
A Multi-Resource Load Balancing Algorithm for
Cloud Cache Systems

Yu Jia1, 2, Ivan Brondino1, Ricardo Jiménez Peris1, Marta Patiño Martínez1, Dianfu Ma2

1The Distributed Systems Lab, Universidad Politécnica de Madrid, Spain
2Advanced Computing Technology Institute, Beihang University, China

1 {yjia, rjimenez, mpatino, ibrondino}@fi.upm.es
^{jiayu, madianfu}@act.buaa.edu.en

ABSTRACT
With the advent of cloud computing model, distributed caches
have become the cornerstone for building scalable applications.
Popular systems like Facebook [1] or Twitter use Memcached [5],
a highly scalable distributed object cache, to speed up applications
by avoiding database accesses. Distributed object caches assign
objects to cache instances based on a hashing function, and
objects are not moved from a cache instance to another unless
more instances are added to the cache and objects are redistributed.
This may lead to situations where some cache instances are
overloaded when some of the objects they store are frequently
accessed, while other cache instances are less frequently used.

In this paper we propose a multi-resource load balancing
algorithm for distributed cache systems. The algorithm aims
at balancing both CPU and Memory resources among
cache instances by redistributing stored data. Considering the
possible conflict of balancing multiple resources at the same
time, we give CPU and Memory resources weighted priorities
based on the runtime load distributions. A scarcer resource is
given a higher weight than a less scarce resource when load
balancing. The system imbalance degree is evaluated based
on monitoring information, and the utility load of a node, a
unit for resource consumption. Besides, since continuous
rebalance of the system may affect the QoS of applications
utilizing the cache system, our data selection policy ensures that
each data migration minimizes the system imbalance degree and
hence, the total reconfiguration cost can be minimized. An
extensive simulation is conducted to compare our policy with
other policies. Our policy shows a significant improvement
in time efficiency and decrease in reconfiguration cost.

1. INTRODUCTION
Platform as a Service (PaaS) has been proposed in the context of
cloud computing as a solution to deliver computing platforms that
facilitate application deployment by reducing the cost and
complexity of managing underlying hardware and software for
users [2]. One of the most significant requirements for PaaS
providers is to deal with large number of users and considerable
amounts of data. Handling large amount of data is also a big issue
to tackle in Infrastructure as a Service (IaaS) and Software as a
Service (SaaS). According to Forrester, Facebook employs a
petabyte of storage to manage 40 billion photos of its millions of
users. Some other web giants, such as Amazon and eBay, face
similar scale [3]. In order to cope with this scale problem, multi-
tier architectures become an important building block for many
applications in the cloud [4]. A fast, scalable, and fault-tolerant
data-access layer, known as cache system (platform) or in-
memory data grid is added on top of the database to provide a fast
access to data, and meet the scalability requirement of cloud
environments. For example, Google App Engine uses
memchached [5] for caching popular pages, frequently updated
data, etc.[6].

Application workloads in the cloud are dynamic and change over
time, thus, data stored in a cache platform are retrieved and
updated in a varying manner, which means workloads become
imbalanced over cache nodes and can be skewed to small fraction
of data partitions [7]. Large number of concurrent data accesses to
certain partitions of cached data (hotspots) may cause a high
consumption of resources such as CPU and Memory at the cache
node where these data are stored in, possibly leading to system
bottlenecks [8]. In order to eliminate these bottlenecks, the system
must be monitored and provide mechanisms for dynamically
balancing the load. Figure 1 shows a possible scenario where our
algorithm may be applied in. In the figure there are eight cache
nodes in a single data center. Each one stores some objects that
are grouped into “buckets”. A bucket is the unit of data migrated
between cache nodes. The figure shows two overloaded cache
nodes in red and dashed lines link the nodes involved in the data
migration.

In this paper, we propose a dynamic load balancing strategy to
balance multiple resources (namely, CPU and Memory) among

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148668576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://upm.es
http://buaa.edu

cache nodes in a single data center at runtime. Our main
contributions are:

(1) A load balancing algorithm for redistributing stored data
among cache nodes and hence, mitigating the imbalance degree.
Since optimizing multiple resources at the same time may lead to
contradicting goals, our algorithm firstly identifies which are the
scarcer resources based on the runtime load distributions, and then
assigns resources different priorities based on this diagnosis. As a
result of the load balancing algorithm, some data partitions must
be moved from one cache node to another to rebalance the load.
This data migration incurs in extra consumption of resources such
as CPU and network bandwidth, thus, reconfiguration cost is
considered by the load balancing algorithm. Our proposed greedy
algorithm seeks a local optimal solution to minimize the system
imbalance degree in each step, a nearest-neighbor-search based
policy is proposed to select the bucket to be migrated. Besides,
since we avoid linear scanning to find this bucket, the time
efficiency is improved compared with some other approaches.

(2) A detailed evaluation of the proposed algorithm is presented.

Figure 1. Scenario of Load Balancing in Cache Platform

The rest of the paper is organized as follows: related work is
presented in Section 2. Section 3 provides some necessary
definitions and goals. Section 4 illustrates the load balancing
algorithm. Section 5 evaluates the performance of the load
balancing algorithm and compares it with algorithms using other
data selection policies. Conclusions and future work are presented
in Section 6.

2. RELATED WORK
The search of optimal load balancing of multiple resources is a
variant of bin-packing problem, namely multidimensional-vector
packing problem, which is proved to be NP-hard [9]. The problem
consists in packing a certain number of m-dimensional items into
a minimum number of m-dimensional bins with independent
capacity in each of the m dimensions [10]. In the context of load
balancing for a distributed cache, a node can be treated as a bin
with multidimensional capacities, each of which should be a value

close to the average utilization of a resource in the cache cluster.
Each data bucket (set of objects and migration unit) is an item to
be packed with multiple dimensional weights, each of which
should be the usage of a certain resource. Load balancing of
multiple resources can be regarded as packing all the data buckets
into the available nodes while ensuring that all the nodes are as
“full” as possible. Papers [9][10][11][12] propose algorithms for
multidimensional vector problems. However, all these algorithms
obtain the approximate optimal solution off-line. Off-line
approaches compute new configuration without considering the
current configuration, which may cause a big change to the
previous configuration, resulting in a very high reconfiguration
cost.

Compared with off-line approaches, on-line load balancing
computes a new configuration taking into account the current
configuration of the system and tries to minimize the
reconfiguration cost. Paper [13] describes how to eliminate
bottlenecks in a P2P system by redistributing data among nodes.
The algorithm uses an “extract and reallocate” pattern, it firstly
extracts some lightest loaded data buckets from all nodes so that
the load of each node is below a given threshold ordered from
heaviest to lightest, it then reallocates these buckets back to
system using a best-fit strategy. Greedy and evolutionary
algorithms are proposed to mitigate the imbalance as well as
minimize reconfiguration cost in [14]. Greedy algorithms for load
balancing have also been studied in the context of data streaming
and replicated databases [15][16]. In these algorithms, a bucket is
always moved from the heaviest loaded node to the lightest one.
The heaviest bucket that will decrease the system imbalance will
be picked. Paper [7] has proposed a strategy to eliminate hot-spots
as well as to minimize the reconfiguration cost for a large scale
system, such as the Hotmail server cluster. However, all of these
studies focus on balancing one single type of load, CPU for
instance. Balancing only one resource may inadvertently produce
bottlenecks in other resources.

Multi-resource load balancing has been widely studied in the
context of job scheduling where tasks (jobs) are migrated. In such
scenarios, each task being executed on a server has different
requirements for multiple resources, such as CPU, Memory and
bandwidth. Backfill Lowest (BL) and Backfill Balance (BB) [17]
are two popular policies for job selection. Once the sender node
and receiver node have been picked, BL determines which
resource is most available in the receiver node, and then migrates
the job that consumes most of that resource in sender node. BB
migrates the job which can minimize the (maximum load/average
load) measure for the receiving server. A Market Mechanism
(MM) policy is presented in [18] to balance multiple resources
among nodes with heterogeneous resource capacities. MM uses a
pricing model(2]i (Ji * L;)/ Hi Ji) to calculate the cost per resource
of a job. Jj denotes the job’s consumption of resource i, Lj is the
load of resource i in receiver node before job migration, K is the
number of resource types. The job with the lowest cost is selected.
According to [18], MM improves both BL and BB, and it is more
suitable for load balancing in heterogeneous systems. However,
all of these three algorithms do not take the reconfiguration cost
into account. Moreover, all of them need to find the target jobs
using iteration among all jobs. Since the amount of data buckets in
a cache node can be much higher than amount of jobs in a server,
thus, iterating all the possible candidates will limit the efficiency
of load balancing in a cache system.

3. PROBLEM FORMULATION
In cache systems, data are stored in memory due to its lower
latency than persistent storage. The memory usage among cache
nodes can be different because buckets may have different sizes
(objects of different size) and the number of stored buckets among
cache nodes may also be different. Besides, the memory usage of
a single node changes dynamically. On the other hand, CPU usage
among cache nodes can also be different since applications may
have different access patterns to the data. Considering that both
CPU and Memory are limited in cache systems, the load
balancing algorithm must strive to balance both resources to
eliminate hot spots. In this paper, we aim to achieve the following
goals:

(1) Minimize the load imbalance for multiple resources among
cache nodes but with different priorities based on the runtime load
diagnose. Specifically, we consider CPU and Memory resources.

(2) Minimize the system reconfiguration cost; here we consider
the number of data buckets to be migrated.

Table 1. Definitions

Definition

N = {ni,n2 Uk}

Q ={RI,R2,-Ri,-Rk}

Description

Set of cache nodes, k is the
number of cache nodes in system.

Number of buckets in each node.
qi is the number of buckets in
node ni.

Bi = {bn,

NL =

{(q.miXC;

BLt=

{(ni ,Sj i)

NL* = {(i,

BL\ =

bi2,-bic,J

2,m2)...(ci„mi,)]

•inq.,Siq.)}

k U

Set of buckets in node n;.

Resource usage at each node
(Cj,mj) is the average (CPU,
Memory) resource usage in % at
node rii in a time interval.

Statistic info of each bucket in
node n;. iriq,Siq) denotes the
average data request rate and size
of bucket biq., respectively.

Utility load of all nodes. (; is the
average utility load of node n; in
a time interval.

Load of each bucket in node n;.
(Viq., cOiq.) represents the average
(CPU, Memory) resource con­
sumption (%) of bucket biq. in a
time interval.

We assume that all cache nodes are homogeneous with equal
capacities of CPU and Memory. Table 1 shows some required
definitions for later discussions and algorithm design. The
definitions cover several sets, including the number of cache
nodes N, and data buckets {Bi,B2'•••-^fc}. It also introduces the
load information we will use for load balancing, such as resource
usage at each node, denoted by NL, and some statistic information
about buckets in a time interval, denoted by {BLi,BL2, ...,BLfc}.
In order to get these values, a monitoring mechanism periodically
reports the resource usage at each node, as well as data request
rate and size of each bucket. We will discuss sets NL* and
{ BL\, BL*2,..., BL\} (BL*i is the buckets load set at node n;) later.

The load of each bucket is defined by its storage size and its
associated CPU consumption. We use the request rate of a bucket
to calculate its CPU consumption. The (CPU, Memory) load of a
bucket bia is normalized as:

•jt m

(.Vla,(^la) = (Ci * (ria/2_^rij),mi * (Sia/2_^Sij))

7 = 1 7 = 1

We have defined (C;, m;) as the (CPU, Memory) usage of a cache
node. However, a measure is necessary to score a node’s overall
load (utility load). This will be helpful for us to choose a node
pair for data migration. We assume that the CPU and Memory
usage are not related to each other. A utility function below
defines the utility load /, of a node «,.

li = 2. * Ci + (1 — X) * nil

(J^QVj^CQ+'Tli)

Dynamic weights A and 1—1 are used for CPU and Memory in
order to capture the runtime load of a node. If CPU is a scarcer
resource than memory at a particular instant, then a node with
higher CPU usage is more likely to get a higher utility load. This
will give the node a higher priority to be balanced.

Standard deviation (Jcpu and (Jmem are used to evaluate the
imbalance degree of CPU and Memory usage among cache nodes,
respectively. (Jciuster captures the cluster’s load imbalance degree.
Since balancing both CPU and Memory resources may lead to
conflictive goals, the formula uses dynamic weights ii and 1 — ii
for (Tcpu and (Trnem, respectively. If CPU is scarcer than memory,
it is more likely that the CPU becomes the system bottleneck. In
this case, A> 1 — A and ii > 1 — ii, then CPU is prioritized over
memory in the load balancing.

H = 17(12 + (1

4. LOAD BALANCING ALGORITHM
Computing an optimal solution for balancing multiple resources
as well as minimizing the reconfiguration cost is an NP-complete
problem. Therefore, we use a greedy algorithm to obtain an
approximate solution. The algorithm consists of a number of steps
{stepo,stepj^, ...,stepj^}. In each step, the algorithm migrates a
bucket from the node with heaviest utility load defined in Section
3 to the one with the lightest load. We use a nearest-neighbor-
search (NN) policy in order to select the bucket to be migrated.
This policy ensures that at each step of the algorithm, the bucket
that can minimize the system imbalance after migration is selected
from the heaviest loaded node. The NN policy is derived as
follows:

Let us assume that at the beginning of step^ , the system
imbalance degree is (Tciuster, the most loaded node and lowest

loaded node are n„ and Ji;,, respectively. After moving a bucket
from the most loaded to the lowest loaded, the system imbalance
degree becomes (y*ciuster. Our goals are that this imbalance degree
is decreased (1) and this imbalance degree is minimized (2).

(1) ^cluster "^ ^cluster

(2) (y''i.i^g^i,y is minimal

Suppose buckets b^j with load (Vaj,o^aj) is the bucket we are
looking for, according to Section 3, â ,„j,fĝ and o'li^^^^^ can be
computed as follows:

<^1luster = A^KCl - CY + (c^ - cY + - + (c„ - c) 2] / f e +

(1 — Ai)[(mi — nty + (m.2 — m)^ H h (m,^ — m)^]/k

O'^cluster = y" [••• + (Ca - " a ; - c) ^ + ••• + (cj , + V^j - c) ^ + •••] / fe +

(1 - fi) [••• + (m„ - co^j - mf + ••• + (mj, + &)„; - mf + •••yk

In order to get the minimal value of 0*1̂ 5̂ 2̂ , let us define:

* = ^'^'cluster ~ '^cluster) * ^

Apparently, finding the minimal value of 0*1̂ 5̂ 2̂ can be
transformed into finding the minimal value of t.

t = tl \{Ca - Vaj - cf - (C„ - c) ^ + (cj , + V^j - cf - (Cj, - c) 2]+

(1 - II) [(m„ - (i>^j - mf - (nil - fhy + (m^ + ai^j - mf - (m^ - m)̂]

= 2A([U„/ - (c„ - c^)Vaj] + 2 (1 - A()[&)a/ - (m„ - m^)aiaj]

= '^li["aj - (Ca - Cfi)/2] + 2 (1 - li)[cOaj - {m^ - m^)/2] -

[fi(Ca - c^y + (1 - Ai)(ma - ni^y]/2

= 2{[Xv,j - A(c„ - c,)/2f + [(1 - A)oj,j - (1 - A)(m„ - m,)/2f]/

[X' + (1 - A)2] - [f((c„ - c,f + (1 - A()(m„ - m,f]/2

Since X,n,Ca,Ci,,ma,mi, are all constants within a certain step,
thus, when t is minimal, the following measure should be minimal:

[Xv^j - A(c„ - c,)/2]2 + [(1 - X)oj^j - (1 - A)(m„ - m,)/2]2

Therefore, finding the local optimal solution for step^ can be
transformed as a nearest-neighbor-search problem. In our
scenario, each bucket &„; in node n„ can be treated as a point in
metric space of dimension 2, since it has two associated load
values(iiai, (x>ad. The location of this point (bucket) in space is:

bal-Q<»al,O--'>^)(^al),{Val,(^al) ^ BL*a

Given a point h with location as follows, our target point to search
is the one nearest to point h, point (bucket) b^j above should be
the one closest to point h in node n^.

h:(X(Ca-c„)/2,(l-X)(ma-m„)/2)
Figure 2 shows an example of bucket selection using different
policies. Let us assume we have 3 cache nodes in the system, the
(CPU, Memory) loads (%) of the nodes are (90, 70), (60, 30), (30,
20), respectively, before data migration. The load of each bucket
at each node is shown in Figure 2 (a). Take node (90, 70) as an
example, there are 3 buckets, each bucket’s CPU and memory
load are (30, 20), (20, 40), (40, 10), respectively. According to
Section 3, the weight X = (90+60+30) / (90+60+30+70+30+20) =
0.6. The utility load of each node is calculated as 0.6*90 + (1-
0.6)*70 = 82, 0.6*60 + (1-0.6)*30 = 48, and 0.6*30 + (1-0.6)*20
= 26, respectively. Since node (90, 70) is the one with highest
utility load, and node (30, 20) is the one with lowest, therefore, a
bucket will be migrated from node (90, 70) to (30, 20). If BL was
adopted, since Memory is more available than CPU with 20
versus 30 in node (30, 20), bucket (20, 40) demands most of the

Memory resource among all the three buckets in node (90, 70),
thus, bucket with load (20, 40) would be selected. If BB was
applied, in case bucket (40, 10) was selected, the measure
(maximum load/average load) on node (30, 20) would be
calculated as max (40+30, 10+20) / [(40+30+10+20)/2] = 1.4. In
the same way, the measure would be 1.1 and 1.2 if bucket (20, 40)
and (30, 20) was selected, respectively. Since bucket (20, 40)
minimizes this measure, thus, it would be selected for migration.
In the case that MM was used, the cost of migrating bucket (40,
10) would be (40*30 + 10*20) / (40+10) = 28. Similarly, the cost
would be 23 and 26 if bucket (20, 40) and (30, 20) was selected,
respectively. Since bucket (20, 40) has the lowest cost, therefore,
it would be selected. However, if our policy NN was applied, we
firstly identify the “location” of “point” h introduced previously,
which is (0.6*(90-30) / 2, 0.4*(70-20) / 2), namely (18, 10). The
“location” of bucket (40, 10) is (0.6*40, 0.4*10), namely (24, 4).
In the same way, the “location” of bucket (20, 40) and (30, 20) is
(12, 16) and (18, 8) respectively. Bucket (30, 20) would be
selected since it is closest to “point” h.

Figure 2(b) shows the result of data migration if BL, BB, MM
policy is applied. Figure 2(c) shows the result of data migration of
our policy NN. If we migrate bucket (20, 40) as Fig. 2(b) shows,
the deviations of CPU and Memory would be 8.2 and 14.1
respectively after migration. However, if bucket (30, 20) is
migrated as Figure 2(c) shows, the deviations would be 0 and 8.2,
which achieves a better balancing result for multiple resources.

20

30

40

20
30

20

10
30

20

90 70 60 30 30 20

(a). Before data migration

40

30
10

20

30

30
20

10

20

30

40

20

70 30 60 30 50 60

(b). Results of BL, BB, MM

40
10

40

30

30
20

10

30

30

20

20

60 50 60 30 60 40

(c). Result of NN

Figure 2. Example of different policies

Our algorithm can be easily transformed to balance any number of
resources (multiple dimensions). The above goals must be
transformed into finding the nearest neighbor in a metric space N,
where N is the amount of resource dimensions (types). There are
many previous studies on nearest-neighbor-search problem. Kd-

40
10

30

20

tree of Friedman and Bentley [20] has been widely adopted to
solve this problem. Kd-tree is a space-partitioning data structure
for organizing points in a k-dimensional space. We applied kd-
tree and nearest neighbor search to find the target bucket in the
most loaded node, this achieves a better time efficiency than a
linear search. Figure 3 shows the load balancing algorithm we use.
Threshold IT (Improvement Threshold) in % is used in algorithm
to trade off the balancing result versus the migration cost. That is,
the gains of the "best" load balancing may trade-off the computing
and reconfiguration cost needed to achieve this load balancing.
The algorithm stops when the system imbalance degree (Jciuster
cannot be decreased anymore or balance improvement has
reached the threshold IT.

Input: 1. NL 2. {Bi,B2,…,Bi^}

1.
2.
3.
4.
5.
6.

7.

8.
9.
10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Begin
initialize bucket movements m = { } ;
compute utility load li of each node ni;
compute “location” of each bucket bij in each node ni ;
sort all the nodes by utility load;
build kd-tree for each node according to “location” of

each bucket in the node ;
let Ua and Ui, be the nodes with maximum and

minimum utility load;
compute initial cluster standard deviation ffcluster ;
initialize cluster’s balance degree improvement A= 0;
set running = true;
while(A< IT && running)
begin

compute “location” of point h;
get the bucket &„y closer to point h via nearest

neighbor search in kd-tree of n^;
compute Cciuster if ^ayis moved from n^ to Ui,;

if ('^cluster < '^cluster)
add(^baj,na ^ nj,) to m;
update kd-tree in n^ and nj,
re-sort all the nodes by utility load;
identify n^ and nj,;
^= ('^cluster ~ ^cluster)/^cluster ;
^cluster = ^cluster

else: set running = false;
end

return m

Figure 3. Load Balancing Algorithm

5. EVALUATION
In here we evaluate the effectiveness of our dynamic load
balancing algorithm with an exhaustive evaluation. We generated
programs to generate the various load distributions. BL, BB, MM
and NN are separately applied as selection policy and compared
of their effects on multi-resource load balancing. For each bucket
in a cache node, its size is generated randomly in range]0-1MB]
and the data request rate in range [0-1,000/s]. For a cache node, its
CPU and memory usage are also generated randomly in the range
(10-100%). The number of cache nodes is varied in [20,120]. The
number of buckets per node is set to 2,000 and the system balance
improvement threshold (IT) to 100%. We set the improvement

thresholds as 100%, so that the algorithm keeps running until it
cannot decrease the imbalance degree anymore, this will allow the
comparison of policies for their best case. We evaluate the
effectiveness of load balancing in Section 5-A, the reconfiguration
cost in Section 5-B and the execution time of the algorithm for
different configurations in Section 5-C. All values shown are
obtained by an average on 20 runs.

Figure 4. Balancing effect of policies on CPU when avg.
(CPU, MEM) loads are (20%, 80%)

Figure 5. Balancing effect of policies on Memory when avg.
(CPU, MEM) loads are (20%, 80%)

A. Effectiveness of load balancing

Since weights 1 and ii introduced in Section 3 are dependent on
CPU and memory load distributions in system, therefore, our load
balancing result is closely related to the CPU and memory
distributions. E.g., when the average CPU usage is higher than
memory, the CPU is given a higher weight than memory for
calculating the utility load (; and the system imbalance degree
ocluster, hence, a node with higher CPU usage is more likely to be
balanced first and will be given a higher priority to be balanced
than memory. In order to validate the effect of this prioritized
strategy, we recorded the load balancing result when system’s
average CPU usage and average memory usage are in different
magnitudes. Specifically, we analyze the balancing result when
average CPU (CPU_Avg) and Memory usages (MEM_Avg) are
(20%, 80%), (35%, 65%) and (50%, 50%), respectively, which
are shown in Fig. 4 to 9. The attained balance is measured as the
CPU (%) and memory standard deviation (SD) improvements (%).
For a CPU usage SD of 30 that becomes 10 after load balancing,
the CPU standard deviation improvement is (30-10)/30= 67%.

Figure 4 and Figure 5 show the algorithm effectiveness on

Figure 6. Balancing effect of policies on CPU when avg.
(CPU, MEM) loads are (35%, 65%).

Figure 8. Balancing effect of policies on CPU when avg.
(CPU, MEM) loads are (50%, 50%)

balancing CPU and Memory respectively when the average usage
of CPU and Memory are (20, 80). Memory is a much scarcer
resource in this case, thus Memory will be given a higher priority
to be balanced in our policy NN; all selection policies show
significant effects on improving the balance degree of memory
among cache nodes, our policy NN is slightly better than the
others as shown in Figure 5. However, the effectiveness of the
different policies are quite different if we look at the CPU balance
(Figure 4). BL improves CPU balance, while BB and MM show a
negative impact on CPU balance since the CPU standard
deviation have increased after load balancing. Our algorithm, NN,
provides the best results for CPU balance.

When CPU and memory usages are close to each other, (35, 65)
and (50, 50) respectively, BL shows a weaker balancing effect
than the others, while our policy NN shows best results for
balancing both CPU and memory (Figures 6-9). In case CPU and
memory usages are (50, 50), since and are both 0.5, the two
resources have equal weight to be balanced, Figure 8 and 9 shows
that the balancing result for CPU and memory are roughly the
same with approximately 50% improvement using our policy NN.

Figures 4-9 show that NN can achieve prioritized balancing
results for CPU and memory based on the load distributions of
both resources. Besides, compared with other policies, our policy
NN demonstrates a noticeable improvement on balancing multiple
resources. Note that since we randomly generate loads for buckets,

there might be relatively light buckets co-existing with heavy
buckets in the cache system. The load balancing algorithm will
migrate the heavier loaded buckets at the beginning. At a later
phase the migration, migrating less loaded buckets will provide a
finer grain load balancing.

B Reconfiguration cost

Figure 7. Balancing effect of policies on Memory when
avg. (CPU, MEM) loads are (35%, 65%)

Figure 9. Balancing effect of policies on Memory when
avg. (CPU, MEM) loads are (50%, 50%)

In this section we evaluate the reconfiguration costs using
different policies. We count the number of buckets to migrate
among all the buckets and obtain the percentage value. Figure 10
shows the proportion of migrated buckets using different policies.
BL shows the lowest reconfiguration cost; our policy, NN, shows
a slightly higher reconfiguration cost compared with BL, while
MM shows highest reconfiguration cost followed by BB.
Although in terms of reconfiguration cost, BL is better than the
others, the result of balancing multiple loads using BL is the worst
among all policies.

On the other side, reconfiguration cost can also be affected by the
system balance improvement threshold IT set in algorithm. We
recorded the balancing result when average CPU and memory
usage are (50%, 50%). We evaluate the reconfiguration cost when
IT is set at 50%, 40%, 30%, respectively, using our policy NN.
Figure 11 demonstrates that this threshold plays an important role
in the cost of reconfiguration and can avoid reconfigurations that
are costly but provide a too small improvement in the balance.

Number of nodes

Figure 10. Reconfiguration cost under different policies

Number of nodes

Figure 12. Time efficiency under different policies

Figure 14. Time efficiency under different buckets
number per node

C. Time efficiency

We also evaluate the execution time of algorithm using each
policy. The result is measured when all policies reach their best
load balancing result. Figure 12 shows that our policy, NN, is
much better than the others with the lowest execution time. The
time to compute the reconfiguration is around 3 seconds in a
system with 240,000 buckets; MM takes around 13 seconds to
finish, while BB and BL need 11 and 8 seconds, respectively. This
is due to the adoption of kd-tree to avoid linear scans to find the
optimal solution in each step of algorithm. Kd-tree needs a O (log
n) time complexity on average to find the nearest neighbor among
buckets, which is much better than scanning linearly all the
buckets as BL, BB and MM do, which has an O(n) time
complexity. The figure also shows that execution time increases

Figure 11. NN reconfiguration cost under different
thresholds

Figure 13. NN time efficiency under different thresholds

with the number of cache nodes using all policies, but our policy
NN has the slowest growing pace.

As it happens with the reconfiguration cost, execution cost may
also be affected by the threshold set in algorithm. Nowwe
evaluate the execution time using different IT values, namely 0.5,
0.4, and 0.3, and values are also recorded when the average load
for CPU and Memory are (50%, 50%). Figure 13 shows the
trade-off effect of IT for balancing result vs. execution cost using
policy NN. Note that the execution time shown for NN also
includes the time spent in building the k-d trees.

Besides, execution time of policies can also be affected by the
number of buckets. In previous simulations, we fixed the buckets
number in each node to 2,000. In this experiment we measure the
execution time of the NN policy changing the number of buckets
per node. Nodes number is set to 100, time cost has been counted
when buckets number per node increase from 500 to 3,000. Figure
14 shows that the execution time cost growth with the number of
buckets per node.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a multi-resource load balancing algorithm
targeting at large cloud cache systems. The algorithm aims at
balancing both CPU and memory usage among cache nodes. This
is accomplished by migrating data partitions among cache nodes.
Our algorithm gives different weights to the resources based on
the system load distribution. The scarcer a resource is, the higher
its weight is. Simulation shows that compared to previous work,
our algorithm attains a better balance for both CPU and memory,

and it also reduces the reconfiguration cost, that is, the amount of
data buckets to be migrated, exhibiting the lowest execution time.

In future work, we plan to extend this algorithm to balance
multiple resources in a heterogeneous environment, that is,
capacities of resources in different cache nodes are different. We
would also like to test the effect and efficiency of our proposed
algorithm in a real cache system.

7. ACKNOWLEDGMENTS
This work has been partially funded by the
European Commission under project CumuloNimbo (FP7-
257993) [19], the Madrid Research Council under project
CLOUDS (S2009TIC-1692) with funding from ESF and ERDF
and the project CloudStorm funded by the Spanish Science
Foundation (TIN2010-19077).

8. REFERENCES
[1] Lucas Nealan. Caching & Performance: Lessons from

Facebook. Retrieved May 10,2012, from
http://www.scribd.com/doc/4069180/Caching-Performance-
Lessonsfrom-Facebook

[2] Roebuck, K. Platform as a Service(PaaS):High-Impact
Emerging Technology - What You Need to Know:
Definitions, Adoptions, Impact, Benefits, Maturity, Vendors.
Tebbo Publishers, 2011.

[3] Gualtieri, M. Rymer, J. R. The Forrester Wave™: Elastic
Caching Platforms, Q2 2010. Retrieved May 14, 2012,from
Forrester Companies:
http://www.forrester.com/The+Forrester+Wave+Elastic+Cac
hing+Platforms+Q2+2010/fulltext/-/E-
RES55505?docid=55505

[4] Perez-Sorrosal, F., Patiño-Martínez, M. Jiménez-Peris, R.
and Kemme, B. Elastic SI-Cache: consistent and scalable
caching in multi-tier architectures. The VLDB Journal — The
International Journal on Very Large Data Bases, 20 (6).841-
865

[5] Memcached. Retrieved March 15, 2012, from Dormando
Companies: http://memcached.org/

[6] Scudder, J. Effective Memcache. Retrieved June, 2012, from
https://developers.google.com/appengine/articles/scaling/me
mcache

[7] You, G. W., Hwang, S. W. and Jain, N. Scalable Load
Balancing in Cluster Storage Systems. In Proceedings of the
12th ACM/IFIP/USENIX international conference on
Middleware, (Lisboa, Portugal, 2011), Springer Publishers,
101-122.

[8] Sung Goo Yoo, Kil To Chong. Hot Spot Prediction
Algorithm for Shared Web Caching System using NN. In
2007 International Symposium on Information Technology
Convergence, (Jeonju, Korea, 2007), Springer Publishers,
125-129.

[9] Chandra Chekuri. On multidimensional packing problems.
SIAM Journal on Computing.33 (4).837-851.

[10] Csirik, J., Frenk, J. B. G., Labbé, M and Zhang, Shu. On the
multidimensional vector bin packing. Acta Cybern
Publishers, 1990.

[11] Chekuri C., Khanna S. On multi-dimensional packing
problems. In Proceedings of the 10th annual ACM-SIAM
symposium on discrete algorithms. (Baltimore, Maryland,
1999), Society for Industrial and Applied Mathematics
Philadelphia Publishers, 185-194

[12] Patt-Shamir, B., Rawitz, D. Vector bin packing with
multiple-choice. In Proceedings of the 12th Scandinavian
conference on Algorithm Theory.(Bergen, Norway, 2010),
Springer Publishers, 248-259.

[13] Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R.,
Stoica, I. Load balancing in dynamic structured peer-to-peer
systems. Performance Evaluation - P2P computing systems,
63(3). 217-240.

[14] Kunkle D., Schindler J. A load balancing framework for
clustered storage systems. In Proceedings of the 15th
International Conference on High Performance Computing,
(Bangalore, India, 2008). Springer Publishers, 57-72.

[15] Gulisano, V., Jiménez-Peris, R., Patiño-Martínez, M.,
Soriente, C., Valduriez, P. StreamCloud: An Elastic and
Scalable Data Streaming System. In Proceedings of the 2012
Parallel and Distributed Systems. Page(s): 1

[16] Milan-Franco, J. M., Jiménez-Peris, R., Patiño-Martínez, M.
and Kemme, B. Adaptive Middleware for Data Replication.
In Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware,(Toronto, Canada, 2004). ACM
Publishers, 175-194.

[17] Leinberger, W., Karypis, G., Kumar, V. Job scheduling in
the presence of multiple resource requirements. In
Proceedings of the 1999 ACM/IEEE conference on
Supercomputing, (Portland, Oregon, USA, 1999) ACM
Publishers.

[18] Chih-Chiang, Y., Kun-Ting, C., Jing-Ying, C. Market-Based
Load Balancing for Distributed Heterogeneous Multi-
Resource Servers. In Proceedings of the 2009 15th
International Conference on Parallel and Distributed
Systems (Shenzhen, China, 2009) IEEE Computer Society
Publishers, 158-165.

[19] Jiménez-Peris, R., Patiño-Martínez, M., Magoutis, K. Bilas,
A. and Brondino, I. CumuloNimbo: A highly-scalable
transaction processing platform as a service. ERCIM NEWS
nº 89, Special theme Big Data, 34-35. April 2012.

[20] Friedman, J. H., Baskett, F. and Shustek, L. J. An algorithm
for finding nearest neighbors. IEEE Transactions on
Computers, C-24(10). 1000-1006.

http://www.scribd.com/doc/4069180/Caching-PerformanceLessonsfrom-Facebook
http://www.scribd.com/doc/4069180/Caching-PerformanceLessonsfrom-Facebook
http://www.forrester.com/The+Forrester+Wave+Elastic+Cac
http://memcached.org/
https://developers.google.com/appengine/articles/scaling/me

