Probabilistic analysis of water availability for agriculture and associated crop net margins

Teresa Maestro^a, Vincenzo Nicolosi^b, Antonino Cancelliere^b and María Bielza^a

^a Research Centre for the Management of Agricultural and Environmental Risks ^b Department of Civil and Environmental Engineering of the University of Catania

5th EAAE PhD Workshop

29-31 May, Leuven (Belgium)

Institutional framework

 Research centre for the management of agricultural and environmental risks (CEIGRAM)

 Funding: Research financed by the NATIONAL R&D&I PLAN - Research, Development and Innovation.

Project reference number: AGL2010-17634

Introduction – Objectives

Context

- Rising water demands
- Importance of irrigated agriculture
- Hydrological droughts water shortages

Objectives

• Analyze the variability of water shortage in an irrigation district and the effect on farmer's income

- Supply system simulation
 - Software SIMDRO (Rossi, Nicolosi, & Cancelliere, 2008)
 - Stochastically generated inflows with SAMS (Sveinsson, Salas, Lane, & Frevert, 2003)
- Probabilistic analysis
 - Frequencies of annual water availability for agriculture

WHY a simulation approach ?
 BECAUSE: - lack of a long time-series of water allocations in agriculture

 changes in supply system configuration and water demands

- Crop income estimation
 - relationship between crop yield and water allocation:
 CROP PRODUCTION FUNCTION
- Optimization model
 - it is necessary to know the crop surface distribution in the farm and water allocation by crop: in this case through an OPTIMIZATION MODEL

Methods

OPTIMIZATION MODEL. Solved with GAMS

Localization and crop repartition

Source: Own elaboration. Data from Bardenas General Irrigation District (2012)

Supply System configuration

YESA RESERVOIR (source: www.saihebro.com)

BARDENAS CHANNEL (source: www.ejeadigital.com)

Source: own elaboration

Crop production function (Uku, 2011)

 $Y_{c} = \beta_{0c} + \beta_{1c} * w_{c} + \beta_{2c} * w_{c}^{2} + \beta_{3c} * n_{c} + \beta_{4c} * n_{c}^{2} + \beta_{5c} * n_{c} * w_{c}$

 Y_c [Tm/ha] is the crop yield for each crop c

c is related to the crop: alfalfa, wheat (soft wheat and durum

βoc, β1c, β2c, β3c, β4c, β5c are parameters for each crop

w_c [m³/ha] is irrigation water allocated to the crop;

n_c [kg/ha] is average active nitrogen applied

DATA sources for SUPPLY SYSTEM SIMULATION					
DATA	SOURCE				
Supply system characteristics	http://www.chebro.es				
Industrial, Livestock and Urban water demands	Confederación Hidrográfica del Ebro (2011).				
Repartition of agricultural demand by month	Confederación Hidrográfica del Ebro - CSIC (2004).				
Inflows and reserves in Yesa Reservoir (1959-2008)	Ministerio de Medio Ambiente Medio Rural y Medio Marino (2009).				
Thresholds for hydrological status	Confederación Hidrográfica del Ebro (2007).				
Drought Mitigation measures	Confederación Hidrográfica del Ebro (2007).				

DATA sources for NET MARGIN CALCULATION					
DATA	SOURCE				
Crop production function and associated parameters	Uku, S. (2011), Causapé, J. (2002).				
Variable costs, fixed costs, prices and subsidies	Ministerio de Agricultura Alimentación y Medio ambiente (2012).				
Historic crop surfaces and water allocation by crop (2000-2011)	Bardenas Irrigation District V (2011).				

Results – supply system simulation

- The more frequent water availability under this set of simulations is between 8,000 and 8,200 m³/ha/year
- Distribution is right-truncated due to the maximum capacity of the channel

Results – optimization model

Results - farmer's income

						Optimal
	Alfalfa	Wheat	Maize	Barley	Rice	farm
Expected	111 00	27/ 21	121 67	05 67	130 80	116 12
Net margins [€/ha]	441.33	274.01	431.07	55.07	430.80	440.13

Results - farmer's income

The **real farm** net margins are calculated considering surfaces and water allocations from the **period 2000-2011** in an **irrigation sub-district** from the BGID. Only cereals, maize, alfalfa and rice are considered.

Conclusions

• Depending on water availability for irrigation

 \rightarrow the optimal crop distribution and water allocation between the crops is calculated.

 Results taken as a decision making support tool for farmers, when water availability can be estimated at the beginning of the sowing season.

• The optimal farm is the most profitable system, followed by the alfalfa system, maize, rice, then wheat and finally barley.

Conclusions

- Comparing optimal farm with real farm the more frequent net margin is:
 - Optimal: 475 500 euros per hectare
 - Real: 375 400 euros per hectare.

This difference is due to the fact that on field, it is difficult to forecast accurately the annual water availability for agriculture.

Further research

- Expected net margins as a guaranteed net margin for an insurance scheme, covering losses due to hydrological drought
- Take into account not only annual allocation, but also how it is distributed along the year
- Analysis of other crops besides the main ones

Thank you for your attention

teresa.maestro@

Technical University of

CEIGRAM (Research Centre for the Management of Environmental Risks)