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Abstract 

The concept of unreliable failure detector was introduced by Chandra and Toueg 

as a mechanism that provides information about process failures. This mechanism 

has been used to solve several agreement problems, like Consensus. In this paper, 

algorithms that implement failure detectors in partially synchronous systems are pre­

sented. First two simple algorithms of the weakest class to solve Consensus, namely 

the Eventually Strong class (OS), are presented. While the first algorithm is wait free, 

the second is /-resilient, where / is a known upper bound on the number of faulty 

processes. Both algorithms guarantee that, eventually, all the correct processes agree 

permanently on a common correct process, i.e., they also implement a failure detector 
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of the class Omega (Q). They are also shown to be optimal in terms of the number of 

communication links used forever. Additionally, a wait-free algorithm that implements 

a failure detector of the Eventually Perfect class (OP) is presented. This algorithm is 

shown to be optimal in terms of the number of bidirectional links used forever. 

Keywords: distributed computing, fault-tolerance, Consensus, failure detector, partial 

synchrony. 

1 Introduction 

The concept of unreliable failure detector was introduced by Chandra and Toueg in [7]. They 

showed how unreliable failure detectors can be used to solve the Consensus problem [35] in 

asynchronous systems. (This was shown to be impossible in a pure asynchronous system 

by Fischer et al. [14].) They also showed in [6] that one of the classes of failure detectors 

they defined, namely the Eventually Strong (OS) class, is the weakest allowing to solve 

Consensus in an asynchronous system with a majority of correct processes. In fact, the 

Eventually Weak failure detector class, denoted OW, is presented as the weakest one for 

solving Consensus. However, Chandra and Toueg have shown in [7] that OS and OW 

are equivalent in asynchronous systems with reliable channels. Since then, many fault-

tolerant distributed algorithms have been designed based on Chandra-Toueg's unreliable 

failure detectors [15, 19, 31, 36]. Almost all of them consider a system model in which the 

failure detector they require is available, i.e., an asynchronous system augmented with a 

failure detector, such that the algorithm is designed on top of it. This work addresses a 

different problem, namely the implementation of these failure detectors. 

From the results of Fischer et al. and those of Chandra and Toueg, it can be derived 

the impossibility of implementing failure detectors strong enough to solve the Consensus 

problem in a pure asynchronous system. In [7], Chandra and Toueg presented a timeout-

based algorithm implementing an Eventually Perfect (OP) failure detector —a class strictly 

stronger than OS— in models of partial synchrony [10]. This algorithm is based on all-to-all 

communication: each process periodically sends an I-AM-ALIVE message to all processes, 

in order to inform them that it has not crashed, and thus requires a quadratic number 

of messages to be periodically sent. Also, a quadratic number of communication links are 

used forever. In [23], Larrea et al. propose more efficient algorithms implementing several 



classes of failure detectors, including OS and OP. These algorithms are based on a ring 

arrangement of the processes, and require only a linear number of messages to be periodically 

sent. Consequently, only a linear number of communication links are used forever. 

1.1 Unreliable Failure Detectors 

An unreliable failure detector is a mechanism that provides (possibly incorrect) information 

about faulty processes. When it is queried, the failure detector returns a set of processes 

believed to have crashed (suspected processes). In [7], failure detectors were characterized 

in terms of two properties: completeness and accuracy. Completeness characterizes the 

failure detector capability of suspecting incorrect processes (processes that have actually 

crashed), while accuracy characterizes the failure detector capability of not suspecting correct 

processes. In this work, we focus on the following completeness and accuracy properties, from 

those defined in [7]: 

• Strong Completeness. Eventually every process that crashes is permanently suspected 

by every correct process. 

• Weak Completeness. Eventually every process that crashes is permanently suspected 

by some correct process. 

• Eventual Strong Accuracy. There is a time after which correct processes are not sus­

pected by any correct process. 

• Eventual Weak Accuracy. There is a time after which some correct process is never 

suspected by any correct process. 

Note that, in isolation, completeness and accuracy are useless. For example, strong 

completeness can be satisfied by forcing every process to permanently suspect every other 

process in the system. Similarly, eventual strong accuracy can be satisfied by forcing every 

process to never suspect any process in the system. Such failure detectors are clearly useless, 

since they provide no information about failures. To be useful, a failure detector must satisfy 

some completeness and some accuracy. 

Combining in pairs these completeness and accuracy properties, four different failure 

detector classes are obtained, which are presented in Figure 1. As previously said, Chandra 
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Figure 1: Four classes of failure detectors defined in terms of completeness and accuracy. 

et al. showed in [6] that OW is the weakest class of failure detectors required for solving 

the Consensus problem in an asynchronous system with a majority of correct processes, and 

in [7] that classes OS and OW are equivalent. For this reason it is said that OS is the 

weakest class of failure detectors for solving Consensus. 

It is worth noting here that the equivalence of OS and OW does not come for free, i.e., 

not all failure detectors in OW are in OS. Instead, it means that any failure detector in 

OW can be extended with a simple distributed algorithm to obtain a failure detector in 

OS. Since most Consensus algorithms proposed require at least a failure detector of class 

OS (e.g., [7, 19, 31, 36]), if the costs of implementing OS and OW failure detectors are 

similar, it is more efficient to directly implement a failure detector of class OS, instead 

of implementing one of class OW and running the extension algorithm on top of it. For 

example, the extension algorithm proposed in [7] requires a quadratic number of messages 

to be periodically exchanged. 

The Omega Failure Detector 

In their proof of OW being the weakest class of failure detectors for solving Consensus [6], 

Chandra et al. defined a new failure detector class, called Omega (fi). To prove their result, 

Chandra et al. show first that Q is at least as strong as OW, and then that any failure 

detector D that can be used to solve Consensus is at least as strong as Q, and hence at 

least as strong as OW. The output of the failure detection module of Q at a process p is a 

single process q, that p currently considers to be correct: p trusts q. A failure detector in Q 

satisfies the following property: 

• There is a time after which all the correct processes always trust the same correct 

process. 



It is said that Q provides an eventual leader election functionality. 

As with OW, the output of the failure detection module of a detector in Q at a process p 

may change with time, i.e., p may trust different processes at different times. Furthermore, 

at any given time t, two processes p and q may trust different processes. However, note that 

the period during which the output of Q is arbitrary is finite. 

It is straightforward to transform a detector in Q into one in OW (and OS) at no 

additional communication cost if the system membership is known to all processes (otherwise, 

even OW cannot be implemented [21]). It can be done by forcing each process to suspect 

every process in the system except its trusted process. This gives us the completeness and 

accuracy properties required by OW (and OS). As we will see, the OS algorithms presented 

in this paper follow this strategy. 

Observe that while Q can be transformed into OW and OS without any communication, 

transforming OW or OS into Omega is far from being trivial and requires communication [9, 

30]. Therefore, a lower bound result for OS directly implies a lower bound result for Q, while 

the opposite direction is not true. 

1.2 Related Work 

In the latest years several authors have investigated the implementation of failure detectors. 

A lot of this effort has gone to provide implementations of (a detector in) Omega in the 

weakest possible system. (We will often use the name of the failure detector class to denote 

a detector of the class. Whether we mean a detector or the whole class shall be clear from 

the context.) In [1], Aguilera et al. introduce the notion of stable leader election, and 

propose several algorithms implementing Omega in a system where all links to and from 

some correct process are eventually timely. (A link is eventually timely if there is a time 

GST and a bound 8 such that, after GST, all messages sent on the link are received in 8 

time.) In [2, 4], they propose an algorithm implementing Omega in a system where only the 

output links of an unknown correct process are eventually timely, but in which a quadratic 

number of links must carry messages forever. With the additional assumption that some 

unknown correct process has all its input and output links fair, Aguilera et al. propose an 

algorithm such that eventually only one process, e.g., the leader, sends messages. More 

recently, they study in [3] the degree of synchrony required to implement Omega when the 



maximum number of processes that can crash is known. There are other recent papers that 

also use some form of eventual timeliness as the system property required to implement Q 

[11, 20, 21, 26]. 

In [27], Mostefaoui et al. propose a new look at the implementation of Q failure detectors, 

based on the pattern of message arrivals instead of their timing. The proposed approach 

is based on a query/response mechanism and assumes that the query/response messages 

exchanged obey a pattern where the responses from some processes to a query arrive among 

the first ones. This approach is used in [33] to implement Omega. Furthermore, they show 

in [28, 29] that this new approach can be advantageously combined with the classical ap­

proach based on partial synchrony assumptions to implement failure detectors with eventual 

accuracy using hybrid protocols. Timing and pattern assumptions have been combined to 

implement Q in [12, 34]. 

Another line of research has to do with implementing failure detectors with probabilistic 

guarantees. Chen et al. study in [8] the quality of service of failure detectors. In [5], Bertier 

et al. propose a new probabilistic implementation of a failure detector. This implementation 

is a variant of the heartbeat failure detector of [8] which is adaptable and can support scalable 

applications. In [13], Fetzer et al. propose a failure detection protocol that relies as much 

as possible on application messages to monitor the processes, using control messages only 

when no application messages are sent by the monitoring process to the observed process. 

In [16], Gupta et al. look at quantifying the optimal network load (in messages per second, 

with messages having a size limit) of failure detectors as a function of two application-

specified requirements, (1) quick failure detection, and (2) accuracy of failure detection. 

In [18], Hayashibara et al. present a novel approach to adaptive failure detectors, called 

(/̂ -failure detectors, which dynamically adapt to application requirements as well as network 

conditions. In contrast to traditional boolean failure detectors (processes are suspected or 

not), a ^-failure detector associates a numerical value tpp to every known process p, which 

represents the degree of confidence that process p has crashed. 

A preliminary version of this work was presented in [22]. In that version, a stronger partial 

synchrony model was assumed, namely that of Dwork et al. [10], and only the first algorithm 

was presented. Assuming the same partial synchrony model, in [23, 25] several ring-based 

algorithms implementing various classes of failure detectors are proposed, including OS and 

OP. In these algorithms a linear number of bidirectional and unidirectional communication 



links, respectively, are used forever (n links if no process crashes, which is optimal for OP 

and unidirectional links). In [24], an algorithm transforming the failure detector class OC 

into OP is presented. The OC class can be viewed as the combination of classes OS and 

Omega. The transformation uses OC as a black box, and assumes partially synchronous 

communication from every process to the leader, and fair communication from the leader to 

the rest of processes. 

1.3 Our Contributions 

In this paper, we propose three algorithms that implement failure detectors in partially 

synchronous systems. Two algorithms implement detectors in the class OS, while the third 

one implements a detector in the class OP. 

As said above, two algorithms implementing OS in a system with weak synchrony are 

first presented. Both algorithms guarantee that eventually all the correct processes agree 

permanently on a common correct process, i.e., they implement the Omega failure detector. 

Then, by not suspecting this common correct process, they obtain the accuracy required by 

OS. Moreover, by suspecting all the other processes, they trivially obtain the completeness 

required by OS. The differences between both OS algorithms are the system requirements 

to be correct, and the fact that the first one works with up to n — 1 failures (i.e., it is wait 

free), while the second one works if up to / processes can crash (and the processes know it). 

We show that they are both optimal in terms of the number of communication links used 

forever. 

Then, a wait-free algorithm that implements a failure detector of class OP is presented. 

The algorithm builds on the wait-free OS detector, using the eventually agreed correct 

process. We show that the algorithm is optimal on the number of bidirectional links used 

forever. 

More specifically, the contributions of this paper are: 

• A wait-free algorithm that implements OS, by implementing Omega, in a system in 

which the output links of the correct process with smallest identifier are eventually 

timely. We show that the maximum number of links that carry messages forever with 

this algorithm, n — 1, is in fact optimal. 

• An algorithm that implements OS, by implementing Omega, in a system in which up 



to / processes can fail, with / < n—1. The algorithm requires that the links connecting 

the correct process with smallest identifier to the rest among the / + 1 with smallest 

identifiers are eventually timely, and the availability of a reliable broadcast service. 

(A simple way to implement reliable broadcast is by message diffusion, see [7], in a 

system with reliable communication paths between every pair of correct processes.) 

The number of links that carry messages forever with this algorithm is at most / , 

which is shown to be optimal. 

• A wait free algorithm that implements O P in a system in which the bidirectional (input 

and output) links of the correct process with smallest identifier are eventually timely. 

The number of bidirectional links that carry messages forever is at most n — 1 with 

this algorithm, which is shown to be optimal. 

It is interesting to compare these results with other results in the literature. For instance, 

looking at our first algorithm, Aguilera et al. [2, 4] showed that it is possible to implement 

Omega if any process has its output links eventually timely, but at a cost of a quadratic 

number of links carrying messages forever. To reduce this number of links to n — 1 the 

additional assumption of a fair-hub (a node with all links fair) was made. In this paper 

the additional assumption restricts which is the process whose output links are eventually 

timely. Similarly, considering our second algorithm, Aguilera et al. [3] implement Omega in 

a system with fair links (which is known to be equivalent to reliable links) and some process 

whose output links with / processes are eventually timely. Again this comes at the cost 

of more than / links carrying messages forever. Considering the third algorithm, Larrea et 

al. [23] and Aguilera et al. [1] have algorithms that implement OP and have n bidirectional 

links carrying messages forever. This value is reduced here to n — 1. Observe that, if 

(uni)directional links are considered, OP can be implemented even if only n directional links 

carry messages forever [25]. 

1.4 Roadmap 

The rest of the paper is organized as follows. In Section 2, we describe the system model 

and discuss different approaches in order to implement failure detectors. In Section 3, we 

present two optimal algorithms implementing a failure detector of class OS. In Section 4, we 



present an optimal algorithm implementing a failure detector of class OP. Finally, Section 5 

concludes the paper. 

2 The Model 

2.1 System Model 

We consider a distributed system consisting of a finite set II of n processes, II = {pi,P2, • • • ,Pn}, 

that communicate only by sending and receiving messages. Every pair of processes (j)i,Pj) 

is assumed to be connected by two directed communication links (pi —>• pj) and (j)j —>• pi), 

seen also as a bidirectional communication link. We also assume that processes are totally 

ordered. Without loss of generality, process Pi is preceded by processes p\,... ,Pi-i, and 

followed by processes Pi+i,... ,pn-

Processes can fail by crashing, that is, by prematurely halting. Crashes are permanent, 

i.e., crashed processes do not recover. In every run of the system we identify two complemen­

tary subsets of II: the subset of processes that do not fail, denoted correct, and the subset 

of processes that do fail, denoted crashed. We assume that the number of correct processes 

in the system in a given run is at least one, i.e., \correct\ > 1. 

In the three algorithms presented in this paper, the correct process with smallest identifier 

is always chosen to have a special role. For that reason we call it the leader process and use 

a special notation for it. 

Definition 1 pieader is the correct process with smallest identifier, i.e., leader = min{i : p^ e 

correct}. 

In this regard, we consider asymmetric leader election: always the correct process with 

the smallest identifier is finally elected. This is not true with other Omega protocols, in 

which the result depends on the number of suspicions. Moreover, our optimality results are 

only for this kind of asymmetric protocols. 

We use / to denote the maximum number of processes that can crash in any run of the 

system. If nothing is specified, we assume / = n— 1. The set of / + 1 processes with smallest 

identifiers will be denoted as Pf. 



We consider a variant of the model of partial synchrony proposed by Chandra and Toueg 

in [7], which is an adaptation of the models proposed by Dwork et al. in [10]. This model 

stipulates that , in every run of the system, there is an upper bound on processing delay, 

defined as the time from the reception of a message to the time the message is processed 

and (potentially) new messages are sent out. Additionally, some links are eventually timely, 

which means that there is a bound 6 on message transmission times on the links. These 

bounds are not known and they hold only after some unknown but finite time (called GST 

for Global Stabilization Time). To simplify the proofs, we will consider that the bound 5 

includes both the transmission and processing time of any message sent after GST. This 

can be done without loss of generality due to the upper bound on processing delay. Unless 

otherwise said, a link that is not eventually timely can be asynchronous and/or lossy. 

Each of the three algorithms presented has a different set of timing and reliability re­

quirements from the links of the underlying system. We define them as properties here. 

First, the wait-free OS algorithm requires the following property from the system. 

Property 1 All the output links of pieader are eventually timely. 

The /-resilient OS algorithm requires the following property. 

Property 2 All the output links ofpieader to the rest of processes in Pf are eventually timely, 

and a reliable broadcast service is available. 

The reliable broadcast service guarantees that a message that has been broadcast will be 

delivered by all correct processes or none. More precisely, it guarantees that all correct pro­

cesses deliver the same set of messages. This set includes at least all messages broadcast by 

correct processes. To provide the reliable broadcast service it is enough to have reliable (or 

even fair lossy) links. The access to the reliable broadcast service is done with two primi­

tives, R-broadcast(m) which broadcasts message TO in a reliable fashion, and R-deliver(m) 

which delivers message TO. Formally, the reliable broadcast service satisfies the following 

properties [17]: 

• Validity. If a correct process R-broadcasts a message TO, then it eventually R-delivers 

TO. 

• Agreement. If a correct process R-delivers a message TO, then all correct processes 

eventually R-deliver TO. 



• Uniform integrity. For any message m, every process R-delivers m at most once, and 

only if m was previously R-broadcast by some process. 

Finally, the wait-free OP algorithm requires the following property from the system. 

Property 3 All the bidirectional links of pieader are eventually timely. 

All the algorithms presented in this paper assume that a local clock that can accurately 

measure real-time intervals is available to each process. However, clocks are not synchronized. 

2.2 Implementation of Failure Detectors 

A distributed failure detector can be viewed as a set of n failure detection modules, each 

one attached to a different process in the system. These modules cooperate to satisfy the 

required properties of the failure detector. Upon request, each module provides its attached 

process with a set of processes it suspects to have crashed. These sets can differ from one 

module to another at a given time. We denote by suspectedi the set of suspected processes of 

the failure detection module attached to process p». We assume that a process interacts only 

with its local failure detection module in order to get the current set of suspected processes. 

In this paper, we only describe the behavior of the failure detection modules in order 

to implement a failure detector, but not the behavior of the processes to which they are 

attached. For this reason, in the rest of the paper we will use the term process instead of 

failure detection module. It will be clear from the context if we are referring to the failure 

detection module or the process attached to it. However, it is assumed that if a process 

crashes, its failure detector module crashes as well, and vice-versa. 

Any algorithm implementing a failure detector requires that some processes detect whether 

other processes have crashed, and take proper action if so. There are mainly two possible 

ways to implement this failure detection: the push model and the pull model. In the push 

model, processes are permanently sending I-AM-ALIVE messages to the processes in charge 

of detecting their potential failure. In the pull model, the later ask the former for such 

messages. In any case, the only way a process can show it has not crashed is by sending 

messages to other processes. 

The algorithms presented in this paper are based on the push model. At any time, at 

least one process is sending I-AM-ALIVE messages (most of the time we denote them I-AM-

THE-LEADER messages) periodically to a subset of the processes in the system. Processes 



monitor each other by waiting for these periodical I-AM-ALIVE messages. To monitor a 

process pj, process Pi uses an estimated value —timeout— that tells how much time it has 

to wait for the I-AM-ALIVE message from pj. This time value is denoted by Aitj. Then, if 

after Ajj time pi did not receive the I-AM-ALIVE message from pj, it suspects that pj has 

crashed. We need to allow these time values to vary over time in our algorithms. We use 

Ajj (t) to denote the value of Aitj at time t. 

3 Optimal Implementations of OS* 

3.1 Wait-free OS Algorithm 

In this section, we present a first algorithm implementing a failure detector of class OS. The 

algorithm works in a system in which up to n— 1 processes can fail (i.e., it is wait free). This 

algorithm guarantees that eventually all the correct processes converge on the leader process 

Pleader as a common correct process. This property trivially allows the algorithm to provide 

the eventual weak accuracy property required by OS: eventually, pieader is not suspected by 

any correct process. The strong completeness property of OS is reached by simply making 

every process Pi suspect all processes in the system except puader-

Each process Pi runs an instance of the algorithm of Figure 2, in which there is a local 

variable called trustedi. As we will show, eventually the value of trustedi for each correct 

process pi will be the same, and trustedi = leader. 

Every process pi, i = 1 , . . . , n executes: 

trustedi <— 1 

V? G { 1 , . . . ,i — 1} : Aj j <— default t imeout 

c o b e g i n 

|| Task 1: repeat per iodica l ly 

if trustedi = i t h e n send I-AM-THE-LEADER to pi+i,... ,pn 

|| Task 2: w h e n (trustedi < i) and 

(did not receive I-AM-THE-LEADER from ptrustedi during the last A i j t r „ s t e ( i i t ime units) 

trusted^ <— trustedi + 1 

|| Task 3: w h e n (received I-AM-THE-LEADER from pj) and (j < trusted^) 

trusted^ <— j 

Aij <r- Aij + 1 

c o e n d 

Figure 2: Wait-free algorithm used to implement a failure detector of class OS. 



The algorithm of Figure 2 executes as follows. Initially, each process pi starts with 

trustedi = 1, which means that p\ will be their first candidate to be the process puader-

Process p\ starts sending I-AM-THE-LEADER messages periodically (i.e., every AT1 time 

units, with ATI statically defined) to the rest of processes P2, • • • ,pn- In general, a process 

Pi will be sending I-AM-THE-LEADER messages periodically to its successors Pi+i,... ,pn if 

trustedi = i (Task 1). A process Pi such that trustedi ^ h just waits for periodical I-AM-

THE-LEADER messages from the process ptmstedi- If if does not receive an I-AM-THE-LEADER 

message on time (within some timeout period A^rustedi), then pi suspects that ptmstedi has 

crashed and chooses the next candidate to be the process pieader by increasing trustedi by 

one (Task 2). 

If, later on, a process Pi receives an I-AM-THE-LEADER message from a process pj, such 

that j < trustedi, then pi will stop considering that pj has crashed, and will trust pj again 

(by making trustedi = ])• I n order to prevent this from happening an infinite number of 

times, Pi also increases the value of the timeout period Aitj (Task 3). Moreover, if pi was 

sending I-AM-THE-LEADER messages periodically, it will automatically stop sending them, 

since now trustedi ^ i-

Correctness Proof 

We show now that the algorithm of Figure 2, combined with either of the following definitions 

of suspectedi (II— {ptmstedi} or ri — {ptmstednPi}), implements a failure detector of class OS. 

The key of the proof is to show that, eventually and permanently, trustedi = leader for every 

correct process pi. Thus, with either definition of suspectedi, eventually some correct process 

(namely puader) is never suspected by any correct process, which provides the eventual weak 

accuracy property of OS, and eventually all crashed processes are permanently suspected 

by all correct processes, which provides the strong completeness property of OS. 

Recall that it is assumed that Property 1 holds. All time instants considered in the rest 

of this section are assumed to be after GST (Global Stabilization Time). We also assume 

that, at these instants, all messages sent before GST on eventually timely links have already 

been delivered and processed, or lost. These assumptions allow us to consider in the rest 

of the section that the unknown bounds on processing delay and on message transmission 

times hold (the later only for the messages sent by pieader)- We denote by trustediit) the 



value of trustedi at time t. 

Lemma 1 3t0 : Vt > t0, \/pi E correct, trustediit) > leader. 

Proof: Let Pi be any correct process. By definition of pieader, eventually all its predecessors, 

namely p\,... ,pieader-i, will crash. Consider a time t' at which all the predecessors oipieader 

have crashed and all their messages have already been delivered and processed (in Task 3) 

or lost. Then, if at any time t" > t!, trustediit") = j < leader, at most Aitj(t") time units 

later Task 2 will be activated and the variable trustedi will be updated to j + 1. Hence, 

there is some time U > t! at which trustediiti) > leader. Since pi will never receive any 

other message from processes p\,... ,pieader-i after t!, the variable trustedi will never take a 

value below leader (see Task 3). Let t0 = max{tj : pi E correct}. From the above reasoning, 

\/t > to, \/pi E correct, trustediit) > leader. • 

Lemma 2 Vt > to, where to is the same as in Lemma 1, trustedieaderit) = leader. 

Proof: From the initialization of trustedi to 1 and Task 2, Vt : trustedieader(t) < leader. 

From Lemma 1, Vt > to, trustedieader(t) > leader. Hence, Vt > to, trustedieader(t) = leader. 

a 

Lemma 3 After to, the process puader will be permanently sending I-AM-THE-LEADER mes­

sages periodically to all its successors pieader+i, • • • ,Pn-

Proof: Follows from Lemma 2 and Task 1. • 

Let A n be the period of Task 1. Also, recall that 6 is the maximum time between the 

sending of a message by puader and the delivery and processing at its destination process 

(assuming that the destination is correct). 

Lemma 4 Let pi E correct : i ^ leader. If at time t! > to, trustediit1) > leader, then 3t" : 

t' < t" <t' + AT 1 + 5 and trustediit") = leader. 



Proof: Note that, by definition of pieader, Pi has to be a successor of puader- From Lemma 3, 

after time t0 the process puader is permanently sending I-AM-THE-LEADER messages, with a 

period of AT1, to all its successors, including p^. After t', the first I-AM-THE-LEADER message 

will be sent by pieader at time if + ATI at the latest. This message takes a maximum time of 

8 to be delivered and processed by pi. Hence, at some time t" <t' + ATI + 8, Pi will deliver 

and process an I-AM-THE-LEADER message from pieader. From Lemma 1, trustedi > leader 

at if', and then from Task 3, trustedi will take the value leader at that time. • 

Lemma 5 Let Pi E correct : i ^ leader. After t0, trustedi will change from leader to a 

value different from leader a finite number of times. 

Proof: Let us assume, by the way of contradiction, that trustedi changes from leader to a 

value different from leader an infinite number of times after t0- From Lemma 4, the value 

of trustedi will be leader at some time after t0. From Task 2, trustedi changes from leader 

to leader + 1 if two I-AM-THE-LEADER messages are received by pi more than Aitieader time 

apart. Note from Task 1 and from the fact that we have a partially synchronous system that 

two consecutive I-AM-THE-LEADER messages sent by puader are received and processed by Pi 

at most AT\ + 8 time apart. Also, from Lemma 4, the value of trustedi will become leader 

again eventually. Every time this happens, from Task 3, the value of Aitieader is incremented 

by one. Hence, since this will happen an infinite number of times, eventually Aitieader will be 

larger than AT\ + 8. However, after that happens trustedi will never change its value from 

leader, which is a contradiction. • 

Theorem 1 3t\ :\/t>ti, \/pi E correct, trustediit) = leader. 

Proof: Follows from Lemma 2 for the case i = leader, and from Lemmas 4 and 5 for the 

case i ^ leader. • 

Corollary 1 Let suspectedi be defined as either U- {ptrustedi\ orU-{ptrustedi,pi\, \/pi E n . 

The algorithm of Figure 2, combined with either of these definitions of suspectedi, implements 

a failure detector of class OS. 



Optimality 

In this section, we study the number of communication links used forever by the algorithm. 

Observe that, eventually, only pieader sends messages. This means that at most its n — 1 

output links carry messages forever. 

We prove now that n — 1 is in fact a lower bound on the number of unidirectional links 

that carry messages forever in any fault-free execution of a OS algorithm, if up to n — 1 

processes can crash. Hence this algorithm is optimal with respect to this parameter. 

Theorem 2 Let A be any (wait-free) algorithm that implements OS in a system in which 

up to n— 1 processes can crash. Then, in all fault-free runs of A, at least n—1 unidirectional 

links carry messages forever. 

Proof: Consider some such algorithm A and assume that it has a fault-free run R in which 

no more than n — 2 unidirectional links carry messages after some time T. Then, after T, 

the set of processes can be divided into at least two disjoint non-empty subsets of processes 

such that each subset Ilfc does not communicate anymore with the rest of processes II \ IIfc 

(they are permanently disconnected). 

From the eventual weak accuracy property, there must be a process pe and a time after 

which pe ^ suspectedi permanently, for each process p». Let IT,- be the subset that contains 

Pi. Consider a run R' in which every process behaves exactly like in R except that the 

whole set IT,- crashes simultaneously after time T. Since IT,- is disconnected from the rest 

of processes, no process in II \ IT,- notices the failures. Then, since pe is never permanently 

suspected by the processes in II \ IT,-, strong completeness is not satisfied. • 

Corollary 2 The algorithm of Figure 2 is optimal on the number of unidirectional links that 

carry messages forever among the algorithms that implement OS in systems with up to n— 1 

crashes. 

3.2 /-Resilient OS Algorithm 

In this section, we present a second algorithm that implements a OS failure detector. The 

main differences of this algorithm with respect to the previous is that it uses the knowledge 



of the maximum number / of processes that can crash to increase the efficiency, and that it 

has different requirements from the system. 

In fact, this algorithm uses the same approach as the previous one to choose a leader, but 

instead of running it on the whole set of processes, it only uses / + 1 processes (in particular, 

Pf = {pi, ...,pf+i}). This guarantees the existence of at least one correct process (at least 

Pleader) in such a set. Then, every time a leader is chosen, it is communicated to the rest of 

processes, which adopt it as their trusted process. Figure 3 presents the algorithm in detail. 

Every process pi,i = 1,... ,f + 1 executes: 

trusted^ <— 1; county <— 0 

V? G { 1 , . . . ,i — 1} : A j j <— default t imeout 

c o b e g i n 

|| Task 1: repeat per iodica l ly 

if trustedi = i t h e n send I-AM-THE-LEADER to pi+i,... ,Pf+i 

|| Task 2: w h e n (trustedi < *) a n d 

(did not receive I-AM-THE-LEADER from ptrustedi during the last A i j t r „ s t e ( i i t ime units) 

trusted^ <— trustedi + 1 

if trustedi = i t h e n R-broadcast(NEW-LEADER, count i) 

|| Task 3: w h e n (received I-AM-THE-LEADER from pj) and (j < trusted^) 

Aij <r- Aij + 1 

trusted^ ^~ 3 

|| Task 4: w h e n (R-deliver(NEW-LEADER, count j) borapj) and ((count j , i ) < (count j^j)) 

count i <— count j + 1 

if trustedi = i t h e n R-broadcast(NEW-LEADER, counti) 

c o e n d 

Every process pi,i = f + 2,... ,n executes: 

trusted^ ^- 1 

counti <— 0 

c o b e g i n 

|| Task 1: w h e n (R-deliver(NEW-LEADER, count j) borapj) and ((county, trusted^) < (count j,j)) 

trusted^ ^~ 3 

counti <— count j 

c o e n d 

Figure 3: /-resilient algorithm used to implement a failure detector of class OS. 

The difficulty here is to make sure that the communication of leaders to the rest of 

processes is done in such a way that correctness is guaranteed. For that, we use the reliable 

broadcast service that is available by Property 2. We use reliable broadcast to enforce that 

the last message R-delivered by the processes not in Pf was sent by pieader, the process 

trusted by all processes in Pf. To do so, processes that believe to be the leader R-broadcast 



a NEW-LEADER message to the rest of processes to announce so. We impose an order among 

these messages by making them to carry a counter (i.e., a scalar clock for leader proposals), 

and breaking ties with the sender's identifier. (In Figure 3 we assume (counti, i) < (count j,j) 

if counti < countj or both counti = countj and i < j.) Processes send such a message when 

they become potential leaders (Task 2) or when they are leaders and find that another 

process sent a message with larger counter (Task 4). The processes that are not in Pf apply 

these messages in increasing order. To prove the correctness of the algorithm we just show 

that the last such message, i.e., the message with the highest associated counter, was sent 

by 
Pleader• 

Correctness Proof 

We show now that the algorithm of Figure 3 implements a failure detector of class OS. 

Observe that '[Header is always in the set Pf. The algorithm of Figure 3 uses the same 

approach to choose a leader as the algorithm of Figure 2, but just among the processes in Pf 

instead of the whole set of processes II. Additionally, Property 2 provides an assumption for 

Pf similar to the one that Property 1 provides for II. Hence, applying a similar reasoning 

to that of the algorithm of Figure 2, it is simple to prove that, eventually, all the correct 

processes in Pf will permanently agree on the same leader, and that this leader will be pieader-

Hence, the following lemma holds. 

Lemma 6 3t : Vt' > t, \/pi E correct n Pf, trustediit1) = leader. 

In order to prove that the rest of correct processes will also agree permanently on pieader, 

we will show that the NEW-LEADER message with the largest counter R-delivered to all 

correct processes to announce a leader —if any NEW-LEADER message is R-delivered— was 

sent by pieadev 

Lemma 7 / / any NEW-LEADER message is R-delivered by the correct processes, then the Re­

delivered NEW-LEADER message with the largest counter was R-broadcast by process pieader • 

Proof: Assume by contradiction that the R-delivered NEW-LEADER message with the largest 

counter was R-broadcast by a process pj with j ^ leader. From the properties of reliable 

broadcast, pieader will R-deliver the message. When it does so, it sets countieader to countj + l. 



There are two cases to consider. If pieader had trustedieader = leader when it R-delivered the 

message, then it R-broadcasts a new (NEW-LEADER, countj + 1) message. If that was not 

the case, from Lemma 6, eventually pieader sets trustedieader = leader, and R-broadcasts a 

new (NEW-LEADER, count) message, with count > countj. In either case, the corresponding 

message gets R-delivered, which contradicts the initial assumption. • 

Lemma 8 3t : Vt' > t, \/pi G correct, f + 2 < i < n, trustediit1) = leader. 

Proof: Follows directly from Lemma 7, if some NEW-LEADER message is ever R-delivered. 

If no NEW-LEADER message is R-delivered, it is because leader = 1, and the claim follows 

from the way processes p/+2, • • • ,Pn (initially) set their trusted process in the algorithm. • 

Theorem 3 Let suspectedi be defined as either II — {ptmstedi} or II — {ptmstedi,Pi}, Vp» G II. 

The algorithm of Figure 3, combined with either of these definitions of suspectedi, implements 

a failure detector of class OS. 

Proof: Follows directly from Lemma 6 and Lemma 8. • 

Optimality 

Observe in the algorithm of Figure 3 that, once the last (if any) NEW-LEADER message is 

R-delivered, all the messages sent are from pieader to the rest of processes in Pf. Then, at 

most / links carry messages forever. We prove now that / is in fact a lower bound on the 

number of links that carry messages forever in any fault-free execution of a OS algorithm if 

up to / processes can crash. Hence this algorithm is optimal with respect to this parameter. 

Theorem 4 Let A be any algorithm that implements OS in a system in which up to f 

processes can crash. Then in all fault-free runs of A at least f links carry messages forever. 

Proof: Consider some such algorithm A and assume that it has a fault-free run R in which 

no more than / — 1 links carry messages after some time T. Then, after T, the set of 

processes can be divided into at least n — f + 1 disjoint non-empty subsets of processes such 



that each subset IT̂  does not communicate anymore with the rest of processes II \ 11̂  (they 

are permanently disconnected). Observe that no subset has size larger than n — (n — f) = f. 

From the eventual weak accuracy property, there must be a process pi and a time after 

which pi ^ suspectedi permanently, for each process pi. Let IX,- be the subset that contains 

Pi. Consider a run R' in which every process behaves exactly like in R except that the 

whole set IX,- crashes simultaneously after time T. Since IX,- is disconnected from the rest 

of processes, no process in II \ IX,- notices the failures. Xhen, since pi is never permanently 

suspected by the processes in II \ IX,-, strong completeness is not satisfied. • 

Corollary 3 The algorithm of Figure 3 is optimal on the number of links that carry messages 

forever among the algorithms that implement OS in systems with up to f crashes. 

4 Wait-free OP Algorithm 

In this section, we propose an algorithm implementing a failure detector of the Eventually 

Perfect class (OP). Xhis algorithm successfully exploits the eventual leader election property 

of the wait-free OS algorithm of the previous section, and extends it with a periodic com­

munication between every non-leader process and its leader process. As there is eventually 

a unique and correct leader, it can be used to build and propagate a global set of suspected 

processes satisfying the properties of OP. 

Figure 4 presents the algorithm in detail, which works as follows. Each leader process 

(i.e., each process that trusts itself) builds a local set of suspected processes by using timeouts 

(Xasks 2, 4 and 5), and sends its set periodically to the rest of processes (Xask 1). Con­

currently, each non-leader process periodically sends an I-AM-ALIVE message to its trusted 

process (Xask 1). Finally, when a process receives a set of suspected processes from its 

trusted process, it adopts this set as its own set (Xask 3). 

While the algorithms implementing OS of the previous section require that, eventually, 

the bound on message transmission times holds only for the output links of the leader 

process to the rest of correct processes (in the case of the second algorithm, to the rest 

of correct processes in Pf), this algorithm requires that the bound holds also for the links 

(Pi —>- Pleader), for every correct process Pi (except pieader)- Not surprisingly, the fact that 



Every process pi,i = 1,... ,n executes: 

trustedi <— 1 

suspectedi <— 0 {suspectedi provides the properties of OP} 

Vj € { 1 , . . . , n} : A j j <— default t imeout{A$ j , j < i are used to eventually agree on a common leader process} 

{Aij,j > i are used by the leader to build the set of suspected processes} 

c o b e g i n 

|| Task 1: repeat per iodica l ly 

if trusted^ = i t h e n 

send (i-AM-THE-LEADER, suspectedi) to pi+i,. . . ,pn 

e lse 

Send I-AM-ALIVE t o Ptrustedi 

|| Task 2: w h e n (trustedi < *) and (did not receive (i-AM-THE-LEADER, swspec£e<i tr„ste(2j fromp(„S(e(j. 

during the last Aiitrustedi t ime units) 

trusted^ <— trustedi + 1 

if trusted^ = i t h e n suspectedi <— {pi,. . . ,Pi-i} 

|| Task 3: w h e n (received (i-AM-THE-LEADER, suspectedj) from pj) and (j < trustedi) 

if j < trustedi t h e n 

trusted^ ^- j 

Aij <r- Aij + 1 

suspectedi ^- suspectedj 

|| Task 4: w h e n (trustedi = i) and (did not receive I-AM-ALIVE from pj during the last A j ^ time units) 

and (j > i) 

suspectedi ^- suspectedi U {pj} 

|| Task 5: w h e n (trustedi = i) and (received I-AM-ALIVE from pj) and (pj G suspectedi) 

suspectedi ^- suspectedi — {Pj} 

Aij <r- Aij + 1 

c o e n d 

Figure 4: Wait-free algorithm implementing OP. 

the class OP of failure detectors is strictly stronger than OS is reflected in this stronger 

synchrony requirement. 

Correctness Proof 

We show now that the algorithm of Figure 4 implements a failure detector of class OP. Note 

first that, concerning the management of the trustedi variable, the first three tasks of the 

algorithm of Figure 4 are equivalent to the three tasks of the algorithm of Figure 2. Note 

also that the rest of the algorithm of Figure 4 does not affect the trustedi variable. Hence 

the following observation. 

Observation 1 Theorem 1 holds with the algorithm of Figure 4-



This theorem states that eventually all the correct processes will permanently trust the same 

correct process puader- All the time instants considered in the rest of the proof are greater 

than t\, as defined in Theorem 1. We also assume that all the incorrect processes have 

already crashed, and all their messages have already been delivered and processed or lost. 

Lemma 9 Eventually every process that crashes is permanently suspected by pieader-

Proof: Let Pj be a process that crashes. There are two cases to consider: (1) j < leader, 

and (2) j > leader. In case (1), by Task 2 pieader will include pj in its set of suspected 

processes as soon as it trusts itself. In case (2), due to its crash, pj will stop sending I-

AM-ALIVE messages. Prom Task 4, pieader will eventually include pj in its set of suspected 

processes. For pj to be removed from that set of suspected processes, puader has to receive 

an I-AM-ALIVE message from pj. Since pj has crashed, this will not happen, and thus pieader 

will permanently suspect pj. • 

Let ATI be the period of Task 1. Also, since Property 3 holds, recall that 5 is the 

maximum time between the sending of a message by pieader and the delivery and processing 

by its destination process (assuming that the destination is correct), as well as the maximum 

time between the sending of a message by the rest of correct processes to puader and the 

delivery and processing by pieader-

Lemma 10 Let Pi E correct, i ^ leader: puader will suspect process Pi a finite number of 

times. 

Proof: Let us assume, by the way of contradiction, that pieader suspects pi an infinite number 

of times. From Task 1 and Theorem 1, pi will eventually and permanently send I-AM-ALIVE 

messages periodically to puader- From Task 5, each time that Pi is incorrectly suspected by 

Pleader (in Task 4), puader will eventually stop suspecting pi, incrementing its timeout value 

Aieader,i- Hence, since this will happen an infinite number of times, eventually Aieader,i will 

be larger than (AT1 + 5). However, after that happens puader will no more suspect Pi, which 

is a contradiction. • 

Lemma 11 There is a time after which no correct process is suspected by pieader-



Proof: Since a process never suspects itself, the lemma directly applies to the process puader 

itself. For the rest of correct processes, it follows directly from Lemma 10 and the fact that 

by the algorithm (Tasks 1, 4, and 5) all the incorrect suspicions made by pieader are eventually 

corrected. • 

Lemma 12 Eventually every correct process will permanently agree with 'Puader in the set of 

suspected processes. 

Proof: From Task 1, pieader will send periodically its set of suspected processes to every 

correct process. Let pj be a correct process. From Task 3 and Theorem 1, pj will receive 

periodically the set of suspected processes of pieader, adopting it as its own set of suspected 

processes. • 

Theorem 5 The algorithm of Figure 4 implements a failure detector of class OP. 

Proof: From Lemmas 9, 11, and 12, eventually every process that crashes is permanently 

suspected by every correct process (Strong Completeness), and there is a time after which 

correct processes are not suspected by any correct process (Eventual Strong Accuracy). This 

gives us the two properties of OP. • 

Optimality 

The algorithm of Figure 4 has at most n — 1 bidirectional links that carry messages forever, 

i.e., the input and output links of the leader process. We prove now that, if only bidirectional 

links are available, n — 1 is in fact a lower bound on the number of bidirectional links that 

carry messages forever in any fault-free execution of a OP algorithm if up to n — 1 processes 

can crash. Hence this algorithm is optimal with respect to this parameter. Note however 

that the optimality is only about bidirectional links. If we count each bidirectional link as 

two unidirectional links, the algorithm is not optimal. 

Theorem 6 Let A be any algorithm that implements OP in a system in which up to n — 1 

processes can crash. Assume that only bidirectional links are available. Then, in all fault-free 

runs of A at least n — 1 bidirectional links carry messages forever. 



Proof: The proof is almost verbatim to that of Theorem 2. • 

Corollary 4 The algorithm of Figure 4 is optimal on the number of bidirectional links that 

carry messages forever among the algorithms that implement OP in systems with up to n— 1 

crashes. 

5 Conclusion 

In this paper, we have presented two algorithms implementing OS, the weakest failure 

detector class for solving Consensus. We have also presented an algorithm implementing 

a failure detector of class OP. Our algorithms are optimal in terms of the number of 

communication links used forever. 

Comparing to other algorithms that implement OS, it may seem that our OS algorithms 

have a big loss of accuracy, because all processes except one are systematically suspected. 

However, the fact that eventually all the processes agree on a leader process can be very help­

ful to solve Consensus more efficiently, i.e., in less rounds, than existing previous algorithms 

for OS [24, 32]. 
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