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Quantum Key Distribution is carving its place among the tools used to secure communications. While a
difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable
security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level,
but also a classical processing to extract a secret-key from them. This postprocessing has been customarily
studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real
devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the
case of high speed devices, where the differences are more marked, and give some examples contrasting the
usual postprocessing schemes with new ones from modern coding theory. A good understanding of its
implications is very important for the design of modern QKD devices.

Q
uantum key distribution (QKD) allows for the unlimited growth of a secret key guaranteed to be known
only to the two legitimate parties connected by a quantum channel1. The technique solves, with informa-
tion theoretical security, the long-standing problem of secret key distribution. Technologically, QKD has

been coming of age quite rapidly: from the first experimental demonstration of the original Bennett-Brassard
1984 (BB84) protocol2 in 19893, where the quantum channel was a few centimeters long and worked at < 1 KHz,
to the first systems commercially available as early as 2003, reaching more than 50 km and with a single photon
source working at a few MHz. Nowadays, QKD devices with speeds in excess of one GHz4–8 are customarily
developed in laboratory, a prelude to their commercial production9.

A QKD link obviously requires the existence of a quantum channel, used to transmit the prepared qubits, but
also needs a classical authenticated channel to extract a secret key from a set of raw detections. For high speed
QKD, this postprocessing step — a key distillation process including key reconciliation and privacy amplification
— is the part that takes more time, becoming a bottleneck for the secret key generation process.

The body of work about key reconciliation has been growing steadily during the last years. From the initial
Cascade10 — an interactive syndrome exchange and binary search over blocks of raw data— to modern informa-
tion theory applied to error reconciliation11. Usually, the main claims of these algorithms are based on the
efficiency: the quotient of the information published in the authenticated channel over the Shannon conditional
entropy of the correlated strings belonging to the emitter and receiver at the ends of the quantum channel. Most
key distillation studies up to now use efficiency as the key figure to quote10–14.

While it is clear that a higher efficiency reduces the number of bits lost in the reconciliation process, improving
the secret key rate, this tells us nothing about its real world throughput. The faster the QKD device, the more
significant is the gap between both magnitudes. A highly efficient but slow protocol, whether because of the need
of communications or heavy processing, would be eventually forced to discard bits if it cannot keep pace with the
speed at which raw key is generated. This is a long standing issue in the QKD community7,15. Because of the
increase in speed of recent devices, it is also receiving more attention from many research groups9,16. However, no
previous works focus on the compromise between reconciliation efficiency and performance, and the impact of
both parameters in the secret key throughput.

This work presents a study of real throughput measures of modern postprocessing protocols, contrasting the
differences with the usual efficiency-oriented studies, in an attempt to clarify the questions that arise in the design
of a high speed QKD device. In order to highlight the differences between the existing theoretical studies and its
practical application plication optimized for different settings, a range of high performance, short block length,
low-density parity-check (LDPC) codes are used for the key reconciliation process. This family of codes is
commonly employed in wireless networks due to its performance and low resources requirements, which make
them well suited for HW implementation. Its application to QKD illustrate quite well which are the tradeoffs and
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parameters that have to be taken into account in the design of the
classical postprocessing part of a high performance QKD systems.
During the study, the well-known Cascade protocol is used for com-
parison purposes as representative of the traditional reconciliation
methods.

Results
Simulation results were computed to analyze the secret key rate and
throughput in QKD using low-density parity-check (LDPC) codes
for reconciling errors. Several techniques to improve their reconcili-
ation efficiency13,14 are compared. In all the cases, a perfect reconcili-
ation efficiency is also considered together with the performance of
Cascade10. Simulations were performed using short-length LDPC
codes and a few number of decoding iterations to additionally
improve the overall throughput. In particular, quasi-cyclic LDPC
codes were used, since they are of interest for hardware implementa-
tions (a layered decoding scheme over a partial-parallel architecture
can be implemented for these matrices17). They are also part of a
number of new communications standards, such as IEEE 802.11n
(Wi-Fi), 802.16e (WiMAX) and ETSI DVB-S218–20, where a optimal
set of codes is standardized. A GPU-based implementation of the
sum-product algorithm for decoding LDPC codes (over a NVIDIA
GeForce GTX 670 card) was used. The interest of using specialized
HW to speed up the calculations is double. On one hand, because the
simulations are extremely time consuming, to insure that we have
good statistics in a reasonably short computing time and, on the
other, to have a reconciled key throughput that comfortably exceeds
the secret key throughput, hence exposing deficiencies in the recon-
ciliation algorithms rather than in the inability of the implementa-
tion to keep up.

Secret key rate for the BB84 protocol is calculated as a function of
the distance using the Gottesman et al. formula21,22 for a lossless QKD
system (i.e. a system without transmission losses within the devices)
exchanging weak coherent (attenuated) pulses. Calculations were
then performed by considering a 5 0.2 dB/km losses in the
communication channel (typical for optical fiber and a 1550 nm

wavelength) and a single photon detection efficiency of g 5 10%
with dark count probability of pd 5 1025. The protocol efficiency
was considered to be q 5 1/2. Raw key and secret key throughputs
were calculated assuming a gigahertz clocked QKD system, i.e.
assuming a source emitting single photon pulses at clock rates of
1 GHz.

Fig. 1 shows secret key and reconciled key throughput using only
one LDPC code for reconciling errors throughout the entire range of
achievable distances. This first approach is computed using the cor-
recting code without rate modulation, i.e. with a fixed information
rate. As reference codes to illustrate our findings, those in the Wi-Fi
standard mentioned above are used. Their length and rates are 1944
and R 5 0.67, R 5 0.75 and R 5 0.83, respectively. As shown in the
figure, the reconciled key throughputs (colour dashed lines) are con-
siderably higher than the raw key throughput (black dashed line)
and, therefore, information reconciliation with the simulated pro-
tocol is not a bottleneck in the key postprocessing. The secret key is,
however, severely affected by the high amount of information dis-
closed for reconciliation. In the figure it can also be seen how the
secret key throughput using correcting codes with low coding rate is
always worse for short distances, and it only improves the secret key
throughput of codes with higher coding rate when the latter are not
able to distill keys (i.e. when the error is so high that no secret key can
be distilled during the privacy amplification phase, or when the
frame error rate in the reconciliation procedure becomes close to 1).

The frame error rate (FER) is a parameter commonly used in
communication theory that represents the ratio of transmitted words
that cannot be corrected. In this context it represents the ratio of keys
that cannot be reconciled, and therefore it is a factor that directly acts
on the secret key rate. Its effect can be easily seen in Fig. 1 where only
fixed rate codes are used for reconciling errors. For instance, using a
short length correcting code of rate R 5 0.81, FER is above 80% with a
2% of errors in the communication channel, which occurs in the
simulated scenario at a distance of 40 km. At this point the secret
key rate drops. A similar behavior occurs when reconciling with a
code of rate R 5 0.75 at a distance of approx. 46 km. However, as the
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Figure 1 | Secret key and reconciled key throughput for fixed-rate reconciliation with three LDPC codes of rates R 5 0.67, R 5 0.75, and R 5 0.83. Raw

key throughput is for the BB84 protocol. Asymptotic secret key throughput is calculated assuming perfect reconciliation. Reconciled key throughput is

constant while the code is correcting properly, since a constant number of decoding iterations are used without syndrome validation, and it starts to

decrease as soon as the FER approaches 1 (i.e. errors grow beyond the capability of the code to correct them). This happens first for higher rate codes. The

distance limit for the secret key throughput is higher for low rate codes since they have more redundancy. For the same reason throughput at lower

distances is also smaller for low rate codes. Secret key throughput with low and high rate codes cross when the degradation due to increased FER in the

higher rate code equals the information leakage in the lower rate curve.
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figure shows, lower coding rates (e.g. R 5 0.67) cannot be used to
reach longer distances. This is because, for a given channel, there is a
certain coding rate under which the FER is no longer the limiting
factor: the secret key rate is now limited by the error rate in the
channel.

We next consider the possibility of modulating the coding rate of
an LDPC code in order to reduce the excess of information disclosed,
thus improving the reconciliation efficiency. A rate-adaptive tech-
nique as proposed in13 for short-length quasi cyclic LDPC codes is
analyzed in Fig. 2. As shown in the figure, the secret key improves
over the full range of distances, while the reconciled key throughput
is not severely affected (it remains well above the throughput of raw
key).

For this second reconciliation approach we use the optimal pro-
portion of punctured and shortened symbols that maximizes the
secret key rate. This proportion is obtained from simulations for a
particular correcting code and different error rate values with the
number of modulated symbols fixed to 350, the maximum allowed
using he intentional puncturing algorithm described in23. Note that,
for short length codes, punctured symbols should be chosen accord-
ing to an intentional puncturing algorithm, such as the one cited
above, to improve the overall performance. On the other hand, shor-
tened symbols can be chosen randomly without compromising the
performance, and thus the proportion of modulated symbols when
puncturing and shortening simultaneously is only limited by the
maximum number of symbols that can be punctured.

Finally, an interactive LDPC-based reconciliation is analyzed. The
rate-adaptive version discussed above is extended with the use of
feedback information as proposed in14, named blind reconciliation.
This new technique, commonly known as incremental redundancy
hybrid automatic repeat request (IR-HARQ) in the information and
communication theory literature, allows to improve the average effi-
ciency and key throughput as shown in Fig. 3 and Fig. 4. In the rate-
adaptive approach simulated in Fig. 2, reconciliation is done with just
one decoding procedure using the stochastically averaged optimal
proportion of punctured and shortened symbols. Therefore, only one
message with the syndrome and information of shortened bits has
to be exchanged. However, an slightly interactive version of this

protocol, such as the one proposed in14, improves the average effi-
ciency by repeating the decoding procedure with different propor-
tions of punctured and shortened symbols.

Although such schemes require the exchange of multiple network
messages, the average throughput was calculated without taking into
account this latency given that the HW used to implement the recon-
ciliation protocol essentially operates as a pipeline (in a GPU mul-
tiple blocks can be processed in parallel): communication latency is
thus hidden and paid only once at the start of the whole process.

Furthermore, note that the proportion of modulated symbols dif-
fers in both figures since the maximum number of punctured sym-
bols depends on the coding rate. Accordingly, the number of
modulated symbols may be higher for correcting codes with higher
coding rates.

Discussion
The classical leakage of information during the key post-processing
in QKD is dominated by the amount of information disclosed for
reconciling discrepancies in an exchanged key. This leakage is lower
bounded by the Shannon limit, and is usually parameterized by the
reconciliation efficiency, i.e. the ratio of information disclosed for
reconciliation with respect to the minimum leakage. Most techniques
for reconciling errors in QKD try to optimize this parameter, such as
the well-known Cascade10, the most widely used procedure for recon-
ciling errors in QKD. However, while an efficient reconciliation
improves the secret key rate, the performance of real devices must
be measured in terms of secret key length per second and take into
account the bandwidth of every step involved in a QKD protocol, i.e.
raw key exchange, information reconciliation and privacy amplifica-
tion. In this regard, reconciled key throughput is here compared to
the raw key bandwidth in order to identify any setting where recon-
ciliation is a bottleneck during postprocessing. Secret key throughput
is then optimized looking for a trade-off between the customarily
cited reconciliation efficiency versus the more practically significant
throughput.

Fig. 1 shows reconciled and secret key throughput for a set of three
different LDPC codes as a function of the distance (absorptions).
These codes are used for reconciliation purposes without modulating
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Figure 2 | Secret key and reconciled key throughput for fixed-rate and rate-adaptive reconciliation with an LDPC code of rate R0 5 0.75.
Raw key and asymptotic secret key throughput are as in Fig. 1. Secret key throughput using the reconciliation efficiency of Cascade without taking into

account the penalty introduced by the extra communications required by this protocol. The rate adaptive protocol reduces the reconciled key throughput

due to its complexity compared to the fixed rate protocol. However, because of its higher efficiency the secret key throughput improves over the whole

range of distances, reaching slightly farther than Cascade.
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the coding rate. The asymptotic key throughput for a perfect code is
shown for comparison purposes. The reconciled key throughput is
similar for all three rates up to a certain distance. After this distance
(36 km for the LDPC code with coding rate R 5 0.83, 44 km for R 5

0.75, and 50 km for R 5 0.67) the error correction method starts to
fail and the correspondingly high frame error rate (FER, see the
Methods section) imposes a heavy penalty on the secret key. Secret
key throughput for the different rates start within a factor of two
among them and decrease in a similar way with distance due to the
extra information leaked. Once the point at which the code loses
efficiency, i.e. when the FER grows, it becomes the main source of
error, heavily penalizing the secret key. The curves for different rates

cross at the point where the degradation due to increased FER in the
higher rate code equals the information leakage in the lower rate
curve, since the FER effects appear later because of the higher
redundancy of a lower rate code.

Fig. 2 compares a fixed rate code (with coding rate R 5 0.75) to a
rate adaptive one (with mother code of rate R0 5 0.75). The recon-
ciled key throughput of the rate adaptive code is slightly lower than
the fixed rate due to the higher complexity of the algorithm.
However, its adaptivity means that the amount of information pub-
lished during reconciliation is smaller, hence its secret key through-
put is always higher and remarkably closer to the asymptotic case,
beating Cascade at the longest distances. Rate adaptive and fixed rate
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Figure 3 | Secret key and reconciled key throughput for blind reconciliation with an LDPC code of rate R0 5 0.67. Two different sets of parameters

controlling the number of steps in the blind reconciliation are chosen: one for almost ideal behavior regardless of the performance (blue line), and other

for a good balance between both (green). It can be seen how the secret key throughput of the former follows closely the throughput of the idealized —

without communications — Cascade over the whole distance range, improving the rate-adaptive case of Fig. 2. Raw key, asymptotic secret key, and

Cascade throughput are as in Fig. 2.
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Figure 4 | Secret key and reconciled key throughput for blind reconciliation with an LDPC code of rate R0 5 0.75. As in Fig. 3 two different sets of

parameters are chosen. The higher rate of the code increases the secret key throughput, improving on Cascade at the longest distances. This is because the

rate fits appropriately the error range to be corrected. It can be seen that in the best point almost no secret key is lost with respect to the asymptotic case.
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curves coincide at the point where the modulated rate equals the
fixed or mother rate.

From the simulations, an interesting effect was also seen here:
when the FER is depicted as a function of the distance (QBER), a
region of very low FER is obtained for short distances (,20 km), as
expected for a region with low errors and in which almost any code is
going to work very well. In the same way, at very long distances, the
amount of errors is so big that not even the code with the lowest rate
would be able to correct them, thus failing very often and producing
a very high FER. The somewhat unexpected result is in between
both regions, where the simulations show that most of the time
the code is correcting with a comparatively high FER of the order
of 1022 , 1021. In communications it is usual to target a FER well
below 1023, whereas from the simulations it is clear how important is
to extend the use of the code to regions of higher FER, which allows to
distill key without discarding information, thus achieving a high key
throughput.

Figs. 3 and 4 compare Cascade with the blind algorithm, an inter-
active version of the rate-adaptive reconciliation (multiple messages
are exchanged between the parties) that adds feedback information
to increase its performance. In this case, the average information
revealed is reduced, at the expense of the reconciliation throughput
due to the interactivity of the algorithm. Fig. 3 shows the results when
using a mother code of rate R0 5 0.67 and Fig. 4 for R0 5 0.75. In both
figures, two different sets of parameters to regulate the blind algo-
rithm are used. One is chosen in order to obtain the maximum
number of secret key bits regardless of its throughput and the other
represents a balance among both. In the case of rate 0.67 this implies
to start the algorithm with a number, d, of punctured symbols equal
to 500 (the maximum according to23), and reveal information one bit
at a time for the maximizing case; and d 5 200 and reveal 50 at a time
for the balanced one. For rate 0.75, the maximum number of punc-
tured symbols is 350. In both cases it is seen that the secret key
throughput is even closer to the asymptotic limit, closely matching
Cascade, improving its throughput at the highest distances and
extending its reach in the case of rate 0.75.

A technical note is in order regarding reconciled key throughput:
as long as it is high enough to sustain the asymptotic case, its
variations will not affect the secret key throughput. Apart from the
reconciliation algorithm complexity, this is mostly a matter of imple-
mentation or of the HW used. This is a point that can be improved
just by changing to a faster HW or optimizing the code, hence, in the
points in Figs. 3 and 4 in which the achieved reconciled key through-
put went below the asymptotic case, it was artificially raised above it,
assuming that a better HW would solve the issue without changing
the conclusions.

Methods
Secret key rate. The general expression for the secret key fraction with one-way
postprocessing is given by22:

r~1{IE{leakEC ð1Þ
where IE is the fraction of information about the raw key that is known to the
eavesdropper, Eve, and leakEC the fraction of information disclosed during the
reconciliation phase.

We consider the QKD protocol BB84 and a realistic scenario: the emitting device is
an attenuated laser (emitting weak coherent pulses), an optical fiber is used as com-
munications channel and at the receiving end, the incoming signals are detected with
an avalanche photodiode.

In the source, pulses with two or more photons are emitted with non zero prob-
ability and Eve can collect all the information from these pulses without being
detected. In consequence, the secret key fraction is calculated using only single photon
pulses and assuming that Eve can gain information at the expense of introducing
errors in the communication:

r~Y1 1{h 1ð Þð Þ{leakEC ð2Þ

Y1 is the fraction of single photon pulses detected, 1 is the quantum bit error rate
(QBER) corresponding to the pulses with only one photon, and h(x) the binary
Shannon entropy.

A lower bound for the secret key rate can be calculated by upper bounding Y1 and
1. For the fraction of 1-photon pulses detected an upper bound is given by:

Ŷ1~1{
pmulti mð Þ

pexp
ƒY1 ð3Þ

where m is the average number of emitted photons per pulse, such that pmulti(m) 5 1 2

(1 1 m)e2m is the probability of emitting two or more photons, and pexp is the total
detection rate. The error rate of single photon pulses is upper-bounded by ^1~

�
Ŷ1.

For simulation purposes, an analytical estimation of the detected pulses can be
done considering the transmitivity in the fiber, t 5 102aL/10 where a is the attenuation
constant and L is the distance in km, and the quantum efficiency g in the detectors.
The signal detection rate is approximated by psignal < mtg (where a typical choice is to
set m equal to the total transmitivity m 5 tg22). And the total detection rate can be
estimated considering the dark count rate pd too:

pexp~psignalzpd{pdpsignal ð4Þ

The error rate is estimated considering only dark counts.

~
pd

2pexp
ð5Þ

Information reconciliation. The amount of information disclosed to reconcile errors
in QKD, leakEC( ), can be lower bounded using the Slepian-Wolf limit24. When a
binary symmetric channel with parameter (QBER in the QKD case) is used as a
model for the side-information, the minimal encoding rate is given by the binary
entropy, h( ). Since any realistic reconciliation procedure would disclose more
information, an efficiency factor f( ) has to be included. The leakage is then expressed
as:

leakECð Þ~hð Þf ð Þ ð6Þ

We restrict our attention to binary correcting codes since they are sufficient to
approach the Slepian-Wolf limit. These codes transform words of k bits of
information into codewords of length n. The extra n 2 k bits add redundancy such
that, even if the codeword suffers from errors after being transmitted through a
communication channel, the decoder would recover the original codeword. The
leakage due to a reconciliation procedure based on an error correcting code using
syndrome coding25 is given by the relation between the length of the added
redundancy and the length of the codeword, (n 2 k)/n.

The information rate, and in consequence the leakage of information during the
error reconciliation, can be modulated. Two common techniques are puncturing and
shortening26. The leakage caused by a binary correcting code with p punctured bits
and s shortened bits is given by the following relation:

leakEC p,sð Þ~ n{k{p
n{s{p

ð7Þ

Secret key throughput. The discussion above holds whenever the reconciliation
procedure succeeds. Real reconciliation methods on noisy strings have always a non
zero probability of failure. The figure of merit associated with the failure probability is
the frame error rate (FER). It is defined as the mean of the random variable that
outputs 0 when the reconciliation protocol is successful and 1 whenever it fails. Non
reconciled words can be discarded from the process or publicly disclosed for a more
refined estimation of the QBER. This gives the following final form for the secret key
rate taking into account realistic reconciliation methods:

S~ 1{FERð Þ:pexp
:q:r ð8Þ

where q is the protocol efficiency.
The final key throughput of the system is found by multiplying the secret key rate

by the frequency of the source.
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