |AV Gttf−A|+ |AV Gut−U |+(1−MCTSwin) ·
R,

where wingap is the difference between the number of wins
of the best player and the number of wins of the worst player,
AV Gttf is the average number of turns to finish the game,
and AV Gut is the average number of turns where no action
was taken because no player could satisfy the antecedent of
any rule (useless turns). W is the target balance score, the
desired value for wingap. A is the target number of turns to
finish, and U is the target number of useless turns. Finally,
every game is run again during M playouts. This time,
the first player is simulated by a “vanilla” Monte Carlo Tree
Search [2] agent without any particular optimisations. The
other two remain as random agents. Thereafter, MCTSwin

is the rate of wins of the first player against the other two.
This important feature measures the skill differentiation of
the evaluated game, the probability of a player with superior
skill (the MCTS agent) to beat a player of inferior skill (the
random agent). R is a pre-specified scaling factor to weight
the effect of this last feature within the fitness function. The
goal of the evolutionary system is to minimize the fitness
function, therefore the best fitness score is 0. If the size of the
population is lower than I after a generation, it is refilled by
adding randomly generated individuals after replacement.

4. RESULTS
We ran several evolutionary runs with P = 3, T = 2, I =
100, E = 100,M = 20,W = 25, A = 30, U = 9, R = 25
and target fitness set to 20. Table 1 shows the rules of a
game called “The ant and the grasshopper” which is one of
the more interesting games generated by the system. While
several games show strong influences from one or two of the
seed games (e.g. we found a twisted version of Blackjack
with interesting gameplay), this is one of the more complete
games not resembling any of the seed games. It is played
as follows: Players always get the same amount of tokens
due to the “GIVE” rules spread through several stages of
the game. Although there are several chances of betting
tokens during the gameplay (rule 1 in stage 4, and rules 0
and 3 in stage 5), there is no rule where players can gain
tokens bet by other players. This means that the highest
amount of tokens a player can get is the one provided by
the game. Besides, there are no rules that kick players out
of the game, so all of them make it to the end. Players
get 5 victory points per token they have, consequently the
one with the most tokens (bet tokens do not count) wins.
Therefore, skipping“BET”rules and keeping as many tokens
as possible is the best strategy to win. This game scored 13
points in fitness evaluation. Although the average number
of turns to finish matched the target value (A), the average
number of useless turns differed 12 points from the desired
value U . This is due to rules involving table location 1 in
their antecedent. Conditions related to that location are
never fulfilled because the location remains empty during
the whole game. Therefore, their related consequences can
not be applied which may lead players to experiment useless
turns. The win rate of the MCTS agent was 0.25, which
shows that even a relatively weak player can beat random
agents despite the apparent randomness of the game.

5. DISCUSSION
Although for brevity only one game could be shown, we
have generated dozens and analysed a handful in detail. It
seems that almost every run generates one or more games
that are well-formed, always lead to one player winning and
the others losing if played for long enough, are balanced
when played by random agents, and allow skill differentia-
tion. The game descriptions are human-readable, so with
appropriate equipment (a deck and a few Euro) they can
be played by humans. We therefore assert that the goals
for this particular paper, as set out in section 1, have been
fulfilled.

On the other hand, these games are not entertaining for a
human to play, and they do not include any particularly in-
teresting novel mechanics. Every rule set comprises several
strategies that can be followed by players, including one that

Table 1: Codification of“The Ant and the Grasshop-
per.”

THE ANT AND THE GRASSHOPPER

Stages and rules

Stage 0

COMPUTER COMMAND <Unconditional> GIVE

Player: 0 Amount: 89 tokens

COMPUTER COMMAND <Unconditional> DEAL

Table: 0 Amount: 1 cards

COMPUTER COMMAND <Unconditional> GIVE

Player: 2 Amount: 39 tokens

COMPUTER COMMAND <Unconditional> GIVE

Player: <all> Amount: 87 tokens

Stage 1

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional> DEAL

Player: <all> Amount: 6 cards

COMPUTER COMMAND <Unconditional> GIVE

Player: <all> Amount: 58 tokens

PLAY ONLY ONCE if SHOW SAME RANK T1

then PLAY IT

Stage 2

if SHOW < T1 then PLAY IT

PLAY ONLY ONCE if SHOW >= T0 then PLAY IT

PLAY ONLY ONCE if SHOW > T0 then PLAY IT

Stage 3

COMPUTER COMMAND <Unconditional> GIVE

Player: 0 Amount: 77 tokens

Stage 4

COMPUTER COMMAND <Unconditional>

GIVE Player: 0 Amount: 44 tokens

MANDATORY if PLAY 994, > T0 then BET

Stage 5

PLAY ONLY ONCE if DRAW then BET

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional>

GIVE Player: <all> Amount: 63 tokens

PLAY ONLY ONCE if DRAW then BET

Ranking

Card(s) Value

Four of a kind 190

6 + 8 + Jack 212

Winning conditions

5 points for each token. 3 points for finishing
the game.

leads to the victory. Nevertheless, these strategies turn out
to be neither very exciting nor challenging. In some cases,
a game can be won with a single action in the first turn. In
response to this, a fitness function could be designed that
rewards games for requiring a minimum diversity of different
actions taken in a sequence to be won. An alternative solu-

tion is to use a more elaborate skill differentiation measure
which rewards not only that weak players win over random
players, but also that strong players win over weaker players.

The generated games still occasionally contain rules includ-
ing unfulfillable antecedents, or locations that are filled with
cards turns after they are referenced within a condition. In
response to this, additional fitness functions could be devised
that penalise rulesets which include rules that are never
used. Note that in the cascading framework, it is generally
easy to “stack” fitness functions. At the top of a future stack
of such functions we would like to test for rules that endorse
engagement or “fun”. This will almost certainly require the
development of several different game playing agents with
differing skill and playing style, and possibly learning abili-
ties. There are several ideas developed for judging the qual-
ity of other games which could be adapted to card games,
including learnability [15] and various measures of tension
and lead changes [1].

6. CONCLUSION
This paper presented an evolutionary system that automat-
ically generates card games. A grammar Gcardgame was
used to generate a language whose strings codify well-formed
card games, including codifications of Texas hold ’em poker,
blackjack and UNO. This grammar is used by a grammar-
guided genetic program, that applies selection, crossover and
mutation to a combined random/fixed initial population of
individuals. A cascading fitness function was designed in or-
der to address different goals, including checking that games
are playable, non-drawish, not too ruled, balanced and skill-
differentiated. To our knowledge, this is the first time any-
one has automatically generated card games.

7. REFERENCES
[1] C. Browne and F. Maire. Evolutionary game design.

Computational Intelligence and AI in Games, IEEE
Transactions on, 2(1):1–16, 2010.

[2] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas,
P.I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. Computational Intelligence
and AI in Games, IEEE Transactions on, 4(1):1–43,
2012.

[3] Michael Cook and Simon Colton. Multi-faceted
evolution of simple arcade games. In Proceedings of
the IEEE Conference on Computational Intelligence
and Games (CIG), 2011.

[4] J. M. Font. Evolving third-person shooter enemies to
optimize player satisfaction in real-time. In Cecilia
et al. Di Chio, editor, Applications of Evolutionary
Computation, volume 7248 of Lecture Notes in
Computer Science, pages 204–213. Springer Berlin /
Heidelberg, 2012.

[5] J. M. Font, T. Mahlmann, D. Manrique, and
J. Togelius. A card game description language.
Accepted for publication in Evostar 2013, April 2013.

[6] J. M. Font and D. Manrique. Grammar-guided
evolutionary automatic system for autonomously
building biological oscillators. In 2010 IEEE Congress
on Evolutionary Computation, pages 1–7, July 2010.

[7] J. M. Font, D. Manrique, and J. Ŕıos. Evolutionary

construction and adaptation of intelligent systems.
Expert Systems with Applications, 37:7711–7720, 2010.

[8] M. Garcia-Arnau, D. Manrique, J. Rios, and
A. Rodriguez-Paton. Initialization method for
grammar-guided genetic programming.
Knowledge-Based Systems, 20(2):127–133, 2007.

[9] Vincent Hom and Joe Marks. Automatic design of
balanced board games. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), pages 25–30, 2007.

[10] Nathaniel Love, Timothy Hinrichs, David Haley, Eric
Schkufza, and Michael Genesereth. General game
playing: Game description language specification.
Report LG-2006-01, Stanford Logic Group, Computer
Science Department, Stanford University, Stanford,
CA, March 4 2006.

[11] Tobias Mahlmann, Julian Togelius, and Georgios
Yannakakis. Modelling and evaluation of complex
scenarios with the strategy game description language.
In Proceedings of the Conference on Computational
Intelligence and Games (CIG) 2011, Seoul, KR, 2011.

[12] Mark J. Nelson. Encoding and generating videogame
mechanics. Tutorial at the 2012 IEEE Conference on
Computational Intelligence and Games.
http://www.kmjn.org/notes/
generating mechanics bibliography.html, 2012.

[13] Adam M. Smith and Michael Mateas. Variations
forever: Flexibly generating rulesets from a sculptable
design space of mini-games. In Proceedings of the
IEEE Conference on Computational Intelligence and
Games, pages 273–280, Copenhagen, Denmark, 18–21
August 2010.

[14] J. Togelius, R. De Nardi, and S.M. Lucas. Towards
automatic personalised content creation for racing
games. In Computational Intelligence and Games,
2007. CIG 2007. IEEE Symposium on, pages 252–259.
IEEE, 2007.

[15] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In Computational Intelligence
and Games, 2008. CIG’08. IEEE Symposium On,
pages 111–118. IEEE, 2008.

