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Abstract— Automatic blood glucose classification may help 
specialists to provide a better interpretation of blood glucose 
data, downloaded directly from patients glucose meter and will 
contribute in the development of decision support systems for 
gestational diabetes. This paper presents an automatic blood 
glucose classifier for gestational diabetes that compares 6 
different feature selection methods for two machine learning 
algorithms: neural networks and decision trees. Three search­
ing algorithms, Greedy, Best First and Genetic, were combined 
with two different evaluators, CSF and Wrapper, for the fea­
ture selection. The study has been made with 6080 blood glu­
cose measurements from 25 patients. Decision trees with a 
feature set selected with the Wrapper evaluator and the Best 
first search algorithm obtained the best accuracy: 95.92%. 
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i. INTRODUCTION 

Pregnancy is associated with changes in insulin sensitivi­
ty which may lead to changes in plasma glucose levels [1], 
Gestational Diabetes Mellitus (GDM) is defined as glucose 
intolerance with onset or first recognition during pregnancy. 
Approximately 7% of all pregnancies (ranging from 1 to 
14%, depending on the population studied and the diagnos­
tic tests employed) are complicated by GDM [2], Several 
adverse outcomes are associated with it, as preeclampsia, 
fetal macrosomia, perinatal mortality or neonatal respiratory 
problems and metabolic complications. Although most 
cases resolve with delivery, the woman maintains a more 
elevated risk of developing type 2 diabetes in the future, and 
this chronic hyperglycemia is associated with long-term 
damage, dysfunction, and failure of different organs, espe­
cially the eyes, kidneys, nerves, heart, and blood vessels [2]. 

Improving maternal glycemic control can reduce the risk 
of GDM complications, so patients should self-monitor their 
blood glucose (BG) levels with a glucose meter, and write 
their measurements down in a control book, along with 
information about intakes for a clinician to check it over 
once a week. The specialist determines the best treatment 

which consists in nutritional prescription, recommendation 
to practice physical activity and, if it is necessary, insulin 
administration. 

Telemedicine in combination with Decision Support 
tools (DST) can improve GDM outcomes [3,4] without 
increasing clinician's workload [5], Our final research goal 
is to develop intelligent tools integrated in a telemedicine 
system that allows control of GDM automatically, guaranty­
ing glucose control objectives consecutions and unnecessary 
in person visits to the health care center. DST can improve 
GDM treatment by helping the specialist in the control book 
inspection. These tools, following the expert indications, 
can preprocess the monitoring data contained in the control 
book, and determine which patient is evolving satisfactorily 
and which one needs a deeper examination by the specialist. 
They can also be integrated into a telemedicine system since 
the current glucose meters allow data download. Patients 
can send their BG levels directly to the system to be ana­
lyzed, and according to this information, the specialist will 
decide the corresponding treatment. 

Automatic analysis of glucose meter files have to deal 
with the problem of lack of intake information associated to 
the measurements. Any DST requires to know whether the 
measurement was taken in breakfast, lunch or dinner time 
and if it is a pre-prandial or a postprandial measurement. 
However, most of the available glucose meters do not allow 
registering this information, or even if they do, patients 
forget to introduce these data. This information is essential 
to the specialist in order to evaluate the state of the patient 
so an automatic blood glucose classifier should be devel­
oped. 

This paper presents a comparison of two well known su­
pervised machine learning algorithms [6,7]: Decision trees 
and Neural networks (NN) for automatic BG classification. 
Different feature selection (FS) methods have also been 
compared in order to select the optimum feature set. 
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ii. MATERIALS AND METHODS 

Both learning algorithms, decision trees and NN, have 
been combined with 9 different feature sets obtained apply­
ing 6 different FS methods to our data set. A total of 18 
classifiers have been built, which performance has been 
evaluated testing their accuracy. 

A. Glycemic data 

The data set (DS) consists of 6080 BG measurements 
from 25 patients, who were told to measure their BG with a 
glucose meter at least 4 times a day, in a fasting state and 
after the 3 main meals: breakfast, lunch and dinner. Howev­
er some patients control their BG levels more often: before 
or/and between meals, at night or repeat some of them. 
They also wrote down the results in their control book, 
during a period ranging from the diagnosis date until the 
delivery date. 

B. Data preprocessing, 

a) Inputs 

In order to procure the best classifier more features were 
obtained from the ones available in the glucose meter 
memory file, since in a previous study [8] we observed that 
classifiers accuracy improved with a large number of fea­
tures. Directly from the memory file we acquire three fea­
tures from each measurement: "date" and "time" when the 
measurement was taken and the "bg" concentration in 
mg/dL. We calculated another 17 features explained below. 

From the "date" feature we calculate 5 more features: 
"day", "month ", "doy", "dow" and "workable", related 

respectively to the day and month of the date, the day of the 
year, day of the week and if the day is workable or not, as 
schedules and eating habits may change on weekends. 

In a previous study [9], an expert determined that the in­
sulin bolus administered close to a BG measurement was an 
important input to decide the measurement mealtime, which 
is our objective. We obtained 7 attributes related to insulin 
from the clinical history: "insulin ", a boolean indicating if 
the patient has insulin treatment or not, "insulin_type ", the 
type of the insulin treatment, "rib ", "ril", "rid", "sil" and 
"sl2" representing respectively the breakfast, lunch and 

dinner rapid insulin dose and the night and morning slow 
insulin dose. According to the same study, the time differ­
ence with the previous measurement was important too, so 
we calculated these 2 features related to that: "inter-
val_prev", and "interval_post", which are the time differ­
ence with the previous and subsequent measurement. 
Counting on consecutive measurements BG values can 

provide information of whether an intake has taken place, so 
features "bg_prev" and "bg_post" have been calculated. 

Finally we calculate the feature "intake", which repre­
sents the most probable intake according to the patient 
schedules. It may have three possible values: breakfast, 
lunch or dinner and is obtained grouping each patient meas­
urement in 3 subgroups according to "bg" and "time" at­
tributes. This is done implementing a cluster in Octave [10] 
using the K-means algorithm [11]. 

In summary, we have a total of 20 features: "date", 
"day", "month ", "doy", "dow", "workable ", "time ", "in-
tervalprev ", "intervalpost", "bgprev ", "bg ", 
"bgpost", "insulin ", "insulintype ", "rib ", "ril", "rid ", 
"sil", "si2" and "intake". We applied the "Remove use­

less" Weka filter to our DS to remove features that do not 
vary at all or that vary too much. The attribute "slow ins 1" 
is removed because none of our patients has that kind of 
treatment, leaving a total of 19 features. 

b) Outputs 

Ten different output classes have been used for the 
measurements classification: "break-prep ", "break-post", 
"lunch-prep ", "lunch-post", "dinner-prep " and "dinner-

post ", corresponding to main meals pre-prandial and post­
prandial measurements; "morning", "afternoon ", "night" 
and "repeated" corresponding to other measurements pa­
tients can make. The DS was labeled according to patients 
annotations contained in their control book. 

C. Machine learning algorithms 

The two learning algorithms used are the C4.5 Quinlan 
decision tree [12] and a Multilayer Perceptron (MLP) neural 
network [13]. The first one is characterized by good accura­
cy in a wide range of problems in addition to producing a 
comprehensible structure summarizing the knowledge it 
induces. It is also robust and fast, and it may degrade signif­
icantly its performance when dealing with many irrelevant 
features [14]. NN present lower accuracy than decision trees 
but are more robust. Another disadvantage of NN is that 
they work as a black box system where inputs and outputs 
are known but the output function is unknown. The archi­
tecture chosen has been MLP with 3 layers, input, hidden 
and output layers. 

D. Feature selection 

In order to select potentially relevant features from the 
ones we calculated, we have tested 6 different FS methods, 
combining three searching algorithms with two evaluators. 



a) Evalúa tors 

There are two main approaches for FS evaluation: wrap­
pers and filters. We tested one of each approach, a wrapper 
and the Correlation based Feature Selection (CFS) which 
uses the filter approach: 

Wrapper. Evaluates attribute sets by using a learning 
scheme. Cross validation is used to estimate the accuracy of 
the learning scheme for a set of attributes [14]. It is very 
computationally intensive. 

CFS. Uses the Evaluates the worth of a subset of attrib­
utes by considering the individual predictive ability of each 
feature along with the degree of redundancy between them. 
Subsets of features that are highly correlated with the class 
while having low intercorrelation are preferred [15]. 

b) Searching algorithms 

We tested three searching algorithms: 
Greedy: Performs a greedy forward search through the 

space of attribute subsets. It starts with no attributes and 
stops when the addition of any remaining attributes results 
in a decrease in evaluation. It can also produce a ranked list 
of attributes [16]. 

Best First: Searches the space of attribute subsets by 
greedy hillclimbing augmented with a backtracking facility. 
Setting the number of consecutive non-improving nodes 
allows controlling the level of backtracking done. It consid­
ers all possible single attribute additions [16]. 

Genetic: Performs a search using the simple genetic algo­
rithm described by Goldberg [17]. 

E. Evaluation method 

FS and classifiers performance evaluation have been ex­
ecuted in an Intel(R) Core(TM) Í7-2600 CPU @ 3.40GHz 
using the Weka 3.6.9 [16] tool, because it provides the algo­
rithms implementation we needed. Cross validation evalua­
tion method [7] has been used for both tasks, with 3 folds 
for FS due to the wrapper execution time, and 10 folds for 
classifiers evaluation. 

in. RESULTS 

A. Classifiers accuracy 

Table 1 shows classifiers accuracy with each feature sub­
set. The first three rows show results with the 3 initial fea­
tures available in the glucose meter, with the features se­
lected by the expert and with all the features we calculated 
in the preprocessing. In the first column appears the code to 

identify the FS method used, in the second column the FS 
evaluator, in the third column the FS search algorithm and 
in the last columns the C4.5 and MLP accuracy with the 
features selected by each FS method. 

Table 1 Classifiers accuracy 

FS Learning Algorithm 

GlucoMeter. 

Expert 

All 

I 

II 

III 

IV 

V 

VI 

Eval. 

-
-
-

CFS 

CFS 

CFS 

Wrapper 

Wrapper 

Wrapper 

Search Alg. 

-
-
-

Greedy 

Best First 

Genetic 

Greedy 

Best First 

Genetic 

C4.5 

90,905% 

92,007% 

94,885% 

95,395% 

95,395% 

95,395% 

95,921% 

95,921% 

95,839% 

MLP 

86,875% 

87,823% 

93,273% 

93,470% 

93,470% 

93,470% 

94,340% 

94,408% 

94,079 

Table 2 shows the number of features contained in each 
feature sets obtained with the feature selection methods 
showed above. Last columns shows which features are the 
ones selected. 

Table 2 Feature selection (date1, day2, month3, doy4, dow5, workable6, 
time7, interval_prev8, interval_pos9, bg_prev10, bg11, bg_post12, insulin13, 

insulintype14, rib15, ril16, rid17, si218, intake19) 

Code N° of Features Features selected 

GlucoMeter 

Expert 

All 

I 

II 

III 

IV 

V 

VI 

C4.5 

3 

4 

19 

6 

6 

6 

12 

12 

10 

MLP 

3 

4 

19 

6 

6 

6 

11 

13 

13 

C4.5 

1,7,11 

7,8,11,13 

DS 

1,7-9,11,19 

1,7-9,11,19 

1,7-9,11,19 

1,2,7-9,11,13-17,19 

1,2,7-9,11,13-17,19 

1,7-9,11,13-16-19,19 

MLP 

1,7,11 

7,8,11,13 

DS 

1,7-9,11,19 

1,7-9,11,19 

1,7-9,11,19 

1,7-11,14,15,18, 

1,7-15,17-19 

1,7-16,18,19 

iv. DISCUSSION 

We observed that C4.5 achieves higher accuracy than 
MLP in all cases. Adding features to the initial three availa­
ble in the glucose meter increases accuracy in both learning 
algorithms, though in MLP the improvement is higher. 
Adding 1 feature, we observed an improvement of 1.1% in 
C4.5 and 1% in MLP which rises to 4% in C4.5 and 6.4% in 
MLP when adding the rest of features we calculated in the 
preprocessing. Applying feature selection (Wrapper + Best 



First) to these features we achieved a total improvement of 
5% in C4.5 and 7.5 % in MLP. 

CFS evaluator selects the same features regardless of the 
search algorithm and achieves less accuracy than wrapper 
(95.3% vs. 95.7% for C4.5 and 93.5% vs. 94.2% for MLP, 
in average). Wrapper execution time for MLP is very high, 
72hours, while the execution of different alternatives for the 
C4.5 or the CFS takes less than 10 minutes. 

BestFirst and Greedy achieved same results for C4.5 be­
cause they behave similarly, though the first one is a bit 
more thorough search technique. 

The best accuracy results in both learning algorithms 
have been obtained with the feature selection method con­
sisting in the Wrapper evaluator and the BestFirst search 
algorithm. In our case, increasing the feature search effort 
improved classifiers performance, though it is not always 
like that because of the bias-variance tradeoff [14]. 

v. CONCLUSION 

C4.5 achieves higher accuracy than MLP, it is much fast­
er to train and for feature selection, in addition of being 
more understandable for clinicians. The FS method consist­
ing in wrapper evaluator and Best first search algorithm has 
proved to find the optimum feature set for the C4.5 and to 
achieve the best accuracy for our data set: 95,92%. 

Automatic blood glucose classification is essential for 
automatic glucose meter file inspection. This not only will 
save pregnant women from problematic and unnecessary 
displacements, as they can download their measurements 
and send them to the system at any time, but also avoid the 
risk of making mistakes or oversights when transcribing the 
glucose meter results. Automatic BG classification will 
contribute to the development of DSS that can help in BG 
data interpretation counting with more exact and more 
available data. 
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