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ABSTRACT 
With the advent of cloud computing model, distributed caches 
have become the cornerstone for building scalable applications. 
Popular systems like Facebook [1] or Twitter use Memcached [5], 
a highly scalable distributed object cache, to speed up applications 
by avoiding database accesses. Distributed object caches assign 
objects to cache instances based on a hashing function, and 
objects are not moved from a cache instance to another unless 
more instances are added to the cache and objects are redistributed. 
This may lead to situations where some cache instances are 
overloaded when some of the objects they store are frequently 
accessed, while other cache instances are less frequently used. 

In this paper we propose a multi-resource load balancing 
algorithm for distributed cache systems. The algorithm aims 
at balancing both CPU and Memory resources among 
cache instances by redistributing stored data. Considering the 
possible conflict of balancing multiple resources at the same 
time, we give CPU and Memory resources weighted priorities 
based on the runtime load distributions. A scarcer resource is 
given a higher weight than a less scarce resource when load 
balancing. The system imbalance degree is evaluated based 
on monitoring information, and the utility load of a node, a 
unit for resource consumption. Besides, since continuous 
rebalance of the system may affect the QoS of applications 
utilizing the cache system, our data selection policy ensures that 
each data migration minimizes the system imbalance degree and 
hence, the total reconfiguration cost can be minimized. An 
extensive simulation is conducted to compare our policy with 
other policies. Our policy shows a significant improvement 
in time efficiency and decrease in reconfiguration cost. 

1. INTRODUCTION 
Platform as a Service (PaaS) has been proposed in the context of 
cloud computing as a solution to deliver computing platforms that 
facilitate application deployment by reducing the cost and 
complexity of managing underlying hardware and software for 
users [2]. One of the most significant requirements for PaaS 
providers is to deal with large number of users and considerable 
amounts of data. Handling large amount of data is also a big issue 
to tackle in Infrastructure as a Service (IaaS) and Software as a 
Service (SaaS). According to Forrester, Facebook employs a 
petabyte of storage to manage 40 billion photos of its millions of 
users. Some other web giants, such as Amazon and eBay, face 
similar scale [3]. In order to cope with this scale problem, multi-
tier architectures become an important building block for many 
applications in the cloud [4]. A fast, scalable, and fault-tolerant 
data-access layer, known as cache system (platform) or in-
memory data grid is added on top of the database to provide a fast 
access to data, and meet the scalability requirement of cloud 
environments. For example, Google App Engine uses 
memchached [5] for caching popular pages, frequently updated 
data, etc.[6]. 

Application workloads in the cloud are dynamic and change over 
time, thus, data stored in a cache platform are retrieved and 
updated in a varying manner, which means workloads become 
imbalanced over cache nodes and can be skewed to small fraction 
of data partitions [7]. Large number of concurrent data accesses to 
certain partitions of cached data (hotspots) may cause a high 
consumption of resources such as CPU and Memory at the cache 
node where these data are stored in, possibly leading to system 
bottlenecks [8]. In order to eliminate these bottlenecks, the system 
must be monitored and provide mechanisms for dynamically 
balancing the load. Figure 1 shows a possible scenario where our 
algorithm may be applied in. In the figure there are eight cache 
nodes in a single data center. Each one stores some objects that 
are grouped into “buckets”. A bucket is the unit of data migrated 
between cache nodes. The figure shows two overloaded cache 
nodes in red and dashed lines link the nodes involved in the data 
migration. 

In this paper, we propose a dynamic load balancing strategy to 
balance multiple resources (namely, CPU and Memory) among 
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cache nodes in a single data center at runtime. Our main 
contributions are: 

(1) A load balancing algorithm for redistributing stored data 
among cache nodes and hence, mitigating the imbalance degree. 
Since optimizing multiple resources at the same time may lead to 
contradicting goals, our algorithm firstly identifies which are the 
scarcer resources based on the runtime load distributions, and then 
assigns resources different priorities based on this diagnosis. As a 
result of the load balancing algorithm, some data partitions must 
be moved from one cache node to another to rebalance the load. 
This data migration incurs in extra consumption of resources such 
as CPU and network bandwidth, thus, reconfiguration cost is 
considered by the load balancing algorithm. Our proposed greedy 
algorithm seeks a local optimal solution to minimize the system 
imbalance degree in each step, a nearest-neighbor-search based 
policy is proposed to select the bucket to be migrated. Besides, 
since we avoid linear scanning to find this bucket, the time 
efficiency is improved compared with some other approaches. 

(2) A detailed evaluation of the proposed algorithm is presented. 

Figure 1. Scenario of Load Balancing in Cache Platform 

The rest of the paper is organized as follows: related work is 
presented in Section 2. Section 3 provides some necessary 
definitions and goals. Section 4 illustrates the load balancing 
algorithm. Section 5 evaluates the performance of the load 
balancing algorithm and compares it with algorithms using other 
data selection policies. Conclusions and future work are presented 
in Section 6. 

2. RELATED WORK 
The search of optimal load balancing of multiple resources is a 
variant of bin-packing problem, namely multidimensional-vector 
packing problem, which is proved to be NP-hard [9]. The problem 
consists in packing a certain number of m-dimensional items into 
a minimum number of m-dimensional bins with independent 
capacity in each of the m dimensions [10]. In the context of load 
balancing for a distributed cache, a node can be treated as a bin 
with multidimensional capacities, each of which should be a value 

close to the average utilization of a resource in the cache cluster. 
Each data bucket (set of objects and migration unit) is an item to 
be packed with multiple dimensional weights, each of which 
should be the usage of a certain resource. Load balancing of 
multiple resources can be regarded as packing all the data buckets 
into the available nodes while ensuring that all the nodes are as 
“full” as possible. Papers [9][10][11][12] propose algorithms for 
multidimensional vector problems. However, all these algorithms 
obtain the approximate optimal solution off-line. Off-line 
approaches compute new configuration without considering the 
current configuration, which may cause a big change to the 
previous configuration, resulting in a very high reconfiguration 
cost. 

Compared with off-line approaches, on-line load balancing 
computes a new configuration taking into account the current 
configuration of the system and tries to minimize the 
reconfiguration cost. Paper [13] describes how to eliminate 
bottlenecks in a P2P system by redistributing data among nodes. 
The algorithm uses an “extract and reallocate” pattern, it firstly 
extracts some lightest loaded data buckets from all nodes so that 
the load of each node is below a given threshold ordered from 
heaviest to lightest, it then reallocates these buckets back to 
system using a best-fit strategy. Greedy and evolutionary 
algorithms are proposed to mitigate the imbalance as well as 
minimize reconfiguration cost in [14]. Greedy algorithms for load 
balancing have also been studied in the context of data streaming 
and replicated databases [15][16]. In these algorithms, a bucket is 
always moved from the heaviest loaded node to the lightest one. 
The heaviest bucket that will decrease the system imbalance will 
be picked. Paper [7] has proposed a strategy to eliminate hot-spots 
as well as to minimize the reconfiguration cost for a large scale 
system, such as the Hotmail server cluster. However, all of these 
studies focus on balancing one single type of load, CPU for 
instance. Balancing only one resource may inadvertently produce 
bottlenecks in other resources. 

Multi-resource load balancing has been widely studied in the 
context of job scheduling where tasks (jobs) are migrated. In such 
scenarios, each task being executed on a server has different 
requirements for multiple resources, such as CPU, Memory and 
bandwidth. Backfill Lowest (BL) and Backfill Balance (BB) [17] 
are two popular policies for job selection. Once the sender node 
and receiver node have been picked, BL determines which 
resource is most available in the receiver node, and then migrates 
the job that consumes most of that resource in sender node. BB 
migrates the job which can minimize the (maximum load/average 
load) measure for the receiving server. A Market Mechanism 
(MM) policy is presented in [18] to balance multiple resources 
among nodes with heterogeneous resource capacities. MM uses a 
pricing model(2]i (Ji * L;)/ Hi Ji) to calculate the cost per resource 
of a job. Jj denotes the job’s consumption of resource i, Lj is the 
load of resource i in receiver node before job migration, K is the 
number of resource types. The job with the lowest cost is selected. 
According to [18], MM improves both BL and BB, and it is more 
suitable for load balancing in heterogeneous systems. However, 
all of these three algorithms do not take the reconfiguration cost 
into account. Moreover, all of them need to find the target jobs 
using iteration among all jobs. Since the amount of data buckets in 
a cache node can be much higher than amount of jobs in a server, 
thus, iterating all the possible candidates will limit the efficiency 
of load balancing in a cache system. 



3. PROBLEM FORMULATION 
In cache systems, data are stored in memory due to its lower 
latency than persistent storage. The memory usage among cache 
nodes can be different because buckets may have different sizes 
(objects of different size) and the number of stored buckets among 
cache nodes may also be different. Besides, the memory usage of 
a single node changes dynamically. On the other hand, CPU usage 
among cache nodes can also be different since applications may 
have different access patterns to the data. Considering that both 
CPU and Memory are limited in cache systems, the load 
balancing algorithm must strive to balance both resources to 
eliminate hot spots. In this paper, we aim to achieve the following 
goals: 

(1) Minimize the load imbalance for multiple resources among 
cache nodes but with different priorities based on the runtime load 
diagnose. Specifically, we consider CPU and Memory resources. 

(2) Minimize the system reconfiguration cost; here we consider 
the number of data buckets to be migrated. 

Table 1. Definitions 

Definition 

N = {ni,n2 Uk} 

Q ={RI,R2,-Ri,-Rk} 

Description 

Set of cache nodes, k is the 
number of cache nodes in system. 

Number of buckets in each node. 
qi is the number of buckets in 
node ni. 

Bi = {bn, 

NL = 

{(q.miXC; 

BLt= 

{(ni ,Sj i) 

NL* = {(i, 

BL\ = 

bi2,-bic,J 

2,m2)...(ci„mi,)] 

•inq.,Siq.)} 

k U 

Set of buckets in node n;. 

Resource usage at each node 
(Cj,mj) is the average (CPU, 
Memory) resource usage in % at 
node rii in a time interval. 

Statistic info of each bucket in 
node n;. iriq,Siq) denotes the 
average data request rate and size 
of bucket biq., respectively. 

Utility load of all nodes. (; is the 
average utility load of node n; in 
a time interval. 

Load of each bucket in node n;. 
(Viq., cOiq.) represents the average 
(CPU, Memory) resource con­
sumption (%) of bucket biq. in a 
time interval. 

We assume that all cache nodes are homogeneous with equal 
capacities of CPU and Memory. Table 1 shows some required 
definitions for later discussions and algorithm design. The 
definitions cover several sets, including the number of cache 
nodes N, and data buckets {Bi,B2'•••-^fc}. It also introduces the 
load information we will use for load balancing, such as resource 
usage at each node, denoted by NL, and some statistic information 
about buckets in a time interval, denoted by {BLi,BL2, ...,BLfc}. 
In order to get these values, a monitoring mechanism periodically 
reports the resource usage at each node, as well as data request 
rate and size of each bucket. We will discuss sets NL* and 
{ BL\, BL*2,..., BL\} ( BL*i is the buckets load set at node n;) later. 

The load of each bucket is defined by its storage size and its 
associated CPU consumption. We use the request rate of a bucket 
to calculate its CPU consumption. The (CPU, Memory) load of a 
bucket bia is normalized as: 

•jt m 

(.Vla,(^la) = (Ci * (ria/2_^rij),mi * (Sia/2_^Sij)) 

7 = 1 7 = 1 

We have defined (C;, m;) as the (CPU, Memory) usage of a cache 
node. However, a measure is necessary to score a node’s overall 
load (utility load). This will be helpful for us to choose a node 
pair for data migration. We assume that the CPU and Memory 
usage are not related to each other. A utility function below 
defines the utility load /, of a node «,. 

li = 2. * Ci + (1 — X) * nil 

(J^QVj^CQ+'Tli) 

Dynamic weights A and 1—1 are used for CPU and Memory in 
order to capture the runtime load of a node. If CPU is a scarcer 
resource than memory at a particular instant, then a node with 
higher CPU usage is more likely to get a higher utility load. This 
will give the node a higher priority to be balanced. 

Standard deviation (Jcpu and (Jmem are used to evaluate the 
imbalance degree of CPU and Memory usage among cache nodes, 
respectively. (Jciuster captures the cluster’s load imbalance degree. 
Since balancing both CPU and Memory resources may lead to 
conflictive goals, the formula uses dynamic weights ii and 1 — ii 
for (Tcpu and (Trnem, respectively. If CPU is scarcer than memory, 
it is more likely that the CPU becomes the system bottleneck. In 
this case, A> 1 — A and ii > 1 — ii, then CPU is prioritized over 
memory in the load balancing. 

H = 17(12 + (1 

4. LOAD BALANCING ALGORITHM 
Computing an optimal solution for balancing multiple resources 
as well as minimizing the reconfiguration cost is an NP-complete 
problem. Therefore, we use a greedy algorithm to obtain an 
approximate solution. The algorithm consists of a number of steps 
{stepo,stepj^, ...,stepj^}. In each step, the algorithm migrates a 
bucket from the node with heaviest utility load defined in Section 
3 to the one with the lightest load. We use a nearest-neighbor-
search (NN) policy in order to select the bucket to be migrated. 
This policy ensures that at each step of the algorithm, the bucket 
that can minimize the system imbalance after migration is selected 
from the heaviest loaded node. The NN policy is derived as 
follows: 

Let us assume that at the beginning of step^ , the system 
imbalance degree is (Tciuster, the most loaded node and lowest 



loaded node are n„ and Ji;,, respectively. After moving a bucket 
from the most loaded to the lowest loaded, the system imbalance 
degree becomes (y*ciuster. Our goals are that this imbalance degree 
is decreased (1) and this imbalance degree is minimized (2). 

( 1 ) ^cluster "^ ^cluster 

(2) (y''i.i^g^i,y is minimal 

Suppose buckets b^j with load (Vaj,o^aj) is the bucket we are 
looking for, according to Section 3, â ,„j,fĝ  and o'li^^^^^ can be 
computed as follows: 

<^1luster = A^KCl - CY + (c^ - cY + - + (c„ - c ) 2 ] / f e + 

(1 — Ai)[(mi — nty + (m.2 — m)^ H h (m,^ — m)^]/k 

O'^cluster = y" [••• + (Ca - " a ; - c ) ^ + ••• + (cj , + V^j - c ) ^ + ••• ] / fe + 

(1 - fi) [••• + (m„ - co^j - mf + ••• + (mj, + &)„; - mf + •••yk 

In order to get the minimal value of 0*1̂ 5̂ 2̂ , let us define: 

* = ^'^'cluster ~ '^cluster) * ^ 

Apparently, finding the minimal value of 0*1̂ 5̂ 2̂  can be 
transformed into finding the minimal value of t. 

t = tl \{Ca - Vaj - cf - (C„ - c ) ^ + (cj , + V^j - cf - (Cj, - c ) 2]+ 

(1 - II) [(m„ - (i>^j - mf - (nil - fhy + (m^ + ai^j - mf - (m^ - m)̂ ] 

= 2A([U„/ - (c„ - c^)Vaj] + 2 (1 - A()[&)a/ - (m„ - m^)aiaj] 

= '^li["aj - (Ca - Cfi)/2] + 2 (1 - li)[cOaj - {m^ - m^)/2] -

[fi(Ca - c^y + (1 - Ai)(ma - ni^y]/2 

= 2{[Xv,j - A(c„ - c,)/2f + [(1 - A)oj,j - (1 - A)(m„ - m,)/2f]/ 

[X' + (1 - A)2] - [f((c„ - c,f + (1 - A()(m„ - m,f]/2 

Since X,n,Ca,Ci,,ma,mi, are all constants within a certain step, 
thus, when t is minimal, the following measure should be minimal: 

[Xv^j - A(c„ - c,)/2 ]2 + [(1 - X)oj^j - (1 - A)(m„ - m,)/2]2 

Therefore, finding the local optimal solution for step^ can be 
transformed as a nearest-neighbor-search problem. In our 
scenario, each bucket &„; in node n„ can be treated as a point in 
metric space of dimension 2, since it has two associated load 
values(iiai, (x>ad. The location of this point (bucket) in space is: 

bal-Q<»al,O--'>^)(^al),{Val,(^al) ^ BL*a 

Given a point h with location as follows, our target point to search 
is the one nearest to point h, point (bucket) b^j above should be 
the one closest to point h in node n^. 

h:(X(Ca-c„)/2,(l-X)(ma-m„)/2) 
Figure 2 shows an example of bucket selection using different 
policies. Let us assume we have 3 cache nodes in the system, the 
(CPU, Memory) loads (%) of the nodes are (90, 70), (60, 30), (30, 
20), respectively, before data migration. The load of each bucket 
at each node is shown in Figure 2 (a). Take node (90, 70) as an 
example, there are 3 buckets, each bucket’s CPU and memory 
load are (30, 20), (20, 40), (40, 10), respectively. According to 
Section 3, the weight X = (90+60+30) / (90+60+30+70+30+20) = 
0.6. The utility load of each node is calculated as 0.6*90 + (1-
0.6)*70 = 82, 0.6*60 + (1-0.6)*30 = 48, and 0.6*30 + (1-0.6)*20 
= 26, respectively. Since node (90, 70) is the one with highest 
utility load, and node (30, 20) is the one with lowest, therefore, a 
bucket will be migrated from node (90, 70) to (30, 20). If BL was 
adopted, since Memory is more available than CPU with 20 
versus 30 in node (30, 20), bucket (20, 40) demands most of the 

Memory resource among all the three buckets in node (90, 70), 
thus, bucket with load (20, 40) would be selected. If BB was 
applied, in case bucket (40, 10) was selected, the measure 
(maximum load/average load) on node (30, 20) would be 
calculated as max (40+30, 10+20) / [(40+30+10+20)/2] = 1.4. In 
the same way, the measure would be 1.1 and 1.2 if bucket (20, 40) 
and (30, 20) was selected, respectively. Since bucket (20, 40) 
minimizes this measure, thus, it would be selected for migration. 
In the case that MM was used, the cost of migrating bucket (40, 
10) would be (40*30 + 10*20) / (40+10) = 28. Similarly, the cost 
would be 23 and 26 if bucket (20, 40) and (30, 20) was selected, 
respectively. Since bucket (20, 40) has the lowest cost, therefore, 
it would be selected. However, if our policy NN was applied, we 
firstly identify the “location” of “point” h introduced previously, 
which is (0.6*(90-30) / 2, 0.4*(70-20) / 2), namely (18, 10). The 
“location” of bucket (40, 10) is (0.6*40, 0.4*10), namely (24, 4). 
In the same way, the “location” of bucket (20, 40) and (30, 20) is 
(12, 16) and (18, 8) respectively. Bucket (30, 20) would be 
selected since it is closest to “point” h. 

Figure 2(b) shows the result of data migration if BL, BB, MM 
policy is applied. Figure 2(c) shows the result of data migration of 
our policy NN. If we migrate bucket (20, 40) as Fig. 2(b) shows, 
the deviations of CPU and Memory would be 8.2 and 14.1 
respectively after migration. However, if bucket (30, 20) is 
migrated as Figure 2(c) shows, the deviations would be 0 and 8.2, 
which achieves a better balancing result for multiple resources. 
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Figure 2. Example of different policies 

Our algorithm can be easily transformed to balance any number of 
resources (multiple dimensions). The above goals must be 
transformed into finding the nearest neighbor in a metric space N, 
where N is the amount of resource dimensions (types). There are 
many previous studies on nearest-neighbor-search problem. Kd-

40 
10 

30 

20 



tree of Friedman and Bentley [20] has been widely adopted to 
solve this problem. Kd-tree is a space-partitioning data structure 
for organizing points in a k-dimensional space. We applied kd-
tree and nearest neighbor search to find the target bucket in the 
most loaded node, this achieves a better time efficiency than a 
linear search. Figure 3 shows the load balancing algorithm we use. 
Threshold IT (Improvement Threshold) in % is used in algorithm 
to trade off the balancing result versus the migration cost. That is, 
the gains of the "best" load balancing may trade-off the computing 
and reconfiguration cost needed to achieve this load balancing. 
The algorithm stops when the system imbalance degree (Jciuster 
cannot be decreased anymore or balance improvement has 
reached the threshold IT. 

Input: 1. NL 2. {Bi,B2,…,Bi^} 

1. 
2. 
3. 
4. 
5. 
6. 

7. 

8. 
9. 
10. 
11. 
12. 
13. 
14. 

15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

Begin 
initialize bucket movements m = { } ; 
compute utility load li of each node ni; 
compute “location” of each bucket bij in each node ni ; 
sort all the nodes by utility load; 
build kd-tree for each node according to “location” of 

each bucket in the node ; 
let Ua and Ui, be the nodes with maximum and 

minimum utility load; 
compute initial cluster standard deviation ffcluster ; 
initialize cluster’s balance degree improvement A= 0; 
set running = true; 
while( A< IT && running) 
begin 

compute “location” of point h; 
get the bucket &„y closer to point h via nearest 

neighbor search in kd-tree of n^; 
compute Cciuster if ^ayis moved from n^ to Ui,; 

if ('^cluster < '^cluster) 
add(^baj,na ^ nj,) to m; 
update kd-tree in n^ and nj, 
re-sort all the nodes by utility load; 
identify n^ and nj,; 
^= ( '^cluster ~ ^cluster)/^cluster ; 
^cluster = ^cluster 

else: set running = false; 
end 

return m 

Figure 3. Load Balancing Algorithm 

5. EVALUATION 
In here we evaluate the effectiveness of our dynamic load 
balancing algorithm with an exhaustive evaluation. We generated 
programs to generate the various load distributions. BL, BB, MM 
and NN are separately applied as selection policy and compared 
of their effects on multi-resource load balancing. For each bucket 
in a cache node, its size is generated randomly in range ]0-1MB] 
and the data request rate in range [0-1,000/s]. For a cache node, its 
CPU and memory usage are also generated randomly in the range 
(10-100%). The number of cache nodes is varied in [20,120]. The 
number of buckets per node is set to 2,000 and the system balance 
improvement threshold (IT) to 100%. We set the improvement 

thresholds as 100%, so that the algorithm keeps running until it 
cannot decrease the imbalance degree anymore, this will allow the 
comparison of policies for their best case. We evaluate the 
effectiveness of load balancing in Section 5-A, the reconfiguration 
cost in Section 5-B and the execution time of the algorithm for 
different configurations in Section 5-C. All values shown are 
obtained by an average on 20 runs. 

Figure 4. Balancing effect of policies on CPU when avg. 
(CPU, MEM) loads are (20%, 80%) 

Figure 5. Balancing effect of policies on Memory when avg. 
(CPU, MEM) loads are (20%, 80%) 

A. Effectiveness of load balancing 

Since weights 1 and ii introduced in Section 3 are dependent on 
CPU and memory load distributions in system, therefore, our load 
balancing result is closely related to the CPU and memory 
distributions. E.g., when the average CPU usage is higher than 
memory, the CPU is given a higher weight than memory for 
calculating the utility load (; and the system imbalance degree 
ocluster, hence, a node with higher CPU usage is more likely to be 
balanced first and will be given a higher priority to be balanced 
than memory. In order to validate the effect of this prioritized 
strategy, we recorded the load balancing result when system’s 
average CPU usage and average memory usage are in different 
magnitudes. Specifically, we analyze the balancing result when 
average CPU (CPU_Avg) and Memory usages (MEM_Avg) are 
(20%, 80%), (35%, 65%) and (50%, 50%), respectively, which 
are shown in Fig. 4 to 9. The attained balance is measured as the 
CPU (%) and memory standard deviation (SD) improvements (%). 
For a CPU usage SD of 30 that becomes 10 after load balancing, 
the CPU standard deviation improvement is (30-10)/30= 67%. 



Figure 4 and Figure 5 show the algorithm effectiveness on 

Figure 6. Balancing effect of policies on CPU when avg. 
(CPU, MEM) loads are (35%, 65%). 

Figure 8. Balancing effect of policies on CPU when avg. 
(CPU, MEM) loads are (50%, 50%) 

balancing CPU and Memory respectively when the average usage 
of CPU and Memory are (20, 80). Memory is a much scarcer 
resource in this case, thus Memory will be given a higher priority 
to be balanced in our policy NN; all selection policies show 
significant effects on improving the balance degree of memory 
among cache nodes, our policy NN is slightly better than the 
others as shown in Figure 5. However, the effectiveness of the 
different policies are quite different if we look at the CPU balance 
(Figure 4). BL improves CPU balance, while BB and MM show a 
negative impact on CPU balance since the CPU standard 
deviation have increased after load balancing. Our algorithm, NN, 
provides the best results for CPU balance. 

When CPU and memory usages are close to each other, (35, 65) 
and (50, 50) respectively, BL shows a weaker balancing effect 
than the others, while our policy NN shows best results for 
balancing both CPU and memory (Figures 6-9). In case CPU and 
memory usages are (50, 50), since and are both 0.5, the two 
resources have equal weight to be balanced, Figure 8 and 9 shows 
that the balancing result for CPU and memory are roughly the 
same with approximately 50% improvement using our policy NN. 

Figures 4-9 show that NN can achieve prioritized balancing 
results for CPU and memory based on the load distributions of 
both resources. Besides, compared with other policies, our policy 
NN demonstrates a noticeable improvement on balancing multiple 
resources. Note that since we randomly generate loads for buckets, 

there might be relatively light buckets co-existing with heavy 
buckets in the cache system. The load balancing algorithm will 
migrate the heavier loaded buckets at the beginning. At a later 
phase the migration, migrating less loaded buckets will provide a 
finer grain load balancing. 

B Reconfiguration cost 

Figure 7. Balancing effect of policies on Memory when 
avg. (CPU, MEM) loads are (35%, 65%) 

Figure 9. Balancing effect of policies on Memory when 
avg. (CPU, MEM) loads are (50%, 50%) 

In this section we evaluate the reconfiguration costs using 
different policies. We count the number of buckets to migrate 
among all the buckets and obtain the percentage value. Figure 10 
shows the proportion of migrated buckets using different policies. 
BL shows the lowest reconfiguration cost; our policy, NN, shows 
a slightly higher reconfiguration cost compared with BL, while 
MM shows highest reconfiguration cost followed by BB. 
Although in terms of reconfiguration cost, BL is better than the 
others, the result of balancing multiple loads using BL is the worst 
among all policies. 

On the other side, reconfiguration cost can also be affected by the 
system balance improvement threshold IT set in algorithm. We 
recorded the balancing result when average CPU and memory 
usage are (50%, 50%). We evaluate the reconfiguration cost when 
IT is set at 50%, 40%, 30%, respectively, using our policy NN. 
Figure 11 demonstrates that this threshold plays an important role 
in the cost of reconfiguration and can avoid reconfigurations that 
are costly but provide a too small improvement in the balance. 



Number of nodes 

Figure 10. Reconfiguration cost under different policies 

Number of nodes 

Figure 12. Time efficiency under different policies 

Figure 14. Time efficiency under different buckets 
number per node 

C. Time efficiency 

We also evaluate the execution time of algorithm using each 
policy. The result is measured when all policies reach their best 
load balancing result. Figure 12 shows that our policy, NN, is 
much better than the others with the lowest execution time. The 
time to compute the reconfiguration is around 3 seconds in a 
system with 240,000 buckets; MM takes around 13 seconds to 
finish, while BB and BL need 11 and 8 seconds, respectively. This 
is due to the adoption of kd-tree to avoid linear scans to find the 
optimal solution in each step of algorithm. Kd-tree needs a O (log 
n) time complexity on average to find the nearest neighbor among 
buckets, which is much better than scanning linearly all the 
buckets as BL, BB and MM do, which has an O(n) time 
complexity. The figure also shows that execution time increases 

Figure 11. NN reconfiguration cost under different 
thresholds 

Figure 13. NN time efficiency under different thresholds 

with the number of cache nodes using all policies, but our policy 
NN has the slowest growing pace. 

As it happens with the reconfiguration cost, execution cost may 
also be affected by the threshold set in algorithm. Nowwe 
evaluate the execution time using different IT values, namely 0.5, 
0.4, and 0.3, and values are also recorded when the average load 
for CPU and Memory are (50%, 50%). Figure 13 shows the 
trade-off effect of IT for balancing result vs. execution cost using 
policy NN. Note that the execution time shown for NN also 
includes the time spent in building the k-d trees. 

Besides, execution time of policies can also be affected by the 
number of buckets. In previous simulations, we fixed the buckets 
number in each node to 2,000. In this experiment we measure the 
execution time of the NN policy changing the number of buckets 
per node. Nodes number is set to 100, time cost has been counted 
when buckets number per node increase from 500 to 3,000. Figure 
14 shows that the execution time cost growth with the number of 
buckets per node. 

6. CONCLUSIONS AND FUTURE WORK 
We have proposed a multi-resource load balancing algorithm 
targeting at large cloud cache systems. The algorithm aims at 
balancing both CPU and memory usage among cache nodes. This 
is accomplished by migrating data partitions among cache nodes. 
Our algorithm gives different weights to the resources based on 
the system load distribution. The scarcer a resource is, the higher 
its weight is. Simulation shows that compared to previous work, 
our algorithm attains a better balance for both CPU and memory, 



and it also reduces the reconfiguration cost, that is, the amount of 
data buckets to be migrated, exhibiting the lowest execution time. 

In future work, we plan to extend this algorithm to balance 
multiple resources in a heterogeneous environment, that is, 
capacities of resources in different cache nodes are different. We 
would also like to test the effect and efficiency of our proposed 
algorithm in a real cache system. 
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