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Abstract. An analytical expression is derived for the electron thermionic current from heated metals by 
using a non equilibrium, modified Kappa energy distribution for electrons. This isotropic distribution 
characterizes the long high energy tails in the electron energy spectrum for low values of the index K 
and also accounts for the Fermi energy for the metal electrons. The limit for large K recovers the classical 
equilibrium Fermi-Dirac distribution. The predicted electron thermionic current for low K increases between 
four and five orders of magnitude with respect to the predictions of the equilibrium Richardson-Dushmann 
current. The observed departures from this classical expression, also recovered for large K, would correspond 
to moderate values of this index. The strong increments predicted by the thermionic emission currents 
suggest that, under appropriate conditions, materials with non equilibrium electron populations would 
become more efficient electron emitters at low temperatures. 

1 Introduction 

The hot metallic surfaces with a uniform temperature T 
emit a thermionic electron current density Jrd(T) pre­
dicted by the classical Richardson-Dushmann (RD) ex­
pression. This model considers the Fermi-Dirac (FD) 
distribution for the energy spectrum of electrons in equi­
librium at the metal temperature . Under these ideal con­
ditions Jrd(T) essentially relies on both, the metal work 
function, Wf and its temperature T. This simple approach 
disregards other physical effects such as the geometry of 
the emitting surface or the presence of eventual contami­
nants. However, materials with irregular shapes, complex 
geometries and/or contaminated surfaces are frequently 
employed as thermionic electron emitters. Then, the as­
sumption of thermal equilibrium is scarcely found in prac­
tice. This results in irregular emitted electron fluxes and 
the emitted thermionic current varies according to the fa­
cial orientation of pure tungsten crystals [1,2]. Addition­
ally, traces of surface contaminants also strongly affect the 
thermionic electron emission properties [3], as well as the 
surface degradation during long times of operation [4,5], 

The experiments with ultrashort laser pulse irradiation 
of metals made apparent the different time scales involved 
in the electron energy relaxation. The excitation by fem­
tosecond laser pulses produces the thermal decoupling be­
tween the electrons and the metal lattice. The theoretical 
models consider a two temperature system where the ex­
cited electron population has a higher temperature than 
the metal lattice [6-8]. Therefore, the electrons within hot 
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metals might have a non equilibrium energy distribution 
function tha t deviates from the equilibrium F D statistics, 
as the high energy tails in the experiments indicate [9-11]. 
For ion and electron plasmas, the Kappa distribution for 
electrons corresponds to the solution of the Fokker-Planck 
equation accounting for collective effects and Coulomb col-
lisional processes [12,13]. The non equilibrium electron en­
ergy spectrum of excited electrons interacting with the 
metal lattice might be approximated by this distribution 
function. The classical derivation for Jrd(T) does not ac­
count for the departure from thermal equilibrium of metal 
electrons. 

In this paper we derive an analytical expression for 
the thermionic electron current density JK(T) by using a 
modified Kappa energy distribution. This latter accounts 
for the Fermi energy of the metal electrons and is the low 
temperature approximation of a more general isotropic K 
distribution as those discussed in references [14,15]. The 
non equilibrium electron energy spectrum leads to a more 
involved equation for JK (T) which recovers the expression 
for Jrd(T) in the limit for large K. To the best of our knowl­
edge, this analytical expression for JK(T) is not currently 
available. 

As we shall see, the departures from the FD statis­
tics found in the experiments, as those reported in 
references [2,9,10], could be explained by values of K 
corresponding to moderate deviations from the thermal 
equilibrium. Besides, the effect of the long electron energy 
tails for low K increases the non equilibrium thermionic 
current JK(T) by several orders of magnitude with respect 
to the classical RD expression. 
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2 The modified K distribution 
and the electron thermionic emission 

In the first place we modify the isotropic K distribution 
function to characterize the non equilibrium energy spec­
t rum of metal electrons with temperature Te. This latter 
corresponds to the average kinetic energy of the electron 
population, and the usual Kappa distribution is currently 
defined by K > 3/2 as [14,15], 

gK(Te,E) = BK(Te) 1 + 
E 

K Er 

-(« + l) 

where E = mev
2/2 is the electron energy, and BK(Te) 

is the normalization constant. Besides, Ec = mev
2/2 

is a characteristic kinetic energy related to the electron 
gas temperature Te through the average kinetic energy 
(mev

2/2). This gives [14], 

K Er knTP, 

where kB is the Boltzmann constant. The long high en­
ergy tails in the electron energy spectrum develop for low 
K while for large values gK(Te,E) reduces to the usual 
Maxwell-Boltzmann velocity distribution. 

As in the classical FD distribution function, we in­
troduce the Fermi energy ep = mev\j2 for the electron 
gas [16]. This transforms gK(Te,E) into. 

gK(Te,E) = BK(Te) 1 + 
E-eF 

K En 

-(«+i) 

The Fermi level energy modifies the average kinetic energy 
Ec because the electron energies are now calculated with 
respect to ep. The average kinetic energy using the above 
distribution leads to, 

K E C = eF + I K - - J kBTe. 

The modified K distribution for the electron kinetics 
becomes. 

fK(Te,E) = CK(Te)[l + 
E-eF 

kBTK 

-(«+i) 

(1) 

where we introduced for short TK = (K — 3/2 + 71) Te with 
71 = ep/kBTe. This energy distribution is normalized to 
the electron density 
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The constant CK(Te) in equation (1) becomes, 
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Fig. 1. Comparison of the classical equilibrium Fermi-Dirac 
distribution (solid line) with the modified K - F D distribution of 
equation (2) for different values of K. 

1.0 

" 5 0.8 
h-
LU 0 6 

cT 0.4 
LL 
w-y 0.2 

0.0 

I I I 

- J " " " * ! 5 ! 5 ^ © = 
^K *^v 

0 = 0.005 
- — 0 = 0.025 
- 0 = 0.05 

1 1 1 

1 1 

= k B T e / £ F -
-

K = 1 0 " 

\^ — 
>!£:•. 

^ " ^ 

1 ' 
0.6 0.8 1.0 

E / e F 

1.2 

Fig. 2. The effect of the temperature in the K - F D distribu­
tion. Solid line: G = 0.05; dashed line: G = 0.025; dotted line: 
G = 0.005. 

Notice tha t CK(Te) with vanishing 71 recovers the normal­
ization for the usual Kappa distribution. 

We suggest tha t the equation (1) derived for the 
electron kinetics corresponds to the limit of the follow­
ing generalized non equilibrium K Fermi-Dirac ( K - F D ) 
distribution for electrons. 

f£»(Te,E) = 
DK(Te 

l + (l + (E-eF)/kBTK) (« + l ) ' (2) 

Here DK(Te) is a normalization constant and this K - F D 
distribution reduces to the equilibrium Fermi-Dirac statis­
tics for large K. Similar expressions for the generalized en­
ergy distributions are considered in references [15,17] for 
non equilibrium systems. 

Figure 1 compares the K - F D distribution of equa­
tion (2) for different values of K with the classical Fermi-
Dirac statistics. The energies and temperatures are scaled 
with eF and f^D(Te,eF) = 1/2 for all K. The K - F D be­
comes smoothed for low K and fK(Te, E) of equation (1) 
is recovered when (E — ep) 3> kBTe or (E — ep) <C kBTe. 
The latter is our case, since the Fermi energies always lie 
in the order of few electron volts and are therefore much 
higher tha t the melting temperature of metals. Figure 2 
shows the small effect of the electron temperature Te for 
E ^ ep for fixed K = 10. Setting ep ~ 4.5 eV as for 
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Fig. 3. The high energy tails for E > £F for different val­
ues of K of the low temperature approximation for the K - F D 
distribution fK(E,Te) (Eq. (1)). 

Finally we obtain. 

JK(Te e 
•K k2 T2 

( 2 K - 3 + 2 7 I ) 2 

2K (K - 1) 

Wf 

kp,TK 
(4) 

Here, the term Wf = E0 — ep is the usual work function. In 
the limit for large K, since C ^ - ^ ^ e ) —> 2m3/h3, JK(Te) 
reduces to the Richardson-Dushmann current density 

T ,m N 4TT m e A;2 T 2 

Jrd(Te) = e e
h3

B e exp 

3 Results and conclusions 

PF / 
A;BT» 

tungsten the scaled temperatures & = Te/ep of Figure 2 
corresponds to Te ~ 2600-3900 K. These are the typical 
metal temperatures T for appreciable thermionic emission 
where Te = T is also currently assumed. 

Equation (1) is represented in Figure 3 which is re­
covered for low temperature approximation f^D(Te, E) ~ 
fK(Te, E) when E — ep 3> ksTe. The low values of K (solid 
lines) exhibit the long energy tails compared with the 
fast decay of the Maxwell-Boltzmann distribution (dotted 
line). This departure from the equilibrium energy spec­
t rum of electrons is responsible for the increments ob­
served in the thermionic current [9]. 

Finally, following the traditional Richardson-
Dushmann model we calculate the emitted electron 
thermionic current. Equation (1) with K > 3/2 might 
model the energy spectrum of a non equilibrium electron 
gas within the metal bulk. The thermionic current density 
JK(Te) from a hot emissive metallic surface along the 
perpendicular direction pointed by ux is. 

UTe vx fK(Te,v) dv. (3) 
— oo J — oc 

Here vx > 0, and the energy E0 = meVgX/2 would rep­
resent the classical work function, assuming tha t all elec­
trons are originally at rest [16,18]. Hence, 

JK(Te) = e CK(Te) 
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and integrating along the Z-axis, 

dvz 
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The emission of appreciable thermionic electron currents 
from metals needs temperatures of over 2000 K, as well as 
additional practical requisites such as low work function 
surface coatings. Under the usual experimental conditions, 
most of the electron emitting surfaces are frequently far 
from thermal equilibrium. In the experiments with pulsed 
laser heating the excited electron population temperature 
Te and the lattice temperatures T differ for times shorter 
than few picoseconds. For longer times it is currently as­
sumed tha t the energy transfer from the heated metal to 
the electrons is efficient enough to equal the electronic and 
the metal temperatures, as in the Richardson-Dushmann 
model. 

Consequently, the energy spectrum of the electron pop­
ulation tha t causes the thermionic emission would depart 
from the equilibrium distribution as the theoretical and 
experimental results indicate [2,6,7,9-11], 

In order to derive an analytical expression for the non 
equilibrium electron thermionic current from hot metals, 
we introduced the ad hoc modified Kappa energy distri­
bution function of equation (1). We suggest tha t fK(Te, E) 
corresponds to the low temperature approximation of the 
more general K - F D distribution of equation (2) which is 
quite similar to the generalized distributions introduced in 
references [15,17]. The equilibrium Fermi-Dirac distribu­
tion is recovered from this K - F D distribution in the limit 
for large values of K. 

The approximated distribution fK(Te,E) is valid for 
K > 3/2 and develops long high energy tails for small K 
shown in Figure 3. The characteristic temperature TK tha t 
measures the electron average kinetic energy (m e -y 2 /2 ) 
also accounts for the Fermi energy ep of metal electrons. 

The comparison between the equilibrium Fermi-Dirac 
statistics with the K - F D deformed distribution function 
is represented in Figure 1. For low values of K > 3/2 the 
strong departure from thermal equilibrium for low values 
of K is characterized by smoothed distribution compared 
with the FD statistics. This effect is similar to raising the 
electron temperature in the classical Fermi-Dirac distri­
bution but, as shown in Figure 2, the K - F D statistics is 
less sensitive to the temperature changes. The moderate 
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Fig. 4. The thermionic current predicted by equation (4) for 
tungsten (Wf = 4.5 eV) with different K compared with the 
classical Richardson-Dushmann current density (RD). 

departures from thermal equilibrium reported in the ex­
periments in reference [9] would be explained by values of 
K > 20. 

Figure 4 shows the thermionic electron currents JK(Te) 
for tungsten calculated with the expression (4) derived 
using fK(Te,E). The electron high energy tails for low 
K introduce dramatic increments in the thermionic elec­
tron current predicted by equation (4). This effect is more 
pronounced for low metal temperatures and reduces as K 
increments. Moderate values of K ~ 20-50 only produce 
small deviations from the RD current tha t could explain 
the small departures observed in different experiments. 

The calculations of Figure 4 suggest tha t mate­
rials with non equilibrium electron population when 
heated would be more efficient thermionic emitters. The 
thermionic currents for K < 5 in Figure 4 are quite similar 
within the temperature range of 2000-3000 K. Therefore 
those higher currents would be obtained using lower work­
ing temperatures for such materials. 

The modified Kappa function of equation (1) could 
be regarded as an effective distribution for the non 
equilibrium electron energy spectrum. Equat ion (3) 
provides an analytical expression for the electron emitted 
thermionic current tha t would be directly compared with 
the experimental results and theoretical calculations. The 
total thermionic current IK(Te) might be later obtained 

by further integration, considering the geometry of the 
emitting metal surfaces. This analytical approach could 
be used to explore testable effects in the emitted electron 
current to investigate the quantum kappa distribution. 
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