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ABSTRACT
The size and complexity of cloud environments make them
prone to failures. The traditional approach to achieve a high
dependability for these systems relies on constant monitor-
ing. However, this method is purely reactive. A more proac-
tive approach is provided by online failure prediction (OFP)
techniques. In this paper, we describe a OFP system for
private IaaS platforms, currently under development, that
combines different types of data input, including monitor-
ing information, event logs, and failure data. In addition,
this system operates at both the physical and virtual planes
of the cloud, taking into account the relationships between
nodes and failure propagation mechanisms that are unique
to cloud environments.

Categories and Subject Descriptors
C.4 [Performance of systems]: [Fault tolerance, Relia-
bility, availability, and serviceability]; C.2.4 [Computer-
communication networks]: Distributed Systems—Dis-
tributed applications
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1. INTRODUCTION
Interest in cloud computing has been on the rise in recent

years, as companies move away from traditional physical in-
frastructures to deploy their systems on public clouds like
Amazon EC2, which offer access to cheap on-demand scal-
able computational resources. However, this flexibility and
scalability come with a loss of control, as the physical in-
frastructure is owned by an external entity. Because of this,
there is a growing interest in the private IaaS cloud model,
which offers some of the benefits of public clouds without
relinquishing the control over the physical infrastructure.

However, these private cloud solutions are significantly
less evolved than public offerings, specially concerning re-
liability. Current systems enforce a passive approach to
fault management, monitoring physical machines and set-
ting alarm thresholds for each observed resource. In such
systems, alarms are often triggered with no time to react
and avoid a potential loss. In order to improve failure re-
sponse time, a more proactive approach is required, such as
Online Failure Prediction (OFP) techniques, which aim to
predict future system failures by analysing monitoring data,
error logs, or previous failures.

In this paper we present the architecture of an OFP sys-
tem aimed at private IaaS platforms. The system, currently
under development, analyses data from virtual machines
(VMs) in a cloud as well as physical machines (PMs), and
combines different prediction approaches (based on moni-
toring, events, and failures) to improve prediction quality.
In addition, we propose using awareness of cloud topology
(in both physical and virtual planes) and knowledge of fail-
ure propagation mechanisms in a cloud to further improve

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148668047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Prediction System

Monitoring 
System

Predictor 
Component

Data 
Analysis

Infrastructure
Manager

Application
Manager

Virtual
Machine

Virtual
Machine

Virtual
Machine

Hypervisor

Virtual
Machine

Virtual
Machine

Virtual
Machine

Physical MachinePhysical Machine

Hypervisor

Application
Manager

Application
Manager

Predictor Server

Monitoring Server

Predictor Server Predictor Server

Data 
Collector

Data 
Collector

Data 
Collector

Data 
Collector

Data 
Collector

Data 
Collector

Data 
Collector

Data 
Collector

Predictor Server

Monitoring Server Monitoring Server Monitoring Server

Learning NodeData storageData storageData storage

Monitoring Data & Logs                     Predictor configuration data              Failure data

Figure 1: The multi-level system architecture

predictions.

2. RELATED WORK
A recent survey of OFP methods in general is provided

in [3]. Although there is abundant prior work discussing
OFP applied to large distributed systems, its use with cloud
computing systems remains a relatively new field. OFP solu-
tions for clouds [5] [4] [2] have to take into account the unique
characteristics of these systems, such as their highly dynamic
structure and configuration, and their reliance on virtualiza-
tion. However, these solutions tend to only use data from
PMs and, at most, get VM information indirectly from hy-
pervisors. By contrast, our proposed architecture performs
predictions at multiple levels (physical, virtual node, virtual
application, cloud), covering a greater variety of potential
failures. Furthermore, our system gains access to more de-
tailed VM information by directly accessing monitoring and
logging from each VM. Finally, while OFP solutions often
focus on a single prediction approach, we are experimenting
with combining multiple approaches to improve predictions.

3. PREDICTION SYSTEM

3.1 Architecture
Figure 1 shows the prediction system architecture and its

integration with a monitoring system. We are using a pre-
viously existing monitoring system presented in [1], since it
can provide a multi-level view of the cloud, gathering infor-
mation about the PMs supporting the infrastructure, but
also about cloud VMs and the cloud applications they com-
pose, as well as the relationships between all of them. For
example, we could use this system to examine a specific
application running on the cloud, the VMs within that ap-
plication, and the PMs hosting these VMs. This gathering
approach is aimed at private IaaS platforms, as it would be
too invasive for public clouds, and too low-level for a PaaS.

The monitoring system defines an Infrastructure Manager
(IM) to handle data from cloud PMs, and several Applica-
tion Managers (AMs) for the data from a given cloud appli-
cation and its associated VMs. Every machine in the cloud,
whether physical or virtual, includes a Data Collector that

measures resource usage and collects application logs. This
data is sent to a Monitoring Server, which processes it (e.g.
filtering and aggregating it) and incorporates it to its system
model. Each Monitoring Server is assigned to a IM or AM,
as appropriate.

The prediction system comprises two parts: the predictor
component, which makes failure predictions based on semi-
real-time data, and the data analysis cluster, which stores
long term data gathered by the monitoring system and anal-
yses it in order to tune the prediction algorithms. This dis-
tinction allows us to lighten the predictor so that it can be
deployed on any kind of machine and ran in real time, while
simplifying the aggregation of data from several sources and
enabling the study of data over longer time periods.

The predictor component is made up of several Predictor
Servers, one of which is assigned to the IM and to each AM.
On each server, multiple prediction techniques are used and
combined, as we explain in the following section. A server
takes monitoring data and logs from its neighbour Moni-
toring Server, and system failure data from other predictor
servers (transmitted through the management network be-
tween IM and AMs), and uses that data to perform predic-
tions. On a predicted failure, the predictor component emits
an alarm associated to a PM, VM, or cloud application,
warning of an expected failure within a certain prediction
period.

Each predictor server only keeps data corresponding to a
limited time period. However, all monitoring, logging, and
failure data is periodically processed and sent to a storage
unit at the data analysis cluster for long term storage and
analysis. That data is then used by the Learning Node,
which updates ever day each prediction algorithm in each
Predictor Server. The details of this update process will de-
pend on each specific algorithm, but we can summarize it as
a supervised learning process where failure data is combined
with a training dataset to generate an optimal set of param-
eters for a given algorithm and prediction domain. These
updated algorithm parameters are stored and, eventually,
distributed to their corresponding Predictor Servers. It is
important to note that, since a cloud can contain hundreds
of physical machines and even more VMs, storing and pro-
cessing all this data requires the use of Big Data techniques.
We have decided to use a Hadoop cluster to fulfil this need
due to its flexibility and open-source nature.

Finally, we have to point out that this is still a work in
progress. The monitoring system is already implemented
but we are currently working on the predictor component
and analysis cluster. Once we have a working prototype,
we will be able to properly evaluate the efficiency of this
approach.

3.2 Prediction approach
Our failure prediction approach operates on two axes: the

virtual plane of the cloud (VMs running on the cloud), and
the physical plane (physical cloud servers on which VMs
run). Each of these planes presents different usage and fail-
ure patterns, and may have different types of data available
for prediction analysis. Since some failures can only be pre-
dicted from a specific cloud plane (e.g. application-level fail-
ures that are observable on VM logs, but transparent to the
physical machine), we want our system to predict on both
planes.

On the other hand, we have three categories of failure
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prediction mechanisms, based on the choice of input data:
monitoring based prediction, which periodically examines
monitored system variables to predict resource exhaustion,
event-based prediction, which searches for patterns preced-
ing failures in event logs, and failure-based prediction, which
analyses temporal and spatial distribution of failure occur-
rences. Each of these categories excels at identifying differ-
ent types of failures, and there are failures that can only be
anticipated with a specific type of predictor, so we want our
system to support all three.

It is also important to consider the relationships between
different cloud elements, and their impact on error occur-
rence. For the purposes of our analysis, we have identified
two main relationships: the hosting relationship between a
VM and its corresponding PM, and the common execution
context shared between all VM within a cloud application.
We have noticed that, through these relationships, system
failures can propagate between cloud elements, in the fol-
lowing ways:

• A failure in a PM can cause failures in its hosted VMs.
On a related note, a VM failure can be a symptom of
an upcoming failure in its corresponding PM.

• A failure in a VM can produce further failures in other
VMs within the same cloud application. This can be
due to network failures propagating through a virtual
network, or application level failures affecting several
nodes working together.

• As with non-cloud systems, a failure in a PM can prop-
agate to nearby PMs. Examples of this include failures
due to ambient conditions, and network failures.

Figures 2 and 3 show the proposed structure for our pre-
dictor, with separate predictor servers in the IM and AMs,
respectively. This covers failures in both the physical and
virtual planes of the cloud, and exploits all three prediction
mechanisms, while factoring the potential for failure propa-
gation between cloud elements. Prediction based on moni-
toring (Predict-M) is performed for each individual machine,
whether virtual or physical, whereas event-based prediction
(Predict-E) processes aggregations of log events for all VMs
in each cloud application and all physical machines com-
posing the cloud infrastructure, respectively. Failure-based
prediction (Predict-F) uses all cloud failure data alongside a

cloud map indicating physical and logical distance between
virtual and physical cloud nodes.

To illustrate the usefulness of this approach, consider a
scenario where a cloud application had a bugged database.
The first time the bug was observed, there would be a fail-
ure at the database VM, and the prediction system would
alert about potential failures in other VMs within that ap-
plication. Afterwards, the system could learn to predict that
kind of failure by analysing event logs from database VMs.

4. CHALLENGES AND RISKS
Event-based prediction over a cloud application presents

the challenge of not knowing in advance the structure of
event logs, as they depend on the specific software and con-
figuration selected by cloud users. This can be addressed
by using a format-agnostic prediction mechanism, like the
one proposed in [5]. On the other hand, event-based pre-
dictors require a significant training time to achieve optimal
prediction accuracy, but cloud application life time shows
great variability, from a few hours to months. As a conse-
quence, the shorter-lived subset of cloud applications may
not operate long enough to benefit from this technique.

The propagation of failures between cloud VMs and from
PMs to VMs is, at this stage, a theory that we have yet
to validate through practical experimentation. Hence, we
still do not know the magnitude of the correlation between
failures, and whether it will allow for a useful predictor.
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