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ABSTRACT: Expert knowledge is used to assign probabilities to events in many risk analy
sis models. However, experts sometimes find it hard to provide specific values for these proba
bilities, preferring to express vague or imprecise terms that are mapped using a previously de
fined fuzzy number scale. The rigidity of these scales generates bias in the probability elicitation 
process and does not allow experts to adequately express their probabilistic judgments. We pre
sent an interactive method for extracting a fuzzy number from experts that represents their 
probabilistic judgments for a given event, along with a quality measure of the probabilistic 
judgments, useful in a final information filtering and analysis sensitivity process. 

1 INTRODUCTION 

The subjective approach is often the only option for assigning probabilities of event occurrence 
about which no previous experience or data are available. Abbas et al. (2008), Cojazzi et al. 
(1987), Morgan & Henrion (1990) and Stäel Von Holstein & Matheson (1979), among others, 
have proposed different methods for assigning subjective probabilities. These methods enact 
indirect bias avoidance processes (Tversky & Kahaneman, 1974) during expert probability as
signment. 

The best known of these processes are elicitation methods based on betting and lotteries by 
Savage (1954) and Finetti (1964). These methods are recommended by the most influential sub
jective probability elicitation protocols, such as SRI (Stanford Research Institute), 
SNL/NUREG-1150 (U.S. Nuclear Regulatory Commission) and KEEJAM (Joint Research Cen
ter of the European Commission). 

However, experts may find it hard to assign these probabilities using real numbers, and the 
use of linguistic terms, such as "low", "high" or "medium", is a more feasible option. We can 
then associate fuzzy numbers with the linguistic terms, which we can use in the computations 
throughout risk analysis. 

Normalized trapezoidal fuzzy numbers with support in [0,1], i.e. the tuples Ã = (a1 a2, a3, a4), 
with 0 < a1 < a2 < a3 < a4 < 1, whose membership function has a trapezoidal shape, are a set of 
fuzzy numbers that are especially useful because of the simplicity of the arithmetic operations 
defined on them (Chen 1985, Chen & Chen 2007). In particular, if a2 = a3, then the number is 
called triangular, and if a1 = a2 and a3 = a4, the number is rectangular, and denotes a crisp in
terval in [0,1]. Moreover, real numbers a£[0,1] are injected into the fuzzy numbers through a ~ 
a = (a, a, a, a)(ETF[0,1], where TF[0,1] denotes the set of normalized trapezoidal fuzzy num
bers with support in [0,1]. 

The arithmetic operations for trapezoidal fuzzy numbers are reported in Chen (1985), Chen & 
Chen (2007) and Xu et al. (2010). We denote these arithmetic operations by (+), (-), (x) and (/). 

These numbers have been adapted for use in many mathematical risk analysis models in an 
imprecise or vague context. Dokas et al. (2007) give good examples of fault trees adapted to the 



fuzzy paradigm. For instance, for the fault tree shown in Figure 1, the experts are asked to use 
the scale by Dokas et al. (see Table 1 and Fig. 1) to assign linguistic terms to the probabilities of 
the basic events BE1, BE2 and BE3. The probability for the top event (TE) is computed on the 
basis of these assignments by means of the operation associated with the logic gates (Dokas et 
al., 2007). 

Table 1. Two possible fuzzy linguistic term scales 
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Figure 1. Dokas et al.’s fault tree example and two fuzzy linguistic term scales. 

The example is solved in Dokas et al. (2007) by assigning probabilities H, M and L to the 
basic events BE1, BE2 and BE3, respectively. The solution derived for the TE is the probability 
represented by the fuzzy number (0.35, 0.52, 0.52, 0.68). 

However, if we use the alternative scale (see Table 1 and Fig. 1), the result is then (0.26, 
0.41, 0.59, 0.73). Consequently, the result can differ widely depending on the scale we use even 
if both scales represent the same linguistic term set. 

Assigning a fuzzy probability (a, b, c, d) to an event means that the expert is sure that the 
probability is in the interval (a, d), and is more likely to be within [b, c]; this likelihood decreas
es linearly from b to a and from c to d. 

The expert has no say about the trapezoidal fuzzy numbers that are fixed to the linguistic 
term set. However, the appearance of the fuzzy numbers could differ depending on what 
knowledge the expert has about the event. It would be worthwhile, for example, considering 
more or less accurate or symmetrical fuzzy numbers, but the rigidity of the fixed scale does not 
account for such information. In other words, not all scales are suitable for all experts and for all 
events. 

On the other hand, the direct assignment of probabilities can be significantly biased with re
spect to the circumstances in which the assignment process is developed. The use of direct 
scales for assignment is very simplistic. 

Throughout this paper we develop a method for extracting a fuzzy number representing a 
probabilistic judgment for each event from experts, in order to avoid biases possibly generated 
by previously established rigid scales. 

In Section 2 we briefly overview fuzzy probability theory, which extends classical probability 
theory. In Section 3, we develop an interactive method for fuzzy probability elicitation. Section 
4 provides measures to analyze the quality of the information provided by the expert. These 



measures will be useful for filtering the information subject to a minimum quality requirement, 
and are helpful for performing a sensitivity analysis in a fuzzy environment. Finally, Section 5 
gives an illustrative example. 

2 FUZZY PROBABILITY THEORY 

Fuzzy probability theory was developed by Helliwell (2007). Fuzzy numbers with support in 
[0,1] and, in particular, trapezoidal fuzzy numbers denoted by TF[0,1], extend the real numbers 
in [0,1] and constitute a complete metric space whose distance is the maximum Hausdorff dis
tance for the a -cuts. 

The completeness of TF[0,1] allows the definition of convergent sequences and series and is 
useful for defining the fuzzy probability of the countable union of pairwise disjoint events as the 
sum of the fuzzy probabilities of each event, that is, the completeness of TF [0,1] extends the 
third axiom of Kolmogorov to trapezoidal fuzzy numbers. Formally, a fuzzy probability space is 
a triple (Q, H, pf), where Q is the event space of a random experiment, H is an o-algebra of Q, 
and pf : H -»rF[0,1] is a function that verifies the following axioms: 

• Axiom 1: 0 <p f (E)< 1,V~EZF[0,1]. The order between fuzzy probabilities is defined in 
Helliwell (2007). 

• Axiom 2: p f (Q) = 1. 
• Axiom 3: Given a countable family of pairwise disjoint events EiGH, then 

/ ? M M Ei JC (+)tpf (Et),where C is the subsumption relation in TF[0,1]. 

• Axiom 4: pf (Ec) = l(-)pf (E)yEEB. 

Note that the first three axioms naturally extend to the three classical Kolmogorov axioms. 
However, we have need of the fourth axiom because fuzzy arithmetic operations have no in
verse element, and therefore the complementary probability cannot be assessed by fuzzy alge
braic equations from the first three axioms, as in classical probability theory. 

To elicit the probability function of a random discrete variable, we have to define a complete 
set of pairwise disjoint events, { E } n , and assign a probability to each event jr. = Pf(Ei), so that 
jr. C 1 (-)[(+) .^jf. J. Otherwise, there is no guarantee that the Kolmogorov axioms will hold in 
probability elicitation (Helliwell 2007). Risk analysis usually requires this type of variables 
since most randomized experiments are dichotomous, such as "failure" or "no failure". 

3 FUZZY PROBABILITY ELICITATION BASED ON BETTING AND LOTTERIES 

The betting and lottery-based methods commonly used to assign probabilities can also be used 
to assign fuzzy probabilities (Savage, 1954; Finetti, 1964). In this section we briefly describe 
these methods and show how a fuzzy number representing the probability judgment can be ex
tracted from experts. 
Betting Method. For two selected monetary values x > y, the expert is given the option of partic
ipating in one of the two following games: 

(b1) If event A happens, then you win x €. Otherwise, you lose y €. 
(b2) If event A does not happen, then you win y €. Otherwise, you lose x €. 

If the expert has no preference for either bet, the respective expected utilities of both bets are 
equal, and it follows that p(A)= x / (x + y). If the expert chooses one of the two games, then the 
expected utility of the selected game should be higher than for the rejected game. Then, the 
analyst has to update monetary values and offer to the expert two new games. Thus, an interac
tive process is enacted until two alternative games are reached to which the expert is indifferent. 

Lottery-based methods. For a given probability p∈[0, 1] and monetary values x € and y €, the 
following lotteries the expert is given the choice between the: 



(/1) If event A happens, then you win x €. Otherwise, you lose y €. 
(12) You win x € with probability p, or y € with probability 1 - p. 

If expert has no preference for either of the lotteries, then the respective expected utilities are 
equal, and it follows that p(A) = p. Otherwise, the expert must readjust the value/?, keeping the 
same monetary values. This again generates an interactive process, enacted until a couple of 
lotteries are reached to which the expert is indifferent. 

The betting and lottery-based methods assume that the expert is able to provide a specific 
value for the probability of an event. However, a more realistic scenario is where experts have 
an imprecise and vague idea of that value. Consequently, experts will have an interval rather 
than a precise value in mind at the point when they are indifferent to either bet or lottery, that is, 
for the lottery-based method there will be an interval [a, c] such that if p [a, c], then expert has 
no preference for either lottery (11) or (12). Similarly, the betting method can result in an interval 
of indifference [b, d]. 

Current protocols for probability elicitation like the above recommend the use of several 
methods to test the consistency of the expert and the existence of bias. In this regard, the devel
opment of betting and lottery-based methods meets this recommendation and establishes the 
following: 

• If [a, c] fl [b, d] = Ø, then the expert's probabilistic judgment was inconsistent. 
• If any of the intervals is contained in the other [a, c] C [b, d] (or [b, d] C [a, c]), then we 

assume that the trapezoidal fuzzy number (b, a, c, d) (or (a, b, d, c)) designates the ex
pert probabilistic judgment. 

• If [a, c] fl [b, d] ± Ø, is uncountable, and none of the intervals is contained in the other, 
then, assuming that a < b < d <c, (a, b, d, c) designates the expert probabilistic judg
ment. 

To elicit the probability function of random discrete variables, commonly used in risk analy
sis, we must as pointed out in Section 2 assign the probabilities for each event from a complete 
system of pairwise disjoint events verifying that jr. C 1 (-)[(+) v,.ir., in order to assure that 
fuzzy Kolmogorov axioms hold. 

4 QUALITY OF PROBABILISTIC JUDGMENTS. ACCURACY AND CONSISTENCY 
MEASURES 

As pointed out in Section 3, if [a, c] fl [b, d] = Ø, then the expert has been inconsistent in the 
elicitation process. However, if the intersection is a single point, c = b = §, then the situation is 
practically identical, and it leads to the triangular fuzzy number (a, §, d). Then, a triangular 
number represents the limit between consistency and inconsistency in probabilistic judgments 
from betting and lottery-based methods. 

On the other hand, if [a, c] = [b, d], the expert has been totally consistent, and the fuzzy num
ber representing the probabilistic judgment is a rectangular fuzzy number, i.e. a crisp interval. 
Thus, the shape of the fuzzy number (triangular, trapezoidal or rectangular) reflects the con
sistency of the expert judgment, which can be measured by 

' c-b 
if d-a/0 ( 1 ) C(a,b,c,d) d - a 

1 if d - a = 0 
This measure verifies that 

• C(Ã) E[0,1],VAETF[0,1]. 
• C(Ã) = 1 <a> <^*Ã is a crisp number, and 
• C(Ã) = 0 <a> <^*Ã is triangular. 

C is a continuous function in the complete metric space TF[0,1], and is invariant under any 
fuzzy operation by scalars, i.e. for all real numbers A = (A A A A) and for any fuzzy operation 
(*), C(M*)i) = C(i). 

Besides the consistency demonstrated by the expert, we might be interested in the accuracy 
of his/her probabilistic judgment. An expert that opts for a fuzzy probability of (0.2, 0.22, 0.23, 



0.25) using betting and lottery-based methods is much more accurate than an expert that assigns 
a fuzzy probability of (0, 0, 1, 1). A higher accuracy indicates that experts are more sure about 
their probabilistic judgment. 

We can measure the accuracy accounting for the area under the membership function of the 
trapezoidal fuzzy number. The function S(a,b,c,d)= [c - b + d - a]/2 indicates the accuracy of 
the expert’s probabilistic judgment. This function verifies S(Ã)E:[0,\],VAE:TF[0,1], where S(Ã) 
= 1 <a> <^Ã is a real number, and S(Ã) = 0 <a> ^>Ã is the interval [0,1]. S is a continuous function 
in the complete metric space TF[0,1], and ACfi=> S(A) > S(B). 

Finally, the quality of the probabilistic judgment expressed by the expert can be assessed by 
aggregating the previous functions, Q(Ã) = C(Ã)x-S(Ã),VAETF[0,1]. This function is also con
tinuous in TF[0,1], Q(Ã) E[0,1], VA &TF[0,1], becomes 0 when the fuzzy number is triangular or 
the interval [0,1], and is 1 if and only if the number is a real number. 

This quality measure filters the information given by the expert and determines how the sys
tem would improve if there were crisp rather fuzzy values on the probability of an event. 

5 ILLUSTRATIVE EXAMPLE 

Let us assume that an expert has assigned probabilities to the basic events BE1, BE2 and BE3 in 
the fault tree shown in Figure 1 using the betting and lottery-based methods as a result of an 
interactive process. Suppose that we have obtained the trapezoidal fuzzy numbers (0.75, 0.8, 
0.85, 0.9), (0.35, 0.4, 0.5, 0.62) and (0.1, 0.4, 0.5, 0.5), respectively. 

The quality of these probabilistic judgments is 0.29, 0.3 and 0.18 respectively. This demon
strates the flexibility of the proposed method by means of which experts can state more or less 
precise probabilistic judgments. This is not possible if we use the rigid scales introduced in Sec
tion 1. Accordingly to these values, the result of the fault tree for the TE is the trapezoidal fuzzy 
number (0.33, 0.59, 0.71, 0.77), and the associated quality is 0.19. 

Now, it would be interesting to analyze how the quality might improve if the expert were to 
provide a crisp rather than a fuzzy number for the probability of any basic event. To do this, we 
can repeat the analysis by entering the value in the system and comparing the new quality val
ues output. 

As pointed out in Section 4, expert consistency is invariant under any operation using crisp 
numbers. However, the accuracy of the probabilistic judgment is invariant to the sum of crisp 
numbers but sensitive to the product of a crisp number, since S(k, X, X, X)(*)(a, b, c, d)= 1- [X (c 
- b + d -a)] / 2, which depends on the value of X. Therefore, if the expert provides a crisp value 
for the probability of the event, that crisp value will influence the system quality. The quality 
will differ depending on which real numbers are considered. 

We propose using the real number 1 - 1 that maximizes Sim(A , Ã) to get an idea of the qual
ity improvement that the use of a crisp value would mean, where Sim is a similarity function for 
fuzzy numbers and Ã is the fuzzy number initially provided by the expert in the probabilistic 
judgment. 

In most similarity functions described in literature, such as Vicente et al. (2013a;b), Chen & 
Chen (2007) and Xu et al. (2010), the real value that maximizes the similarity to a given fuzzy 
number is the abscissa of the geometric center of the similarity function, i.e. x = y (a3 + a2) + (1 
– y) (a4 + a1), where y = (a3 - a2) / [6(a4 - a1)] + 1/3. 

For example, if the expert changes his/her fuzzy probabilistic judgment for the basic event 
BE3, (0.1, 0.4, 0.5, 0.5), for a crisp number given by its center of gravity, (0.35, 0.35, 0.35, 
0.35), the probability for TE would now be (0.52, 0.56, 0.62, 0.71), with a quality of 0.3, which 
would improve the quality of the result with respect to the original fuzzy judgment by over 
50%. 



6 CONCLUSIONS AND FUTURE WORK 

We have developed a fuzzy probability elicitation process that is flexible enough to properly 
determine the accuracy and consistency that each expert can provide for each event, along with 
a quality measure that is used to filter information and run a qualitative sensitivity analysis. This 
process is useful in fuzzy risk analysis, where it outperforms the traditional models that estab
lish rigid fuzzy scales for probability elicitation. 
In future work, we intend to develop a process for simulating analyst-expert dialogue in order to 
control probability elicitation biases and check the effect of such biases on the results of the 
process. A real case will be used to illustrate the methodology. 
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