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Abstract The pressuremeter test in boreholes has proven 
itself as a useful tool in geotechnical explorations, espe­
cially comparing its results with those obtained from a 
mathematical model ruled by a soil representative consti­
tutive equation. The numerical model shown in this paper 
is aimed to be the reference framework for the interpreta­
tion of this test. The model analyses variables such as: the 
type of response, the initial state, the drainage regime and 
the constitutive equations. It is a model of finite elements 
able to work with a mesh without deformation or one 
adapted to it. 
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Concept and introduction 

As it is well known, the pressuremeter test is carried out 
inside the boreholes (AENOR 1999). It is an in situ test in 
which lateral pressures are exerted on the soil through a 
central cell. In that way, the successive soil deformations in 
contact with the pressuremeter cell are registered at con­
stant intervals of time and after having reached the pres­
sure-deformation corresponding level (Yagiz et al. 2008). 

The pressuremeter tests reduce mostly the disturbance of 
the soil mechanical features, which occurs during the 

samples taking. It also makes it possible to test the soil in a 
similar state to its natural one of effective pore pressures. 
On the other hand, the soil response is performed affecting 
a higher volume of material than the one tested in a lab­
oratory, which makes it to come closer to the loading states 
that are used in engineering works afterwards (Morilla 
2012). 

Therefore, it fulfils enough requirements to deserve 
some effort at numerical modelling, which allows for 
obtaining more accurate results about the initial condi­
tions of the soil and the deformation tensor that occurs 
around the cell (Haberfield and Johnston 1990; Clough 
1990). 

This paper depicts a numerical modelling based on the 
finite element method, purposely designed for this test, 
which allows for analysing a high amount of variables 
that influence the shape of curves resulting from the test. 
The comparison of these curves with the numerical ref­
erence framework implies an approach to the soil 
response and a method to determine its geomechanical 
parameters. 

The numerical model and the results obtained modifying 
different variables are detailed in the following sections. 
Among them, the constitutive equations employed are the 
basis to obtain the geomechanical parameters and, conse­
quently, to achieve a complete geotechnical diagnosis of 
the soil. 

Numerical modelling of the soil 

The modelling of the soil is carried out, in this analysis, 
through a discretization in concentric rings or spheres. 
Figure 1 shows a schematic representation of the mode of 
analysis. 
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Fig. 1 Concentric rings or spheres model 

It is a three-dimensional model with only one degree of 
freedom, whose variable is the displacement of the dif­
ferent ring or sphere edges. 

The deformations obtained are the result of three pos­
sible kinds of response: no vertical deformation, constant 
vertical tension or spherical deformation. 

The total external radius of the model is fixed, so that the 
magnitude of the external ring deformation is inferior to the 
one of the inner ring. Therefore, the deformations beyond 
the external ring influence negligibly on the movement 
calculated for the rings next to the cavity. 

The total radial pressure of the first ring is the same as 
the pressure exerted inside the borehole. The condition of 
invalid movement is established on the external edge of the 
last ring. 

The model is solved by the finite elements method. For 
each element "/" the area of movement is represented by 
the function: 
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From the area of movement the increments of 
deformation are obtained by the expression: 
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Spherical model 
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Axisymmetric model 

The stiffness matrix is obtained from the theorem of the 
virtual works, through the expression: 

/ 
<5ezl<Tdí2 = PiF, (5) 

in which Q is the volume of soil tested, T the inner area of 
the borehole and Pi the increment of pressure exerted on 
the first ring. 

The model is incrementally solved. An increase of 
pressure is exerted on the inner ring, and the movements 
are determined, with the deformation increments and 
through the constitutive equation, and the tension incre­
ments. The tension increments are added to the previous 
steps' tensions, the matrix of rigidity is modified and the 
following cycle begins. 

Types of response 

In the model considered there are three possible kinds of 
soil response (Arrua and Aiassa 2009): 

1. Axisymmetric model with constant vertical pressure. 
2. Axisymmetric model with invalid vertical deformation. 
3. Spherical model. 

The first kind of response is typical of tests carried out 
close to the surface where the vertical pressure is relatively 
low and its increase is impossible. 

The model with invalid vertical deformation is illustra­
tive of tests at a certain depth, where the vertical pressure 
increases and reduces significantly the vertical deformation. 

The spherical model is a special case in which the two 
deformations are equal. The applied inner pressure is 
higher than in other kinds of response; so it could be 
concluded that it is a very deep test. 

Three curves with the same geotechnical parameters and 
initial pressures, in which only the type of response has 
been modified, are shown in the following graph (Fig. 2). 
The corresponding constitutive equation is a perfect elas-
toplastic model. 

It is observed that, according to the kind of response, the 
inner pressure for the same level of deformation is different. 

Regarding to the elastic stretch, both axisymmetric 
kinds show the same behaviour in comparison to the 
spherical model where the inclination of the straight elastic 
stretch is higher. 

Besides, only in the axisymmetric model with an invalid 
increment of vertical pressure, the inner pressure reaches a 
horizontal asymptote or limit pressure. In the other two 
kinds of response, the inner pressure always increases with 
deformation. 
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Fig. 2 Kinds of response 
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Fig. 3 Init ial state 

Initial state 

The model requires the definition of an initial state of 
pressure. This state should coincide with the correspondent 
to the geostatic condition. 

In the spherical model the initial state is defined by only 
one pressure which is equal in the three directions of space. 

In the axisymmetric kind of response, the relation 
between the vertical pressure and the horizontal pressure 
(Ko parameters) can influence the response of the model. 
Three possible Ko values are analysed: 0.5, 1.0 and 2.0. 

The inner pressure supported by the same levels of 
deformation, with only the coefficient Ko varying is shown 
in Fig. 3. 

As the vertical pressure is increased, the radial pressure, 
which is able to keep the cavity with the same level of 
deformation, grows. 

The constitutive equations 

The shape of the response curves are mainly influenced by 
the constitutive equation in use. Next, the different models 
that have been used are analyzed. 

Linear elastic model 

It is present in all the following cases, at the beginning of 
the load, as well as in the unloading process. This model is 
a simple analytic solution, and can be used to verify the 
formulation of finite element models as well as their level 
of error. 

Perfect elastoplastic model 

A yield function has to be considered in this case. When 
the level of tension is higher than the function, plastic 
deformations appear. 

The function of yielding used is static. There is no 
hardening. The plastic deformation is proportional to the 
gradient of a potential function, different from the yield 
function, that is to say, a model of non-associative plas­
ticity is used. 

Two functions of yielding are used. They are the Morh-
Coulomb's hexagonal pyramid and the Drucker-Prager's 
cone. 

In the following figures the results obtained from both 
models for the same geotechnical parameters, kinds of 
response and initial state are shown. 

The results are similar, although the conic model pro­
duces more rounded curves. The three main tensions are 
represented in each figure (Fig. 4a, b). 

The Morh-Coulomb's perfect elastoplastic model 
without deformation and vertical pressure equal to 
—V(<JT + ag) allows a verification with the finite elements 
model of the PL AXIS program (Brinkgreve 2004). The 
following graph shows the degree of adjustment reached 
(Fig- 5). 

An additional result of this model is the spatial distri­
bution of pressures in the inner soil. These values are 
presented in the following graph, for a fixed step size, as a 
function of the distance from the cavity (Fig. 6). 

Cam-Clay model 

Through this model two additional variables are intro­
duced. First of all, it is a model whose yield function is 
frontally closed. Secondly, this frontal closure is a yield 
function with hardening. 

The results of the model are shown in the figure below 
(Fig. 7). In order to have a criterion of comparison with the 
perfect elastoplastic models, the adjustment, previously 
obtained with Plaxis for Morh-Coulomb's model, is 
maintained. 

This new model increases the number of variables with 
which a field test can be adjusted, among others, the initial 
consolidation pressure. The load way followed in the pre­
vious test is depicted in a p-q diagram (Fig. 8). 
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Fig. 4 a Morh-Coulomb's model, b Drucker-Prager's model 
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Fig. 5 Verification using PLAXIS program 

The test begins in the elastic range, reaches the yield 
function of the frontal closure and makes it increase. 
Finally, the critical state is attained and the tests follow the 
breakage of the straight line provided by Morh-Coulomb's 
parameters. 

Other possible equations 

The numerical model depicted allows the use of other 
constitutive equations, like the Schanz's hardening soil 
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Fig. 6 Distribution of stresses inside soil 
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Fig. 7 Cam-Clay's model 
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Fig. 8 Load way Cam-Clay's model 

model (Vermeer 2000). This model has been used by the 
authors in some other papers. 

However, most of the basic features of the new models 
that can be introduced are included in those previously 
explained. The analysis of the field tests curves according 
to the four referred models allow establishment of a ref­
erence framework. 



By means of this framework the behaviour of the soil 
surrounding a cavity, which is expanding, can be exam­
ined. The features which cannot be justified in the previous 
framework will be developed in new models. 

Undrained response 

The soil response can take place in drained conditions with 
dissipation of interstitial pressures or in undrained condi­
tions (Aubeny et al. 2000; Benoit 1995). 

In both cases the effective pressures are those that 
intervene in relation to the deformations through the con­
stitutive equation. However, the drained response has two 
peculiarities: 

1. The volumetric deformation of the solid skeleton is 
invalid. 

2. The pressure measured inside the cavity is the sum of 
the pore and effective pressures. 

The first condition is simulated with the numerical 
model eliminating the elastic and plastic deformation. The 
elastic deformation is suppressed by a Poisson coefficient 
next to 0.5 whereas the plastic deformation is removed 
differently in each model. A 0-dilatancy angle is used to 
erase perfect plastification models. 

The interstitial pressure is generated by assigning a 
deformation module to the interstitial water, so there are 
two superimposed systems, water and soil, whose final 
volumetric deformation is equal and next to zero. 

This modelling is depicted in the graph below (Fig. 9). 
The undrained models allow for justifying high pressures 
inside the cavity for low deformation levels and geotech-
nical parameters of soils having low cohesion. 

Adapted mesh 

The simplicity of the model used lets the calculation mesh 
be modified in each stage, so that the two distortional 
elements are eliminated; and it is possible to enter the 
states with large deformations. 

In previous modelling, the hypothesis of small defor­
mations was included and all the variables were referred to 
an initial mesh of fixed radius. 

The modification of the mesh is carried out in each 
stage, defining a new family of radius whose inner edge is 
the one of the deformed meshes in the previous stage. 

The tensions and deformations corresponding to an 
element "i" of the adapted mesh are modified to fulfill the 
equilibrium equations. The following figure depicts the 
results with two kinds of calculation (Fig. 10). 
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Fig. 9 Undrained model 
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Fig. 10 Model with adapted mesh 

It is observed how in considering a modelling that is 
more realistic (that is, the mesh adapting to the deforma­
tions), the results are not substantially modified. 

Conclusions 

The pressuremeter test is a load test, which involves sev­
eral phenomena related to the tensor of deformation of the 
soil (Clough 1990). 

This paper presents a reference framework based on the 
finite element numerical model; it is useful to compare the 
field test results with the expected soil response on the 
basis of its constitutive equation. 

The geotechnical parameters are obtained defining an 
initial state, a kind of response and a constitutive equation 
of the soil. 

The analyses carried out have determined the influence 
of the initial stress state, the kind of response (axisym-
metric or spherical) and the constitutive equation. 

A model has been proposed to analyze the cases of 
undrained behaviour. Finally, an improvement of the math­
ematical model is introduced to adapt it to deformations. 



Future developments 

The generated reference framework provides a tool to 
analyze the field tests. Therefore, the use of the present 
model in a determined geological formation, whose tests 
are large and representative enough, implies a new method 
to diagnose geotechnically the unit (Dincer et al. 2008). In 
the future, the use of this reference framework in geo-
technical surveys will show its potentiality. 

With reference to the models described, several aspects 
have not been developed, among others, each model can be 
extended to a wider group of constitutive equations, spe­
cially the hardening soil model. 

The consideration of an undrained behaviour close to the 
cavity and a drained one in farther locations, that is to say, 
a mixed response, may be possible. 

The models with plastic flow have not been dealt with 
yet, although this parameter is measured in the pressure-
meter tests in which the load is introduced in stages and 
plastic flow is measured in some of them. 
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