
Time and Space Partitioning the EagleEye Reference Mission

Victor Bos(1), Peter Mendham(2), Panu Kauppinen(1), Niklas Holsti(1), Alfons Crespo(5),
Miguel Masmano(3), Juan A. de la Puente(4), Juan Zamorano(4)

(1)Space Systems Finland, Kappelitie 6B, 02200, Espoo, Finland, Email:
{victor.bos,panu.kauppinen,niklas.holsti}@ssf.fi

(2)Bright Ascension, 42 Queen Street, Newport-on-Tay, Fife, DD6 8BD Scotland, UK, Email:
peter@brightascension.com

(3)fentISS, Ciudad Politécnica de la Innovación, Edificio 9B Despacho 3, 46022 Valencia, Spain, Email:
mmasmano@fentiss.com

(4)Universidad Politécnica de Madrid, 28040 Madrid, Spain, Email: {jpuente,jzamorano}@dit.upm.es
(5)Universidad Politécnica de Valencia, 46022 Valencia, Spain, Email: alfons@disca.upv.es

ABSTRACT

We discuss  experiences  gained by porting a Software
Validation  Facility  (SVF)  and  a  satellite  Central
Software (CSW) to a  platform with support  for  Time
and Space Partitioning (TSP). The SVF and CSW are
part of the EagleEye Reference mission of the European
Space Agency (ESA). As a reference mission, EagleEye
is  a  perfect  candidate  to  evaluate  practical  aspects  of
developing satellite CSW for and on TSP platforms. The
specific TSP platform we used consists of a simulated
LEON3  CPU  controlled  by the  XtratuM  separation
micro-kernel.  On  top  of  this,  we  run  five  separate
partitions.  Each  partition  runs  its  own  real-time
operating system or Ada run-time kernel, which in turn
are running the application software of  the CSW. We
describe  issues  related  to  partitioning;  inter-partition
communication;  scheduling;  I/O;  and  fault-detection,
isolation, and recovery (FDIR).

1. INTRODUCTION

EagleEye  is  a  reference  mission of ESA  (European
Space  Agency) to  try  out  and  evaluate  methods,
technologies,  and  tools  for  space  mission
development [14]. The EagleEye consists of a Software
Validation  Facility (SVF)  and  the Central  Software
(CSW)  of  a  satellite.  The  SVF  and  CSW  are  both
modularized  software  systems  which  can  be  run  on
stand-alone workstations. All validation (testing) is done
by software  simulation  of  the  environment.  The  SVF
modules simulate spacecraft environment and spacecraft
hardware. As such the SVF and CSW form a flexible
setup  for  studies of  new  technologies.  The  EagleEye
CSW is representative for  on-board software of  actual
Earth  Observation  satellites and  contains  control
software  for  satellite  subsystems,  including  a  simple
(scientific) payload.

The  experiences  we  discuss  in  this  paper  are  about
porting the EagleEye CSW to a processor module with
support  for  Time  and  Space  Partitioning  (TSP).  The

activity was carried out under an ESA contract. We hope
our experiences provide valuable "lessons learned" for
future TSP activities for satellite on-board software.

2. PARTITIONING EAGLE-EYE CSW

TSP for  space  applications  is  relatively  new,  see [7].
TSP allows an integrated system containing applications
of  different  criticality  to  run  on  the  same  processor
module  with  the  guarantee  that  lower  criticality
applications cannot  cause  failures  in  higher  criticality
applications.  The  main  advantage  of  this,  when
compared  to  an  integrated  system  running  on  a
conventional  (non-TSP)  processor  module,  is  that  the
efforts  needed  for  developing  high  criticality  systems
are  independent  of  the  size  and  number  of  lower
criticality systems running on the same system.

The  architecture  of  the  EagleEye  SVF  and  CSW  is
displayed  in Figure  1.  The  processor  module  (PM)
running the CSW is connected via a MIL-STD-1553 bus
and  a  SpaceLink to  the  EagleEye  on-board  devices
which are simulated by SVF modules.  These simulated
devices  include:  Solid  State  Mass  Memory  (SSMM),
Power subsystem,  Thermal subsystem,  the  AOCS

Figure 1. EagleEye SVF and CSW architecture

PM

CSW SSMM

AOCS

Thermal

Power

PayloadPayload

SVF
console

SpaceLink

M
IL

-S
T

D
-1

5
5

3

SVF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148668054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


subsystem,  and  the  Payload subsystem.  The  SVF
console provides  the  user  interface  with  functionality
for configuration,  starting/stopping,  test  scenario
execution, etc.  The architecture shows that  MIL-STD-
1553  connects  the  CSW  to  the  EagleEye  on-board
devices (SSMM, Power, Thermal, AOCS, and Payload).
The SpaceLink provides a TM/TC link to ground.

Our intention has been to change the SVF as little as
possible.  The  PM  changed  from  a  conventional
processor (LEON2) to a TSP-enabled processor (single-
core LEON3 with MMU).

2.1 Initial EagleEye CSW Architecture

The  CSW  is,  as  mentioned  above,  a  modularized
software  system.  Its  architecture  at  the  start  of  the
project  is  displayed  in Figure  2.  The  application
processes are Mission Manager, Data Handling, Payload
AOCS, Power Control,  Telemetry Store,  and Thermal
control.  Below  the  application  processes  is  the  PUS
implementation  OBOSS  III  [4]  and [5].  It  provides
standardized  TM/TC  communication  between
application processes and ground. Hardware access to
(simulated)  EagleEye  equipment  is  provided  via  the
SOIS subnetwork [8] and MIL-STD-1553 stack. Finally,
SpaceLink provides access to the SpaceLink bus which
realizes the TM/TC channel  to  ground.  The real-time
operating  system  used  is  RTEMS.  The  processor
module is based on a (simulated) LEON2 CPU.

One characteristic  of  the  EagleEye  CSW is  that  it  is
implemented partly in Ada and partly in C. Supporting a
multi-language system puts cooperability requirements
on  compilers,  build  systems,  linkers,  and  run-time
systems.  Previous EagleEye activities have shown that
meeting these requirements  takes  considerable efforts.

One of  the hopes  of  the  EagleEye TSP activity is  to
make  the  cooperability  requirements  due  to  multiple
implementation languages more manageable.

2.2 Final EagleEye CSW Architecture

The final  CSW architecture is  given in Figure 3.  The
partitions,  displayed  as  five  columns,  are  DMS,
Payload,  IO,  AOCS,  and  FDIR.  Five  of  the  original
application processes are put in the DMS partition. The
Payload  application  process  runs,  naturally,  in  the
Payload  partition.  The  IO  partition  does  not  have
application  processes.  The  AOCS  application  process
runs in the AOCS partition. Finally, the FDIR partition
contain  a  new  application  process  called  TSP FDIR.
This process monitors and controls the partitions of the
TSP platform.

Each  partition  has  its  own  operating  system  and/or
runtime  kernel.  The  DMS and  Payload  partitions  are
implemented  in  Ada  and  run  on  an  AdaORK  para-
virtualized  for  XtratuM.  The  IO  partition  is
implemented  in  C  and  runs  on  RTEMS.  Finally,  the
AOCS  and  FDIR  partitions  run  on  XAL,  a  simple
operating  system  to  run  single-threaded  C  programs.
XAL is provided with XtratuM, see next paragraph.

The separation microkernel is XtratuM [1],  [2]. This is
an  open  source  software  system  developed  and
maintained by fentISS (www.fentiss.com). XtratuM was
adapted  specifically  for  this  project  to  support  the
processor  module  for  EagleEye  TSP.  The  processor
module  is  based  on  a  (simulated)  LEON3 CPU with
MMU.

As can be seen by comparing Figure 2 and Figure 3, the
OBOSS  III  component  is  duplicated  in  the  final
architecture.  The reason for this is that communication

Figure 2. Initial CSW architecture

PUS OBOSS III

SOIS subnetwork

MIL-STD-1553
SpaceLink

RTOS (RTEMS)

PM (LEON2)

AOCS

Data
handling

Mission
Manager

Payload

Power
Control

Telemetry
store

Thermal
Control

Figure 3. Final CSW architecture

DMS

Data
handling

Separation microkernel (XtratuM)

PM (LEON3 with MMU)

Telemetry
store

Power
control

Thermal
control

OBOSS III
PUS

AdaORK+

Payload

Payload

OBOSS III
PUS

AdaORK+

IO

M
IL

-S
T

D
15

53
RTEMS

S
O

IS
su

bn
et

w
or

k

S
pa

ce
Li

nk

AOCS

AOCS

XAL

FDIR

TSP
FDIR

XAL

Mission
manager

http://www.fentiss.com/


between application processes in the DMS and Payload
partitions was based on OBOSS III (TM/TC PUS). As
both DMS and Payload partitions run on the AdaORK
runtime kernel,  only minimal changes were needed to
make  this  TM/TC  based  communication  between
Payload and DMS application processes cross partition
boundaries.

3. BEFORE-AFTER DISCUSSION

The  final  architecture  in  Figure  3 shows  new
components in the green layer  (AdaORK+, XAL, and
XtratuM).  However,  since  application  processes  of
different  partitions  communicate  with  each  other,
additional  software  components  were  needed  to
implement  this  Inter-partition  communication  (IPC).
XtratuM provides low-level IPC primitives with which
bytes  can be transfered from one partition to another.
The  primitives  are  made  available  by  the  partition
operating  systems  or  runtime  kernel.  The  additional
code we talk about here encapsulates the XtratuM IPC
primitives such that changes to "legacy" EagleEye CSW
code  to  support  IPC  are  minimal.  One  TSP-specific
design issue is to decide the best place to implement this
encapsulating code.

During the EagleEye TSP activity, many decisions had
to  be  made.  Some  of  the  decisions  are  EagleEye
specific, whereas others can be generalized to broader
contexts.  To limit  the scope of this paper,  we  discuss
some of these broader  issues.  We focus the discussion
by questions that can be raised by comparing the initial
and final CSW architectures:

1. Why is OBOSS III in (only) two partitions?

2. How does IO work?

3. What is TSP FDIR (and why not just FDIR)?

3.1 Why is OBOSS III in (only) two partitions?

The  original  EagleEye  CSW  application  processes
communicate mostly via TM/TCs according to the PUS
standard. The move to a TSP enabled platform placed
some of the application processes in different partitions.
As  a  result,  decisions  had  to  be  made  about  how to
implement  cross-partition  PUS  communication.  It  is
possible to adapt the PUS code, i.e., OBOSS III code, to
run  PUS  over  IPC.  That  is,  PUS TC/TM packets,  in
their external  form as octet  strings,  are sent over IPC
from one partition to another, and there is no intimate
interaction  between  actual  PUS  Services  (such  as
service 3, HK) in different partitions. For example, PUS
Service 3 in one partition cannot read and report  HK
parameters which exist in a different partition.

An advantage of  this approach is that clients  of PUS
services (i.e.,  applications)  do not need to be changed.

Another advantage  of  this  approach  is  that  the  IPC
handling  code  is  designed  to  implement  the  protocol
and, therefore,  likely to be application independent.  A
disadvantage of this solution is that the PUS code has to
be available in each partition that uses the PUS protocol.
Furthermore, since single-language partitions is a goal
of  the  EagleEye  partitioning  activity, a  PUS
implementation  has  to  be  available  in  Ada and  in C.
Consequently,  development  and maintenance  efforts of
PUS code for EagleEye CSW increase substantially.

Another option is to hook-in IPC code between the PUS
code and the application code. In the extreme case, this
leads  to  a  situation  in  which  the  PUS code  can  be
replaced completely by IPC code. However,  often not
all  PUS  communication  has  to  cross  partition
boundaries,  e.g.,  PUS  communication  between
application processes in the same partition. It would not
make  sense  to  replace  such  PUS  communication  by
IPC-based communication inside a single partition.

Note that the discussion so far is not specific for PUS.
Any  communication  protocol  between  application
processes can either be implemented on top of IPC or be
partly replaced by IPC.

For EagleEye CSW, we used both options. For OBOSS
III  code,  which  implements  the  PUS  protocol,  we
decided that it was best to keep it as the communication
protocol between the application processes running on
the DMS and Payload partitions. This OBOSS III code
now  uses  IPC  to  realize  this  DMS-Payload
communication.  Since  both  the  DMS  and  Payload
partitions are Ada partitions, the IPC code used by the
OBOSS III code is exactly the same.

On the other hand, we decided that for communication
between the DMS partition and  any of the C-partitions
(AOCS, IO,  and FDIR) it  would be too expensive to
implement  OBOSS  III  in  C.  Therefore,  this
communication  completely bypasses  PUS  and  is
directly expressed in terms of IPC.

There  are  more  reasons  for  the  actual  distribution  of
EagleEye code over partitions. For instance, the AOCS
algorithmic code was (and had to be) treated as a black
box  developed  by  a  third  party.  We  assume  the
underlying  reason  for  this  is  to  simulate  a  business
situation  in  which  development  of  a (software)  sub-
system  is  sub-contracted.  By  aligning  the  partition
boundaries  to  contractual boundaries  for  sub-systems,
independent development and validation (of partitions)
is  supported  by  the  TSP  platform.  We  have  not
investigated  potential  advantages  of  this  approach
further, because it was not in the scope of the project.
However, currently the partitioning of the AOCS feels a
bit  awkward,  because  the AOCS  algorithmic  code  is
located in the AOCS partition (written in C) and  other



AOCS code, handling, e.g., pre- and post-processing is
located in the DMS partition (written in Ada).

3.2 How does IO work?

The IO partition is solely responsible for handling all IO
with the CSW.  That is, the IO partition has exclusive
access to the EagleEye's MIL-STD-1553 and SpaceLink
buses. 

The SpaceLink implements EagleEye's link to ground. It
is used exclusively by the Mission Manager application
process. The effect of moving SpaceLink access to the
IO partition is that EagleEye-to-ground communication
includes  an  extra  IPC-hop.  As  there  were  no  strict
latency requirements  for  this  communication link,  the
effect can be ignored.

The effect of moving MIL-STD-1553 access to the IO
partition has more consequences. The reason is that the
MIL-STD-1553  bus  is  shared  by  several  application
processes,  e.g.,  Data  handling,  Payload,  and  AOCS.
Several aspect are now important:

• Functional  coupling  of  application  processes
on different partitions;

• Latency and/or bandwidth requirements;

• Synchronisation  between  MIL-STD-1553
schedule and partition schedule.

To ensure the MIL-STD-1553 bus is used correctly by
the EagleEye CSW, careful analysis of these aspects and
their  inter-dependencies  was  needed.  Based  on  this,
decisions  were  made  regarding  the  partition  schedule
and the type of IPC channels (queueing or sampling) to
be used.

3.3 Redesign of MIL-bus code

During the process of porting the MIL-bus code from
Ada to C and its subsequent validation, it became clear
that  some assumptions of the MIL-bus code intefered
with the partition schedule we had defined. In particular,
the  MIL-bus  code  assumes  that  its  clients,  i.e.,  the
application software, request a MIL-bus transfer two or
more MIL-bus minor frames before the transfer has to
take  place.  For  instance,  the  MIL-bus schedule  has  a
slot  for  AOCS actuator  commands  transfers  in  minor
frame  3  (minor  frame  numbering  starts  at  0).  The
assumption in the MIL-bus code implies that the AOCS
requests  actuator  commands  transfers  not  later  than
minor frame 1.

Figure 4 illustrates this specific situation  as it was for
the unpartitioned CSW as displayed in  Figure 2. Each
minor frame takes 50ms (milliseconds).  During minor
frame 0  (0—50ms), the MIL-bus code (here indicated
with  I/O)  acquires  inputs  from  AOCS  sensors  and

actuators. At the end of minor frame 0, these inputs are
forwarded to the AOCS code located in the DMS (i.e.,
AOCS code written in Ada).  In  minor frame 1 (50—
100ms), the inputs are forwarded from the DMS to the
AOCS.  The AOCS computes actuator commands from
the  inputs and  returns the  actuator  commands  to  the
DMS. Finally, at the end of minor frame 1, the requests
for actuator commands transfers are sent to the MIL-bus
code. At the start of minor frame 2, the MIL-bus code
collects all requests issued until the start of minor frame
2 and allocates them to appropriate MIL-bus time slots.
The final step of the MIL-bus is to perform the actual
transfer in the bus. However, the process of collecting
requests, allocating transfers,  and performing transfers
takes more than a complete minor frame, as indicated in
the  diagram.  Consequently,  the  AOCS  actuator
commands transfers are not executed until minor frame
3 (150—200ms).

Note  that  it  is  crucial  that  the  DMS and  AOCS can
perform  their  processing  completely  during  minor
frame 1,  otherwise  the  requests  for  the  actuator
commands will arrive late at the MIL-bus code.  In the
unpartitioned system, this was not a problem, because
the DMS and AOCS tasks were given sufficiently high
priorities  to  ensure  were  run  as  soon  as  their  inputs
became available.

Unfortunately,  in  the  partitioned  system  of  Figure  3,
task priorities are not the main criteria to decide which
task  runs  at  a  given  time.  Instead,  it  is  the  partition
schedule which  effectively  groups  tasks  into  fixed,
statically defined, time slots. In each time slot, at most
one partition executes. Consequently, only tasks of the

Figure 4. Illustration of original MIL-bus assumptions



currently executing partition are able to run. Therefore,
task priorities have influence only on tasks within the
same partition.  The partition schedule  we designed  is
illustrated  in  Figure  5 together  with  the AOCS
processing chain. As can be seen, the partition schedule
allocates  time slots to the DMS and AOCS such  that
processing of  the  AOCS  inputs  lasts  until  the  end  of
minor frame 2 (100—150ms). Therefore, the MIL-bus
code in the I/O partition does not receive the actuator
commands transfer requests until minor frame 3.

From  this  diagram,  it  is  clear  that  the MIL-bus  code
starts  processing  AOCS  actuator  command  requests
only in minor frame 3 (150—200ms). This is the same
minor frame in which the actuator commands have to be
transferred according to the MIL-bus schedule.

Consequently,  we  either  had  to  update  the  partition
schedule such that the DMS and AOCS partitions would
be  scheduled  often  enough  during  MIL-bus  minor
frame 1 or we had to redesign the MIL-bus code such
that  transfer  requests  can  be  processed  in  the  same
minor frame as in which they are received by the MIL-
bus code. We chose for the latter option and updated the
MIL-bus  code  accordingly.  This  means  the  Figure  5
shows  the  actual  AOCS  processing  chain  of  the
partitioned CSW.

3.4 What is TSP FDIR (and why not just FDIR)?

One  issue  was  the  FDIR  partition.  The  required
behaviour of the FDIR partition was health monitoring
and control of partitions. The original  EagleEye CSW
has some FDIR functionality to handle redundancy in

AOCS  equipment.  Moving  this  functionality  to  the
FDIR  partition  would  be  a   valid  design  decision.
However,  this  would  require  identifying  the  existing
FDIR code and porting it to the FDIR partition. Since
this was not explicitly required, we decided it was better
to  focus on providing TSP-related FDIR functionality
without  changing  existing  FDIR  functionality.  Future
EagleEye  activities  can  focus  on  redesigning  the
EagleEye FDIR system, including the TSP FDIR, and
restructuring the EagleEye TSP architecture so that the
FDIR partition contains a general and complete FDIR
application process.

As  illustrated  in  Figure  6,  we  adopted  a  hierarchical
FDIR system for EagleEye CSW. At the lowest level,
(some) partitions perform their own FDIR. If a failure
cannot be resolved at partition level, it is propagated to
the FDIR partition. Finally, if the FDIR partition cannot
handle it, the failure is propagated to ground.

3.5 TSP Development Environment

In  addition  to  architectural  decisions,  as  described
above,  decisions  about  changes  to  the  development
environment  have  to  be  taken.  For  EagleEye,  the
development environment consists of Makefiles, scripts,
configuration files, and tool chains including compilers,
linkers, etc.

When moving to a TSP platform, new functionality is
needed to configure and use the separation microkernel.
For  EagleEye  TSP,  we  approached  this  problem  by
creating and/or adapting scripts to use the functionality
that come with the TSP platform (i.e., using tools and
scripts  from  XtratuM,  AdaORK+,  RTEMS).  This
resulted  in  an ad-hoc collection  of  tools,  scripts,  and
configuration files. Some of the main problems we had
with this approach are:

1. Certain  TSP  configuration  parameters  are
defined in multiple places;

2. Debuggers cannot easily be used;

3. No tool support for partition schedule analysis 

We expect that future work is needed to develop a more
consistent  and  complete  development  environment.  If

Figure 6.Hierarchical FDIR

Figure 5. MIL-bus processing in the partitioned system



done properly, this such work will greatly benefit other
TSP-related activities for on-board software.

4. RESULTS

During  the  EagleEye  TSP  activity,  several  concrete
software products were adapted and/or created. Firstly,
the  open  source  XtratuM separation  microkernel  was
ported to the LEON3 processor.  fentISS, the company
behind XtratuM, joined the EagleEye TSP consortium to
realize  the  XtratuM  port  for  LEON3  and  to  provide
support  to  the  other  parties  of  the  consortium.  In
addition to LEON3, XtratuM runs on LEON2, LEON4,
x86,  and  PowerPC.  EagleEye  TSP  was  developed
mostly on XtratuM 3.3.3. The final EagleEye TSP runs
on XtratuM 3.4.  The XAL operating system, which we
used as partition OS in the FDIR and AOCS partitions,
is part of XtratuM.

The Ada runtime we used, AdaORK+, existed already
for the XtratuM/LEON2 platform. AdaORK+ is an open
source  software  product  developed  by  the
OpenRavenscar  Project  at  the Universidad Politécnica
de  Madrid  (http://web.dit.upm.es/~ork/index.html/)  13.
Members  of  the  OpenRavescar  project  joined  the
EagleEye  TSP  consortium  to  port  the  AdaORK+
runtime kernel to the XtratuM/LEON3 platform and to
provide other parties of the consortium support.

The EagleEye SVF was updated to  support  EagleEye
CSW  running  on  a  LEON3  processor  module.  The
differences between the original SVF and the updated
SVF are minimal. In fact, the the updated SVF can run
both the unpartitioned and the partitioned CSW (both on
a LEON3 processor module). The main additions to the
SVF consist  of  a  unit  test  framework  to  develop and
execute  tests  in  which  IPC  (Inter  Partition
Communication)  is  the  main  interface  to  the  system
under  test.  We have used  this  unit  test  framework  to
validate  the  five  EagleEye  CSW  partitions
independently from each other.

The EagleEye CSW architecture and  software is  now
divided  over  single-language  partitions.  As  a
consequence,  cooperability  requirements,  as  discussed
above, have become less limiting. Each partition can be
developed  and  maintained  with  tools  for  one
implementation language. Integration is based on IPC,
which means the integration tools need not be aware of
the implementation languages at all.

The  MIL-STD-1553  and  SpaceLink  code  has  been
ported  to  C  and  runs  on  RTEMS.  These  software
products are  relatively independent of EagleEye CSW
and can therefore be reused in other projects.

The (new) TSP FDIR code demonstrates clearly the type
of monitoring and control necessary/desirable in a TSP-

based system. The TSP FDIR code can be adapted to
future EagleEye CSW changes with more partitions.

Finally,  the  overall  result  is,  of  course,  the  EagleEye
CSW for a TSP enabled system. It is our belief that the
resulting  EagleEye  CSW  has  become  more  modular
and,  therefore,  simpler  to  adapt  or  extend  in  future
projects. Most of the TSP benefits will have impact on
EagleEye  development  and  maintenance  efforts.
However, some TSP benefits can be visualized directly
by running the EagleEye CSW. The TSP demonstration
scenarios  show,  e.g.,  how  the  TSP-based  EagleEye
system  is  capable  of  detecting  and  recovering  from
failing partitions.

5. REFERENCES

1. XtratuM,  http://www.fentiss.com/,  Accessed  27th
January 2013.

2. XtratuM,  http://www.xtratum.org/,  Accessed  27th
January 2013

3. RTEMS  Centre,  http://rtemscentre.edisoft.pt,
Accessed 6th June 2012

4. OBOSS System Integration  -  Manual  for  Reuse,
Terma/SPD/OBOSS-III/013, Issue 1, 9th February
2004

5. OBOSS-III  Operations  Manual,
TERMA/SPD/OBOSS-III/012,  Issue  1,  5th
February 2004

6. Securely  Partitioning  Spacecraft  Computing
Resources  -  FINAL  REPORT,
SSL/08467/DOC/012, Issue 1.1, 25th July 2011 

7. Time  and  Space  Partitioning  in  Spacecraft
Avionics, Windsor, James, Kjeld Hjortnaes, 2009,
Third  IEEE  International  Conference  on  Space
Mission Challenges for Information Technology 

8. CCSDS 850.0-G-R1.1 May 2010,  Green  Book –
Spacecraft Onboard Interface Services 

9. IMA-SP -  I/O  Handling  Strategies,  IMA-SP/D06
Issue: 1.0, 15th April 2011

10. IMA-SP - IMA-SP Onboard Software Maintenance
Strategy,  IMA-SP/D09  Issue:  1.4,  5th  October
2011 

11. IMA-SP - IMA-SP System Level FDIR Approach,
IMA-SP/D07 Issue: 1.3, 5th October 2011

12. S. D. Fowell, P. Mendham, A View on the use of
SOIS in a TSP-Based Architecture, Proceedings of
Data  Systems  in  Aerospace  (DASIA),  Budapest,
Hungary, 2010.

13. GNAT/ORK:  An  Open  Cross-Development
Environment  for  Embedded  Ravenscar–Ada

http://www.fentiss.com/
http://web.dit.upm.es/~ork/index.html/


Software,  Juan  Zamorano  and  José  Ruiz,  15th
triennial World Congress, Barcelona, Spain, 2002.

14. EagleEye Virtual  Spacecraft  System Architecture,
Michael  Schön  (ESA)  and  Gert  Caspersen
(TERMA),  TOS-EMS-VSRF-TN-0002,  Issue  1,
revision 2, 23.03.2004.


	1. INTRODUCTION
	2. PARTITIONING EAGLE-EYE CSW
	2.1 Initial EagleEye CSW Architecture
	2.2 Final EagleEye CSW Architecture

	3. BEFORE-AFTER DISCUSSION
	3.1 Why is OBOSS III in (only) two partitions?
	3.2 How does IO work?
	3.3 Redesign of MIL-bus code
	3.4 What is TSP FDIR (and why not just FDIR)?
	3.5 TSP Development Environment

	4. RESULTS
	5. REFERENCES

