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ABSTRACT 

Use of a spherical grid as electron collector at the anodic end of a tether, as 
recently proposed, is considered. The standard analysis of space-charge 
limited current to a solid sphere (with neither magnetic nor plasma-motion 
effects), which has been shown to best fit TSS1R in-orbit results at very 
high bias, is used to determine effects from grid transparency on current 
collected; the analysis is first reformulated in the formalism recently 
introduced in the two-dimensional analysis of bare-tethers. A discussion of 
the electric potential created by a spherical grid in vacuum is then carried 
out; it is shown that each grid-wire collects current well below its 
maximum OML current, the effective grid transparency being close to its 
optical value. Formulae for the current to a spherical grid, showing the 
effects of grid transparency, is determined. A fully consistent analysis of 
electric potential and electron density, outside and inside the grid, is 
completed.

1 - INTRODUCTION

The TSS1 (1992) and TSS1R (1996) tethers carried insulation all along, and a big solid sphere at 
the anodic end to collect electrons passively. It was argued as early as 1992 that a tether, bare of
insulation for collecting electrons as a giant Langmuir probe in the OML regime, would be a more 
efficient anode. A detailed comparison of relative performances carried out recently showed the 
bare tether performing much better than the end-sphere in deorbiting, which fully gauges collection 
capability, and better to a lesser extent in power generation and thrusting,1 which are modes of 
operation less requiring as regards collection. Drag on a big sphere from ram collisions with 
neutrals is a hindrance, however, for both power generation and thrusting.

      To reduce drag, and mass, of a end-sphere collector, it had been proposed to use a grid sphere 
instead of a solid one; it was suggested that the grid might collect as much current both as the 
corresponding solid sphere, and as its set of wires performing as “bare tethers” in the OML regime.2

A detailed study of grid sphere collection requires a previous model of collection by the solid 
sphere, for which several analyses of TSS1R results concentrated on the non-spherical effects from 
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the relative plasma motion and the geomagnetic field.3-7  Actually, best agreement with TSS1R 
results for the high bias of interest were found8  using the classical analysis of space-charge limited 
current to a solid sphere (with neither magnetic nor plasma-motion effects)9, 10,  which we shall also 
use here.  An estimate of an upper bound to the current to a grid sphere has showed a dependence 
on the optical transparency of the grid.11

2 - SPHERICAL SYMMETRY IN GRID COLLECTION

As shown in the next section, desired conditions that lead to collection of current well above the 
random value, exhibit a region around the sphere where space charge is negligible, the electric 
potential obeying the Laplace equation. As well known, the electric field generated by a plane 
metallic grid at given potential in vacuum approaches very rapidly, away from its plane, values 
corresponding to a metallic plate. The solution to the Laplace equation on the half-space  z > 0,  for 
an infinite square mesh of side  a  in the plane  z = 0,  with origin in the center of a mesh and axes 
parallel to its sides, is symmetric in  x,  y,  and even and periodic in both  x  and  y,
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At distance  z = a  from the plane,  the  0-1 and  1-0 terms in the Fourier representation of Eq.(1) 
decrease by a factor e-2  0.002, m + n > 1  terms decreasing faster. The potential is thus rapidly 
approximated by the term  00,  which satisfies the equation  d200/dz2 = 0,  yielding a constant 
electric field.

      Although a spherical grid cannot be made of equal meshes,  and the decay away from the grid 
surface is not exponential, results are quite similar. For a typical mesh side  a  small enough 
compared with the radius  R  the electric potential will be nearly spherically symmetric at a radius   
r = R + a,  where the grid surface appears nearly planar. Consider a grid made of  n >> 1 meridians
(half-circles) regularly spaced at longitude angle   = 2/n,  and  q  n  parallels placed for 
simplicity at the colatitudes that are roots of the equation  Pq(cos) = 0, where Pq is the Legendre 
polynomial. For   r > R,   the solution to the Laplace equation can be written as
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where  Pl
m(cos)  is an associated Legendre function, and we used the fact that    must be here 

periodic in   with period  2/n.

      The l = m = n term in (3) has the slower decrease with r among m  0 terms.                                 
Let  a  be distance between meridians at the equator,  n a = 2R,  or  a/R  =  2/n << 1. From  r = 
R   to   r = R + a,  that term  decreases as fast as the m + n = 1  term in  (1),
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As regards the  m = 0  terms, the average of    at the spherical grid surface in (22), over the full 
range  0 <  < 2,  
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at the  colatitude  of each  parallell  wire, must be the common potential of all grid wires,  P.  The
sum in (5) can then be reduced to two terms   (l0 = 0,   for  l  0, q), the average in (5) indeed 
taking the common value   00 = P   at all  parallel  wires. The  m = 0   sum in (3) is then just
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the last term decreasing from   r = R  to  r = R  +  a,   by a factor about   exp(- 2 q/n).

       Clearly, radial density and potential profiles can be determined assuming full spherical 
symmetry, with local grid effects only occurring in a narrow region around the sphere. Note that 
OML collection by the grid wires as suggested2 would require electrons to move as in a central field 
of each wire, far from other wires, throughout their motion from infinity; this is clearly not the case,
incoming electrons approaching near-radially except in a thin radial range, where the potential 
hardly changes. 

       As shown in the next section, however, grid transparency will have a fundamental effect on 
gross features of the solution, particularly on the current collected. The optical transparency  for 
a "characteristic square" mesh, with distance between centers of closest mesh wires  a << R, each 
wire having diameter dw << a, would then be   = (1- dw/a)2 .                           

3 - MODIFIED OUTER SOLUTION AND LAW FOR CURRENT

The formalism developed for current collection by a bare tether or a cylindrical probe12, 13 when 
extended to a spherical collector yields the following expressions for density and inward current of 
the attracted species,14
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where

                 E  ½ me(vr
2  +  v

2) - e(r)    kT ,           J   merv,                                 (9a, b)
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In Eq.(8) the  + sign corresponds to negative  vr.

        Clearly, from Eq.(10a), only incoming electrons having  J < Jr
*(E),  with
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will reach any given  r  and  contribute to both (7) and (8).  Also, all incoming electrons in the range  
JR

*(E)  < J  < Jr
*(E)  will turn around before reaching the sphere and contribute to both (7) and (8) 

too. As regards incoming electrons in the range   0 < J2 < JR*(E)2,  which do reach R+,  the grid 
collects a fraction  (1 - ), while a fraction    will appear at  R-  moving inwards with kinetic 
energy  about  eP, and will finally be outgoing at  R-,  a fraction of them  (1 - )  being 
collected, and a fraction      appearing at  R+  and moving outwards.

      In Eq. (8)  we thus have
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making  I  in (8) r-independent as it should. Introducing the random current, Ith = 4R2 jth  with

emkTeNthj 2/ , we finally find
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Similarly, in Eq.(7) we have
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     The OML current law would hold in case JR
*2(E)   JR

2(E)    2 me R
2 (E + eP), yielding the 

known result (for the solid sphere, which has  = 0), I / Ith  =  1 + eP /kT    eP /kT.  The case 
here of interest, however, corresponds to a large ratio eP /kT  and a small Debye length D << R, 
leading to

                                 I/Ith  <<  eP/kT        JR
*2(E)  <<  JR

2(E).                                     (15)

JR
*(E)  arises from an envelope in the family of straight lines J2  =  Jr

2(E)  in the E-J2  plane,  with  
r  as parameter,12, 14 which sets up at a sheath front where r2(r)  increases rapidly (Figure 1), 
yielding JR

*(E)  Jenv(E). The r-range of lines determining the envelope is narrow and may be 
characterized by a sheath radius  rsh.  Inside the sheath,  e/kT  increases rapidly with decreasing  r,  
allowing to write  Jr(E) >> Jr

*(E)  =  JR
*(E)  Jenv(E),  with   Jr

2(E)   2mer
2e(r).  Using (14)  with

the middle integral now vanishing, in Eq.(7),  we find
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Since  JR
* /Jr  is small,  (16) becomes
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or, using (13),
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Poisson's equation within the sheath, with   D
2  kT 0 /e2N,
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reads, using Eq.(18) 
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        The solution to the parameter-free Eq.(21) is uniquely defined by a single boundary  condition,   
g   0,  with  g  formally vanishing as 

  3/42/)1~(3  rg      

as r~  1,  to match behavior of the potential at the front.10 Using     = P   in  (22b)  to 
determine   g( r~ )  at  r~ = R /rsh   gives
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From a quasineutral solution in the region outside the sheath one could also write

                         thsh jrcI 24                     F  I /Ith =  c   rsh
2 /R2.                       (24a, b)
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where  c  is some constant of order unity obtained, in principle, from an approximate quasineutral 
analysis.

      Equations (23a),  (24b)  determine the current collected by the grid,
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which recovers the current  I = Ith  F (Y)  for the solid sphere,9, 10 as given in figure 3 of 
Reference 8. For small  r~  (as it holds near the sphere in case  F,  and thus  rsh /R,  is large) one 
finds

                                              rrg ~/1)~(                   F    Y 6/7.                                            (27)

The behavior near the sphere  rg ~/1 corresponds to the space-charge free solution,   1 /r,  as 
advanced in Sec.2.

4 - INNER SOLUTION

Inside the sphere, Poisson´s equation (19b) must be solved under boundary conditions (R) = P  
and  d /dr = 0  at  r = 0.  This will require some positive slope at  R-  and thus a jump in  d /dr,  
the slope at  R+  being prescribed by the outer solution and negative. Clearly, the slope at the 
spherical surface in the space between wires must be continuous; a jump occurs just at the wires, 
due to the appropriate surface charges. These differences, however, will be limited to a narrow layer 
and can be ignored here, as in the discussion in Sec.2.

        Inside the spherical grid surface, where there is no collector and the electron distribution 
function is even in  vr,  current vanishes throughout. Negative and positive  vr  contributions add for 
density, however, yielding in Eq.(7)
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For some radial range from  r = R-  inwards (r > r̂  in Figure 1) we will still have   Jr
* = JR 

* < Jr, 
with e >> kT   or   Jr

2  2me r2 e ,  and (29) becomes
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where, for simplicity, we took an  -average of  JR 
*2(E)  from Eq.(13),
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     At  r  = r̂   satisfying
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Eq.(31) reduces to

                                                          
kT

re
ren

)ˆ(2
)ˆ(







.                                               (34)

For  rr ˆ ,  we have   Jr
* = Jr  and Eq.(29)  yields
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recovering (34) at large  e( r̂ )/kT.   Here,  erfc  is the complementary error function, and we now 
kept   Jr

2(E)  = 2mer
2 [E + e(r)]   in full.

       Tentatively assuming (0)  positive, Eq. (31) is used for ne in the range rr ˆ  < R and 
Eq.(35) for 0 < rr ˆ .  Note that the density in (35) decreases with radius; there is no spherical 

convergence effect and, certainly,  ne  does not diverge as r  0. Although electron motion at  R-  
is near radial, as implied by condition  Jr

* << Jr,  it does cover a finite range  0 < J < Jr
* = JR

*  in 
angular momentum; at  rr ˆ ,  with  Jr

* =  Jr,  there exist electrons having J = Jr,  i.e.  vr = 0.  

For given values of the three dimensionless numbers,  eP/kT, D/R  and    [which also 
determine values for  Y  and  F  in (23b) and (26)], one uses (31) to integrate Eq. (19b) inwards,
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starting at r = R  with values P  and any particular positive slope d/dr. At the radius satisfying 
condition (33), one continues integration using Eq. (35) from  r = r̂   to r = 0.  One must then just 
sweep over values of the slope at  R  to finally select that value satisfying condition   d/dr = 0   at   
r = 0.

Figure 1 -

5 - CONCLUSIONS

We have discussed a proposal for using a spherical grid in electron collection at the anodic end of a 
tether, to reduce drag and mass of an end-sphere collector. The standard analysis of space-charge 
limited current to a solid sphere (with neither magnetic nor plasma-motion effects), which has been 
shown to best fit TSS1R in-orbit results at very high bias, is used to determine effects from grid 
transparency on current collected. We first considered the electric potential created by a spherical 
grid in vacuum, and showed that each grid-wire collects current well below its maximum OML 
current, the effective grid transparency being very close to its optical value.

        We then carried out a fully consistent analysis of electric potential and electron density, 
outside and inside the grid, finally leading to a formula for the current to a spherical grid,

                                
 

)(

3/2)21(/3/2)21(

)0(

)(

YF

YF

I

I 



 



                                 (36)

[where  I = Ith  F (Y)  is the current to the solid sphere9, 10],  showing the effects of grid 
transparency  .  This is to be compared with the estimate in Ref. 11,
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Using (27) for large argument, Eq. (36) yields
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       Clearly,  the current reduction in (38) relative to the solid sphere would make a bare tether 
perform much better than a grid sphere in both power generation and thrusting too. On the other 
hand, the grid sphere [with mass  (1 - )  times the mass of the corresponding solid sphere] would 
have a greater current-to-mass ratio than the solid one.  This would also apply to the current-to-drag 
ratio. In moving from a solid to a grid sphere, drag would be reduced in a factor

                                  Drag () / Drag ( = 0)  =  (1 - )  +    b (1 - ).                             (39)

The first term arises from drag at the ram hemisphere, whereas the second term arises from drag at
the inner surface of the wake hemisphere. The factor  b < 1 will depend on how meshes in the first 
hemisphere are projected into the second one. The result  2(1 - ) given in Ref.11 for the drag ratio 
does not recover the proper limit,  1,  for vanishing  ,  because it ignored the factor    in the 
second term of (39), which takes into account that the flux of neutrals impacting the inner surface of 
the wake hemisphere has been reduced in that factor.     
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