
Guidance for the development of accessibility evaluation tools 
following the Unified Software Development Process 

Yod-Samuel Martin , Juan C. Yelmo 

Abstract 

Automated and semi-automated accessibility evaluation tools are key to streamline the process of accessibility assessment, and 
ultimately ensure software products, contents, and services meet accessibility requirements. Different evaluation tools may 
better fit different needs and concerns, accounting for a variety of corporate and external policies, content types, invocation 
methods, deployment contexts, exploitation models, intended audiences and goals; and the specific overall process where they 
are introduced. This has led to the proliferation of many evaluation tools tailored to specific contexts. However, tool creators, 
who may be not familiar with the realm of accessibility and may be part of a larger project, lack any systematic guidance when 
facing the implementation of accessibility evaluation functionalities. Herein we present a systematic approach to the 
development of accessibility evaluation tools, leveraging the different artifacts and activities of a standardized development 
process model (the Unified Software Development Process), and providing templates of these artifacts tailored to accessibility 
evaluation tools. The work presented specially considers the work in progress in this area by the W3C/WAI Evaluation and 
Report Working Group (ERT WG). 

Keywords: accessibility evaluation, automatic evaluation tools, Unified Software Development Process, Evaluation and Report Language, 
business process model, domain model, use case model, analysis model, deployment 



1. Introduction 

Imagine you are a technology consultant who has just been commissioned by a large web provider to develop a 
module for a web application platform, so that non-technology-sawy content and service creators can be assisted to 
determine whether their creations are equally accessible for people with diverse abilities. That is, you need to 
develop an automatic accessibility evaluation tool, which will be introduced in a specific workflow and will need to 
abide by some business constraints. Maybe you are already acquainted with software development, but this is the 
first time you deal with this kind of tool. Or you have used them before in other projects, but have never tackled the 
development of your own evaluation tool. Which functionalities are expected of it? What is exactly meant by 
"evaluating accessibility"? How are the evaluation results to be handled? What should you start with? Although a 
definite answer to these questions depends on the varied requirements of the specific evaluation tool to be 
developed, dozens of such tools already exist, which allow extracting useful guidance on how the process of 
developing an automatic accessibility evaluation tool can be undertaken. 

Based on our experience with existent evaluation tools, we aim at providing some insight to non-accessibility-
experts on how to develop accessibility evaluation tools, following a standardized software development process. 
The work herein presented has taken into special consideration the Guidance on the Development of Web 
Accessibility Evaluation Tools (working title), a draft document which is currently being composed by the 
W3C/WAI Evaluation and Report Working Group (ERT WG). (Further information on that document and its 
evolution may be found at http://www.w3.org/WAI/ACT/deliverables#eval_tools.) 

The next section will introduce our vision of accessibility evaluation tools and the process model we will follow; 
the rest of the paper will provide the specific guidance for different models employed in the process, namely: 
business process model, domain model, use case model, analysis model and deployment model. We have 
deliberately omitted references to specific tools, as we want this guidance to be as broadly applicable as possible. 

2. Context and goals 

Strictly speaking, the accessibility of a product can only be stated regarding specific user needs, goals and 
contexts of use2. If a certain user can access it under those conditions, it will be accessible for him or her. It is 
unreasonable to test this in each possible context of use (real or emulated), so a set of practical criteria have been 
agreed, based on community experience, as a reference to determine whether a product is accessible or not. Even 
then, it is not viable to manually test each and every criterion, so accessibility evaluation software tools have 
come to relieve the evaluator of that burden, by automatically analyzing a product and issuing judgments regarding 
its compliance with accessibility criteria. These tools greatly simplify the process, but cannot provide a definite 
replacement for human judgment. This is why they are sometimes called semi-automatic evaluation tools. For 
instance, a software tool may detect whether an image is served with an alternative text, but cannot decide if both 
convey an equivalent meaning, yet it can point the evaluators towards the image to get their expert assessment. 

Same as any other software product, the development of an evaluation tool is usually structured as a project 
involving a set of activities, worker roles and artifacts. The organization of this project may respond to different 
process models, one of the most widespread being the Unified Software Development Process (USDP). USDP1 is 
characterized by being: driven by use cases, which are used as a tool to capture user requirements and intertwine 
the subsequent design, implementation and testing activities; centered on the architecture, which represents the 
internal form the product will take; and incremental and iterative, so that risks are mitigated early at a lower cost. 

USDP can be considered a generic framework for software development, which is instantiated in each specific 
development project. In between, "project templates" can be created3 which constrain, inherit and extend the 
process defined by USDP so as to account for specific software engineering concerns. This is the approach we will 
follow in this paper: show examples of USDP-defined artifacts particularized to the development of accessibility 
evaluation tools. The artifact templates we propose deal with the different disciplines dealt with by USDP: a 
business model and a domain model to kick off the process of requirement elicitation, a use-case model to represent 
the functional requirements, an analysis model to reflect an intermediate view of the architecture, and a deployment 
model to describe the physical bindings. These artifacts will still be abstract, in that they do not reflect the 

http://www.w3.org/WAI/ACT/deliverables%23eval_tools


conditions of a concrete accessibility evaluation tool, but they offer general directions that can be applied to any of 
those tools whatsoever. That is why we talk about guidance, which will still need other inputs from the specific 
business to come with the concrete artifacts in each case. 

USDP was first published in 1999, condensing decades of experience in managing software development 
projects, while accounting for the latest industry best practices. Today, USDP is a modern-yet-mature process 
model which provides a detailed description of the process steps, and accommodates disparate organizational 
contexts. That is why we have chosen USDP to provide this development guidance, although it may be easily 
applied as well to other process models. For instance, the disciplines in each USDP iteration can be mapped to 
sequential phases in waterfall development models; conversely, USDP activities may be grouped differently, 
according to the definitions of the Agile Unified Process (with a special emphasis on test driven development). 
Likewise, although we use object-oriented design terminology to exemplify different software artifacts, other 
programming paradigms may be followed. For instance, from a procedural perspective, accessibility evaluation can 
be modeled as a dataflow that creates an evaluation report departing from some criteria and some content to be 
evaluated. Or, from a declarative perspective, accessibility criteria could be regarded as rules, etc. 

Moreover, beyond the abstract functional specification we provide, the process template does not enforce any 
additional technological or architectural constraints. Although inspiration mainly came from web accessibility 
evaluation, it is defined in a technology-agnostic fashion and can be applied to other Information and 
Communication Technology realms. It can also be applied in different business and exploitation scenarios. 

In summary, the process template we propose could be applied to the development of any (semi-) automatic 
accessibility evaluation tool —"auxiliary" evaluation tools which do not emit judgments at all lay out of this work. 

3. Business process model 

From the perspective of software engineering, the accessibility of a software product can be regarded as a 
category of quality properties4 or requirements, which ensure that it can be used in equivalent ways (considering 
aspects such as comfort, security or cost) by people in the broadest range of contexts of use, specially accounting 
for users with different abilities. Thus, an organization typically uses accessibility evaluation tools in the activities 
dealing with requirements (e.g. specification, testing). The workflow followed by that organization may be 
captured by USDP in a business process model, which shows the different business actors and the activities they 
undertake to deal with work units and internal process data. This may be specific to the strategic goals pursued by 
the entity which commissioned the tool, yet we can define a set of activities where the tool will be typically used. 

To define the business process for accessibility evaluation, we place it in the context of the business process of 
software development. Fortunately, USDP is itself described using the business process modeling technique, so we 
just need to identify the activities where accessibility evaluation is involved. Readers should note that more fine
grained detail could be provided for specific evaluation contexts. Likewise, some activities may not appear in all 
the scenarios, but we aim at providing a generic framework that may be as reusable as possible. Figure 1 shows an 
activity diagram where the different workers (business actors) are represented by different swim lanes, which show 
the workflow between the activities they perform, together with the entities shared to pass work units along. 
Activities related to accessibility evaluation are highlighted. We must remark this business process depicts the tool 
usage, although it takes place itself within a larger process: the development of the product under evaluation. 

A development process starts with the workers in charge of requirement capture and elicitation specifying the 
system requirements (for which they will usually interact with the client teams), including accessibility 
requirements as well. Requirements are conveyed to the workers responsible for the bulk of the development work 
(system analysis, design and implementation). Further on, they may use the tool to validate that the products they 
create abide by the requirements previously defined by the analyst. Later, test engineers will perform tests in the 
large (e.g. integration tests) to the system version, using once more the evaluation tool to validate accessibility 
conformance. After internal tests pass, the system is released to the client, who may perform their own (acceptance) 
tests; and to external auditors, who may perform their own accessibility tests to issue conformance certificates. 



«sua Provider 
¿Sb01""1 

&< 
Engineer 

Developer & , 
Analyst 
Specifier 

Accessibility 
requirements 

Analyze 
and design 

(architecture 
and details) 

T 
Implement 

system 

[tests 
failed] 

Implement 
and perform 

unit tests 

Specify 
requirements 

2 Test Engineer/ 
Internal QA 

Verify and 
validate 
system 

System 
version 

J 
Test 

report 

& 
«external» 
Client QA 

Verify and 
validate 
system 

System 
release 

Test 
report 

Test 
report 

& 
external» 

Auditor 

H 
Audit 

system 

Certification 

Figure 1. Activity diagram showing the business process model for accessibility evaluation. 

4. Domain model 

A domain model captures the entities appearing in the context of the system and the relationships between one 
another. Although each business context will contribute its own entities to the domain model, we can distil a subset 
that will appear in all accessibility testing tools. For that, we have departed from the Working Draft of the 
Evaluation and Report Language (EARL) 5 which defines an RDF vocabulary to be used for accessibility test 
reporting purposes, though it synthesizes cross-cutting concepts common to the whole accessibility testing process. 
Stripping out representation format details, we get the UML view of the core domain model of accessibility 
evaluation tools shown on Figure 2. 

The core element of the accessibility evaluation domain is the assertion. It conceptualizes any result that may be 
output by the evaluation tool. A tool may state (assert) that e.g. "the website at the domain example.com conforms 
to WCAG 2.0 at level AAA", "the content of the document index.html does not validate against the HTML5 formal 
grammar because the element <p id="l"> is not closed", "this Android application cannot be accessed using 
TalkBack", "the contrast of this image does not conform to the success criteria 1.4.3 of WCAG 2.0", "button b42 
does not contain an instance of an AutomationProperties.Name", or "the font color used in the captions to render 
the dialogue of the main character conforms to UNE 153010:2012". All these statements are examples of 
assertions, which contain the results of applying at least one test to some piece of data. Within an assertion, we may 
distinguish different elements. 

A Test Subject is the product, service or (piece of) content to which the test is applied. The tool puts some 
specific subject into evaluation, and the assertion captures the result of applying the tests to that subject. It can be 
as fine- or coarse-grained as needed. Following the previous examples, a whole website, a document, an 
application, an image, a user interface input control, or an object attribute can all be regarded as test subjects. 

A Test Criterion specifies the test that was applied. Again, test criteria may range from high-level abstract 
goals to tailored techniques only applicable in specific contexts. Several terms are usually applied to different kinds 

http://example.com


EvaluationReport 

Assertor 

Teste riterion 
< T 

Assertion TestSubject 

< ^ 

Context 

TestResult 

Principle 

Guideline 

o 

SuccessCriteria 
/Checkpoint 

c-

Technique 
•---

TestScript 

Figure 2. Class diagram showing the domain model for accessibility evaluation. 

of criteria. Principles are abstract foundations which must be satisfied by any accessible product of some type, e.g. 
Principles of Universal Design, WCAG's (Web Content Accessibility Guidelines) POUR principles (perceivable, 
operable, understandable and robust). Guidelines define coarse-grained criteria. Success criteria or checkpoints 
refine them into assessable requirements against which an objective judgment can be issued, yet without binding to 
any specific technology. Techniques are applied to a specific content type or in a specific situation, and define 
detailed features the contents must (or should, or cannot) include in order to be accessible. Indeed, a tool will only 
support the techniques for the content types it deals with. Tests or test scripts refer to a specific procedure (set of 
instructions) to be executed when checking the criterion. They are sometimes called "test cases" as well, although 
this strictly refers to a set of conditions or variables under which a determined behavior is expected. Test criteria 
can be aggregated into families, which are usually compiled together and may be subject to standardization 
processes. Different families apply to different technologies (e.g. WCAG for web contents and applications) and 
can be considered test criteria per se as well. 

A Test Result determines the outcome of applying the test criterion. If we draw a parallel between test criteria 
and logic propositions, test results will be usually expressed as boolean truth values (e.g. pass / fail). Results may 
be extended to other values, such as 'unknown', 'not applicable' or a certainly value continuously ranged between 
0 and 1. These values would respectively appear in other logical systems such as Kleene's three-valued logic, 
description logics in e.g. the Semantic Web Stack, and fuzzy or subjective logics. Test Results may be enriched 
with additional information, such as pointers to the region of the Test Subject where the accessibility criterion was 
applied (and succeeded or failed), human-readable help to explain why the criterion has succeeded or failed, and 
suggested remedies or repair actions, etc. 

An assertor represents the issuer of the assertion: it can refer to the software tool, or the identity of the person or 
organization on whose behalf the tool is working. 

An assertion can be enriched with further information detailing the context where it was obtained: a description 
of tool features, the mode by which the results were obtained (manual, automatic, semi-automatic), a timestamp... 

5. Use case model 

USDP employs use cases as a tool to define the functionality of a system. Each use case defines a sequence of 
actions between an external actor and the system, which provides some value to the actor or obtains value from it. 
Different evaluation tools may define their own actors and use cases, but at least some of them will extend the 
abstract use cases we define herein. Apart from the experience with evaluation tools, we have derived these use 
cases from generic software testing standards6. The three main uses cases of an evaluation tool deal with 
specification, processing and presentation of the evaluation; extensions include revision of the results. 

The main goal of an accessibility evaluation tool is to automate (at least partially) the process of evaluating the 
accessibility of a product, service or content. Thus its core use case is the processing of the evaluation upon request 



of a Test Requester. In the simplest scenarios, this use case includes as well the other two (specification and 
presentation), while in more advanced workflows, different actors will independently invoke each use case at 
different moments. These actors may show different features depending on the specific scenario where the 
evaluation tool will be used. Actors may also represent other software systems, e.g. a business rule engine 
automatically invoking a tool, or an auditing system into which results are fed. The evaluation results may also be 
later used for other purposes, which may include repairing the errors detected. Analysts will thus to account for all 
these aspects, and tightly cooperate with the client or business units in order to define the specific requirements of 
their evaluation tool, defining and prioritizing a required subset of the tool features and use cases. 

5.1. Specification use case 

In order for an accessibility evaluation to be run, the test designer first needs to specify what is exactly meant 
with evaluation. Observing that assertions associate test subjects and test criteria, accessibility evaluation tools will 
at least need to allow test designers to specify (configure) which subjects and criteria will be used in the evaluation. 

Test Subjects may be specified either individually or in bulk. In the first case, the Test Designer may in turn 
define the individual Test Subject in several ways. The most precise consists in directly providing the tool with a 
binary or textual serialization of the content or product under evaluation. In that case, the evaluation tool must 
provide the Test Designer with interfaces to input that serialization (e.g. an editable field, an http-post endpoint). It 
is up to him to get the content serialized, for which he may first resort to external tools if needed. 

In the sake of convenience for the Test Designer, the evaluation tool may integrate with the APIs of the user 
agent the Test Designers employs to retrieve contents, so that they just need to instruct the tool to get the "currently 
displayed content" as Test Subject. User agent APIs can also be used to upload locally hosted files to remote tools. 

Alternatively, the Test Designer may specify a unique identifier of the Test Subject, so that the tool may 
retrieve it when (or before) processing the evaluation. In order for that identifier to work, it must be part of a 
namespace shared between the Test Designer and the tool and accessible by both. For instance, paths to the local 
file system can be used if both are working on the same local node, and have equivalent access permissions. URLs 
are also good candidates, but there is no guarantee that a server will serve the same contents to different clients 
requesting the same URL. A detailed specification may account for context attributes which may determine the 
result provided by the server, e.g. user agent properties (user agent version and platform, preferred content types 
and languages, ...), user credentials, and browser state (cookies, cached versions, ...). Some context attributes are 
difficult to emulate (e.g. request time) or even impossible (IP address). Moreover, the content of the Test Subject 

Test Designer 

Test Requester 

Present \ 

Test Consumer ..extends.. 

Revise 
Evaluation 

Results 

Manual Tester 

Figure 3. Accessibility evaluation use cases. 



may change since the test is specified until it is executed; hence a potential trade-off may exist between the 
precision and the simplicity of the specification. To test some dynamic behavior or stateful products, more complex 
test fixtures can be defined, which may include a set of actions (retrieve several pieces of content in a specific 
order, generate user interface input events, interpret software scripts), before the test execution. This may even 
require manual user intervention to lead the evaluated system to the desired status. 

It is usual that Test Subjects are not specified in isolation, but aggregated as part of a larger subject. Two typical 
ways to specify Test Subjects in bulk are link traversal and pattern-defined identifiers (both may be combined). 

Many Test Subjects include (hyper-)links to other pieces of data: web documents that link to one another other, 
source or object code files which import other software modules, software controllers described in imperative 
languages which load declarative models or view descriptions, etc. It is customary that Test Designers will be 
interested in evaluating not only a Test Subject, but also all those linked from it. This process may be applied 
recursively, which requires in turn specifying termination conditions that prevent an unbounded recursion: e.g. 
select only those Test Subjects hosted in a specific realm (e.g. a local host, a specific web host, an organization 
DNS domain), traverse only those links to inline or embedded contents, follow links just to a depth of n levels, etc. 

Pattern-based specification allows Test Designers to select at once all those Test Subjects whose identifiers 
match some kind of pattern (e.g. a regular expression). Patterns may be used to select contents of a specific type 
(based on its file extension), on a specific directory, etc. Pattern application requires an underlying query 
mechanism to be available which guarantees that all contents matching a pattern may be retrieved. Distributed 
systems such as the Web do not usually provide these functionalities, so pattern matching is usually combined with 
link traversal, effectively crawling web sites as a heuristic way to retrieve all their contents (same as what search 
engines do when indexing web sites). Even after the pattern is applied, the tool may come up with a large amount 
of potential Test Subjects. Filtering and sampling functionalities, either automatic or assisted by the Test 
Designers may help in creating a manageable set of subjects. 

Test Criteria may as well be specified in bulk or on a case-by-case basis. Evaluation tools must offer Test 
Designers a set of pre-configured Test Criteria that reflect industry-wide accepted criteria families. On the one 
hand, this simplifies the activity of specification; on the other, tools can foster the adoption of these widely 
recognized principles that distil the acquired knowledge of the community, rather than ad hoc criteria the Test 
Designers may decide on their own. Some families define different levels of conformance, which account for the 
fulfillment of larger (stricter) or smaller (looser) sets of criteria. Tools should enable Test Designers to select the 
appropriate level of conformance against which the tool will evaluate the Test Subjects. 

Test Designers may have a legitimate interest to only test the compliance of specific Test Criteria. Tools may 
provide them with the possibility to choose Test Criteria one by one, or just those applicable in a specific context of 
use (e.g. for a user with a specific disability profile), but they must avoid misleading designers by clarifying that 
meeting single accessibility criteria does not imply the product being accessible at all. Test Designers may also 
wish to provide their own Test Script implementations, which may be supported by tools that define a Test 
Criteria provider interface that may be extended by third-party developed implementations that act as plug-ins for 
the main tool. This may be the case to e.g. support new technologies or account for specific deployment contexts or 
corporate policies. New tests may also be specified following a declarative format, providing, e.g. query 
expressions and conditions their results must abide by to meet accessibility requirements. Nonetheless, tools should 
encourage that any newly defined criteria preferably fits within existent success criteria, guidelines and principles, 
in that order, so as to discourage the definition of "unusual" approaches to accessibility. 

Specification may also configure other properties: events triggering the evaluation process, evaluation schedule, 
routing of the results, etc. The specification might also be split between two phases: first a system analyst would 
provide a partial specification for test subjects (e.g. a template defining content types under evaluation), and then a 
developer would specify the specific software artifacts to be evaluated after they have been developed. 

5.2. Processing use case 

Once the test criteria and subjects have been specified, the proper evaluation process may start. The execution 
use case may be split into several steps: triggering, retrieval, execution, and reporting. 



Triggering: Evaluation may be triggered either directly by the Test Requester or by an authoring tool he or she 
is using (e.g. a Content Management System, an integrated development editor). 

Retrieval: Test Subjects must be retrieved from an external storage system, according to the previously 
configured specification. If identification was provided for test subjects, a transport mechanism must be used to 
retrieve them. In order to retrieve subject contents, all the context and test fixtures defined during configuration 
must be first set up. If link traversal had been specified, contents must first be analyzed to find (and resolve) links. 

Execution: Each test criterion is applied to all the test subjects where it is pertinent. For each test subject, a 
typical structure is: 1) applicability rules define which points of the subject may validate / break a criterion; 2) a 
test procedure is applied to each point; 3) the results are compared with expected values that determine the 
potential test results. Semi-automated criteria may need (sometimes) Test Requester help regarding the points, 
procedures and/or conditions. Their involvement may include interactive interventions, postponed until the 
evaluation has ended, or be simply ignored and an "unknown" value be emitted. Heuristic procedures may be 
applied which provide a somehow trustworthy yet not definite answer. 

Reporting: The results of each evaluation process execution may be represented as assertions, and stored 
following standardized formats (e.g. EARL). Although the initial Test Subject specification may be quite generic, 
detailed information about the effectively evaluated subjects may be included in the report. For instance, the 
specification might only establish that all the HTML documents in the web site www.example.com will be 
evaluated, while the report would provide a detailed list of the HTML files that were effectively evaluated, and 
potentially the exact HTTP requests that were issued to retrieve them. Reports may include aggregate measures, 
such as conformance to larger families, or comprehensive numeric accessibility measurements. Numeric scores 
should account for potential barriers7 that are correctly tackled (i.e. did not materialize), rather than simply focusing 
on the number of criteria that pass or fail. Care should be taken to avoid presenting a 50% success rate as a 
"decent" accessibility (while it truly means that many users will encounter one or another accessibility barrier). 
Nonlinear and weighted scoring algorithms can be applied to avoid that. Although scores do not offer a total order 
metric, they should be monotonous regarding the (dis-)appearance of potential barriers. Different scores can also be 
provided for different user ability profiles, kinds of criteria, content types, groups or families, etc. Reports may also 
include information about causes, symptoms and remedies*. Going beyond evaluation, the tool output may 
automatically modify the contents so as to correct accessibility barriers, becoming what is known as a repair tool. 

5.3. Presentation use case 

After an evaluation has been performed, results will be presented to a Test Consumer, who may or may not be 
the same person who ran the evaluation. For instance, test engineers may design and run evaluation tests, and then 
return the results to the development team so that they can fix any issues. Or an accessibility consultant may 
present the results of an accessibility evaluation to their clients. Or a company may be presented with the results of 
the accessibility evaluation of a corporate site developed by a contractor. Or a user association could get the report 
of a third-party site created by an external auditor. 

Results are reported and stored following standardized formats. But their presentation can be arranged in 
different ways depending on the consumer needs. In any case, the result format must match with the consumer's 
context of use, e.g. HTML or PDF will be used for human consumers, standardized languages for software tools. 

A detailed presentation includes all the results of the evaluation in a human-consumable format. Apart from a 
linear view of the results (displaying one assertion after another), navigability mechanisms should be provided for 
human consumption. Tabular structures may ease the orientation through the different results. Sorting, grouping, 
querying and filtering mechanisms ease locating the assertions with specific criteria, conformance levels or result 
values. Collapsible trees hide any unwanted details while allowing users go deeper into results of their interest, etc. 

Summarized results can also be provided: numeric scores, aggregated tables per criteria, priority or document; 
infographics such as radar charts, etc. 

Test Results can also be rendered together with the original content. For instance, an icon representing a Test 
Result can be superimposed wherever a Test was applied, so that consumers may easily locate the points that have 
yielded failed or inconclusive results. These icons must comply themselves with accessibility criteria and may link 

http://www.example.com


to detailed explanations. Likewise, annotations may decorate the source code on a development environment, so 
that accessibility violations are treated in the same way as other software construction enors or warnings. 

5.4. Revision use case 

Finally, Test Results can also be modified by human testers (evaluators), which may provide additional data for 
test criteria that require manual intervention (as indicated by the test results), or even to rectify wrongly assessed 
criteria. The tool must keep provenance data that help tracking the responsible for each assertion. The tool output 
(e.g. reports, scores) must be recomputed after modified Test Results are saved. 

6. Analysis class model 

Analysis activities provide a preliminary model of the internal classes that will implement the functionalities of 
the different use cases. It is richer than the domain model, including classes that reflect technical concepts and 
architectural features; but is not yet as detailed as the design model. Our domain model already anticipated some 
analysis classes: a real client would have usually prefened terms from their domain (e.g. multimedia content) to 
deal with the problem realm, while accessibility specific terms (e.g. test subject) would only arise later. 

Figure 4 below presents our analysis class model for evaluation tools, using three class stereotypes: entity, 
boundary and control (akin to the model-view-controller pattern). We may note how the tool must provide different 
user interfaces (boundary classes) for each of the supported use cases. Two entities model the configuration parts 

O 
Subject Subject 

Configuration Ul ,—* Configuration 

Criteria Configuration 
Configuration Ul ^ ^ / S u b j e c , 

' Content Retriever 

Subject 
Test Requester Processing Ul Executor Content 

Manual Tester 
Result Reporting 

Test Report Test Report 
Test Consumer presentation 

Figure 4. Analysis class model for accessibility evaluation tool. 

(test subject and test criteria). While the configured criteria are directly fed to the test executor, the test subject 
configuration needs first to pass through a retrieval task that obtains the contents of all the resources to be evaluated 
(according to the test subject configuration). Control classes are defined for each of the main activities defined in 
the use cases: configuration, content retrieval, evaluation execution, reporting and presentation. 

7. Deployment models 

USDP deals with deployment planning as part of the design activities. A deployment model defines the physical 
architecture, identifying the active classes (processes) that will be created in the system, the physical nodes (hosts) 
where they will be running and the communications mechanisms among them. Evaluation tools may follow varied 



deployment alternatives, thus a particular reference model is of little use. Nonetheless, most can be subsumed under 
two major deployment alternatives: as either local applications or remote/distributed services. The chosen 
deployment model may also impact other aspects such as exploitation, scalability, etc. 

Local applications are stored and run on the same device the Test Requestor directly operates. Although they 
may access external services to retrieve remote data (e.g. Test Subject contents), all the operations directly related 
to the evaluation process are performed locally, including the presentation of the results. Local applications need to 
abide by the platform requirements imposed the target environment (operating system, component dependencies, 
user permissions). They may either be executed as standalone software or require a previous installation. A 
special case for local applications is that of browser add-ons: their target environment is a sandboxed platform 
provided by the browser. Browser add-ons have their control user interface tightly integrated within the browser, 
and may delegate on it some functions such as content retrieval or result rendering. 

Remote services, on the contrary, expose a functionality to be accessed from different hosts, with which they 
interact to pass input and output data back and forth. For instance, following a Service Oriented Architecture 
(SOA), the tool may provide a Web Services or a RESTful interface to offer its functionalities. Input data (test 
criteria and subject configuration) are passed through this interface and output data (test results) are returned 
through it as well. Remote services may also include a presentation layer that retrieves the configuration from an 
HTML form and returns the results as web pages to be rendered by the user's browser (making what is usually 
known as a web application). Conversely, invocations to remote services may be triggered from controls added to 
the user's browser (e.g. scriptlets,favelets, menu add-ons), which dynamically generate the necessary configuration 
based on the current browsing context. 

An intermediate case is that of evaluation tools which run on the server side, but do not interact with the client. 
For instance, a tool may be a module of a Content Management System that validates the accessibility of the 
contents it stores. The tool runs on an application server, but is only invoked from within. 

8. Further considerations 

Other USDP features may be leveraged to implement the large amount of fine-grained techniques generic 
evaluation tools should deal with. Packages may be defined for related techniques (e.g. dealing with the same 
content type, or implementing the same criterion), successive iterations may implement different techniques, etc. 

The USDP defines many other artifacts and activities that will need to be considered when developing an 
accessibility evaluation tool. The specification activities will need to count with: a broad glossary that goes beyond 
the domain model; user interface prototypes that help communicate the user perspective to the client since the 
beginning; and the specification of non-functional requirements. Regarding the last point, it is of paramount 
relevance to make the evaluation tool accessible itself, although other aspects should not be dismissed, such as the 
performance of tools which provide developers with real-time feedback, or the localization of presentations. In any 
case, workers will be needed during specification who can grasp the knowledge of the specific business and users. 

More specific material exists which applies these principles to different realms. Regarding web accessibility 
evaluation tools, supplementary online material is available with a detailed list of useful documents. 

References 

1. Jacobson I, Booch G, Rumbaugh JE (1999). The unified software development process. Addison-Wesley Professional; 1999. 
2. Magnabosco P (ed.) Resolutions adopted during the 2011 Warsaw meeting. ISO/IEC JTC 1/SC 35. La Plaine Saint-Denis: AFNOR; 2011. 
3. Jacobson I, Bylund S. Building your own process by specializing a process framework. In: The Road to the Unified Software Development 

Process, rev. up. ed. Cambridge: Cambridge University Press; 2000. 
4. ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System 

and software quality models. Geneva: International Organization for Standardization; 2011. 
5. Abou-Zahra S (ed.), Henry SL (ed.). Evaluation and Report Language (EARL) Overview. World Wide Web Consortium, 2011. 

www.w3.org/WAI/intro/earl 
6. IEEE Standard for Software Test Documentation. IEEE Std 829-1998 
7. Freiré AP, Fortes RPM, Turine MAS, Paiva DMB. An evaluation of web accessibility metrics based on their attributes. In: Proc. of the 26th 

annual ACM international conference on Design of communication (SIGDOC '08), 73-80. New York: ACM; 2008. 

http://www.w3.org/WAI/intro/earl


8. Brajmk J. Beyond Conformance: The Role of Accessibility Evaluation Methods. In Hartmann S, Zhou X, and Kirchberg M (Eds.) Proc. of 
the 2008 international workshops on Web Information Systems Engineering (WISE '08), 63-80. Berlin, Heidelberg: Springer-Verlag, 2008. 



Appendix A. Relation with World Wide Web Consortium Web Accessibility Initiative (W3C WAI) 
documents 

The process above described is agnostic regarding the technology of the test subjects the tool will evaluate. 
Nonetheless, specific guidance material exists which targets web contents, mainly provided by W3C's Web 
Accessibility Initiative. In particular, the Evaluation and Repair Tools Working Group (ERT WG) is creating some 
work-in-progress material that may become quite useful for the purposes herein described, quite especially the 
Guidance on the development of web accessibility evaluation tools \ Although the authors actively contribute to 
ERT WG, the positions here presented solely express their views, and do not imply any endorsement by W3C. 

Table 1 lists different documents from W3C WAI and others, which can be useful to apply the suggested 
guidance to web contents. Much of them can also be applied to mobile and desktop operating systems natively 
using web technologies in their applications, such as Windows 8 or Firefox OS. 

Table 1. Reference documents applicable as input to the different artifacts of the USDP for accessibility evaluation tools. 

Whole process and 

use case model 

Guidance on the development of web accessibility evaluation tools ' [In progress] 

Selecting Web Accessibility Evaluation Tools2 [Draft] 

Web Accessibility Evaluation Tools 3 

Business process model 

Domain model and 

glossary 

Requirements for "Techniques for Automated and Semi-Automated Evaluation Tools"4 [In progress] 

Evaluation Approaches for Specific Contexts 5 

D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Core)6 [Sections 2, 3] 

Website Accessibility Conformance Evaluation Methodology (WCAG-EM) 1.0 7 

Selecting Web Accessibility Evaluation Tools 8 [Draft] 

Evaluation and Report Language (EARL) 1.0 Schema' [In progress] 

Developer Guide for Evaluation and Report Language (EARL) 1.0 10 [In progress] 

Pointer Methods in RDF n [In progress] 

Media Fragments URI 1.0 (basic)12 [W3C Recommendation] 

Template for Accessibility Evaluation Reports 13 

D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Core)6 [Section 6] 

HTTP Vocabulary in RDF 1.0 14 [In progress] 

Representing Content in RDF 1.0 15 [In progress] 

Website Accessibility Conformance Evaluation Methodology (WCAG-EM) 1.0 7 [Steps 1-3] 

D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Core)6 [Section 4] 

Specification use case 

Evaluation processing use case: 

Execution step 

D-WAB4 Unified Web Evaluation Methodology 16 (UWEM 1.2 Tests) 

Techniques For Accessibility Evaluation And Repair Tools 17 [Abandoned draft] 

[Both obsolete, as they refer to outdated WCAG 1.0, yet useful as references] 

Website Accessibility Conformance Evaluation Methodology (WCAG-EM) 1.0 7 [Step 4] 

Test Case Description Language 2.0: Specification and Guide 18 

Evaluation processing use case: 

Reporting step 

Developer Guide for Evaluation and Report Language (EARL) 1.0 10 [In progress] 

Evaluation and Report Language (EARL) 1.0 Schema' [In progress] 

Pointer Methods in RDF n [In progress] 

Media Fragments URI 1.0 (basic)12 [W3C Recommendation] 

HTTP Vocabulary in RDF 1.0 14 [In progress] 

Representing Content in RDF 1.0 15 [In progress] 

Template for Accessibility Evaluation Reports 13 

D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Core)6 [Sections 5, 9, 10] 

Website Accessibility Conformance Evaluation Methodology (WCAG-EM) 1.0 7 [Steps 4-5] 
Research Report on Web Accessibility Metrics 19 [Advanced] 

Presentation use case D-WAB4 Unified Web Evaluation Methodology 6 (UWEM 1.2 Core) 

Testing plan (of the tool) WCAG 2.0 Test Samples 20 [In progress] 



Appendix References 

1. Velasco CA (ed.), Ackermann P (ed.), Vlachogiannis E (ed.) Guidance on the development of web accessibility evaluation tools. World 
Wide Web Consortium, 2013. [In progress] www.w3.org/WAI/ER/WD-AERT/ED-AERT 

2. Abou-Zahra S (ed.) Selecting Web Accessibility Evaluation Tools. World Wide Web Consortium, 2005 [Draft] 
www.w3.org/WAI/eval/selectingtools.html 

3. Abou-Zahra S (ed.) Web Accessibility Evaluation Tools. World Wide Web Consortium, 2006 [Draft] www.w3.org/WAI/RC/tools/Overview 
4. Velasco CA (ed.) Requirements for "Techniques for Automated and Semi-Automated Evaluation Tools". World Wide Web Consortium, 

2013. [In progress] www.w3.org/WAI/ER/WD-AERT/ED-requirements 
5. Abou-Zahra S (ed.) Evaluation Approaches for Specific Contexts. World Wide Web Consortium, 2005 [Draft] 

www.w3.org/WAI/eval/considerations.html 
6. Velleman E, Nietzio A, Velasco CA. D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Core). Web Accessibility Benchmarking 

Cluster, 2007. www.wabcluster.org/uweml_2/UWEM_l_2_CORE.pdf 
7. Velleman E (ed.), Abou-Zahra S (ed.) Website Accessibility Conformance Evaluation Methodology (WCAG-EM) 1.0. World Wide Web 

Consortium Working Draft, 2013 [In progress] www.w3.org/TR/WCAG-EM/ 
8. Abou-Zahra S (ed.) Selecting Web Accessibility Evaluation Tools. World Wide Web Consortium, 2005 [Draft] 

www.w3.org/WAI/impl/software 
9. Abou-Zahra S (ed.) Evaluation and Report Language (EARL) 1.0 Schema. World Wide Web Consortium Working Draft, 2011 [In progress] 

www.w3.org/TR/EARL10-Schema/ 
10. Velasco CA (ed.), Abou-Zahra S (ed.) www.w3.org/TR/EARL10-Guide 
11. Iglesias C (ed.), Squillace M (ed.) Pointer Methods in RDF 1.0. Worldwide Web Consortium Working Draft, 2011. [In progress] 

www. w3. org/TR/Pointers- in- RDF 10/ 
12. Troncy R (ed.), Mannens E (ed.), Pfeiffer S (ed.), Van Deursen D (ed.), Hausenblas M, Jagenstedt P, Jansen J, Lafon Y, Parker C, Steiner T. 

Media Fragments URI 1.0 (basic). World Wide Web Consortium Recommendation, 2013 [In progress] www.w3.org/TR/media-frags/ 
13. Brewer J (ed.), Template for Accessibility Evaluation Reports. World Wide Web Consortium, 2002. www.w3.org/WAI/eval/template.html 
14. Kock J (ed.), Velasco CA (ed.), Ackermann P(ed.) HTTP Vocabulary in RDF 1.0. World Wide Web Consortium Working Draft, 2011 [In 

progress] www.w3.org/TR/HTTP-in-RDF10/ 
15. Kock J (ed.), Velasco CA (ed.), Ackermann P(ed.) Representing Content in RDF 1.0. World Wide Web Consortium Working Draft, 2011 

[In progress] www.w3.org/TR/Content-in-RDF10/ 
16. Velleman E, Nietzio A, Velasco CA. D-WAB4 Unified Web Evaluation Methodology (UWEM 1.2 Tests). Web Accessibility 

Benchmarking Cluster, 2007. www.wabcluster.org/uweml_2/UWEM_l_2_TESTS.pdf 
17. Ridpath C, Chisholm W. Techniques For Accessibility Evaluation And Repair Tools. World Wide Web Consortium Working Draft, 2000 

[Unfinished, discontinued work] www.w3.org/TR/AERT 
18. Strobbe C. Test Case Description Language 2.0: Specification and Guide. Benchmarking Tools and Methods for the Web, 2009. 

www. bentoweb.org/refs/TCDL2.0. html 
19. Vigo M, Brajnik G, O Connor J. Research Report on Web Accessibility Metrics. World Wide Web Consortium Working Draft, 2012. 

www.w3.org/TR/accessibility-metrics-report/ 
20. WCAG 2.0 Test Samples. World Wide Web Consortium Draft, 2009 [In progress] www.w3.org/WAI/ER/tests/ 

http://www.w3.org/WAI/ER/WD-AERT/ED-AERT
http://www.w3.org/WAI/eval/selectingtools.html
http://www.w3.org/WAI/RC/tools/Overview
http://www.w3.org/WAI/ER/WD-AERT/ED-requirements
http://www.w3.org/WAI/eval/considerations.html
http://www.wabcluster.org/uweml_2/UWEM_l_2_CORE.pdf
http://www.w3.org/TR/WCAG-EM/
http://www.w3.org/WAI/impl/software
http://www.w3.org/TR/EARL10-Schema/
http://www.w3.org/TR/EARL10-Guide
http://www.w3.org/TR/media-frags/
http://www.w3.org/WAI/eval/template.html
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/Content-in-RDF10/
http://www.wabcluster.org/uweml_2/UWEM_l_2_TESTS.pdf
http://www.w3.org/TR/AERT
http://bentoweb.org/refs/TCDL2
http://www.w3.org/TR/accessibility-metrics-report/
http://www.w3.org/WAI/ER/tests/

