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Abstract 
       Performances of ED-tethers using either spherical collectors or bare tethers for drag, thrust, or power generation, 
are compared. The standard Parker-Murphy model of current to a full sphere, with neither space-charge nor plasma-
motion effects considered, but modified to best fit TSS1R results, is used (the Lam, Al'pert/Gurevich space-charge 
limited model will be used elsewhere). In the analysis, the spherical collector is assumed to collect current well beyond 
its random-current value (thick-sheath). Both average current in the bare-tether and current to the sphere are normalized 
with the short-circuit current in the absence of applied power, allowing a comparison of performances for all three 
applications in terms of characteristic dimensionless numbers. The sphere is always substantially outperformed by the 
bare-tether if ohmic effects are weak, though its performance improves as such effects increase.    
 
I. Introduction 
       A comparison of the performances of an electrodynamic (ED) tether using the tether itself, left bare, for electron 
(anodic) collection, and an ED tether using a large sphere as anodic device, as used in the TSS1 and TSS1R tether 
missions, involves a proper evaluation of the current-collection capabilities. This requires carrying the respective 
current laws to some common formulation, which is discussed in the next section. Independently, gauging performance 
is different for drag (or deorbit), power-generation, and thrust applications, and is carried out separately in Secs. III, IV, 
and  V,  respectively.  
       In this work we shall assume that current to the sphere follows a modified Parker-Murphy law, as claimed 
describing TSS1R results 1  (the well known space-charge-limited current law, also claimed as fitting those results, 2  
will be considered elsewhere). That modified PM law is 
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where  Rsph  and  Φsph  are  the sphere radius and bias, and  T  is plasma temperature.  Also,  a ≈ 2.5  is a fitting factor 
coming from  TSS1R  results,  and  Jth,   fPM   and  le   are the thermal or random current density, the Parker-Murphy law 
function, and the electron thermal gyroradius, respectively, 
 

              
eB

kTem
elPMf

em

kT
eNthJ =

+
=∞= ,

2

81
,

2

ψ

π
,                       (2a-c) 

with  N∞  being plasma density, and  B  a magnetic field. We shall assume that the sphere is an efficient collector in the 
sense that it is not so large that it just collects the thermal current.  This requires  ψ  not to be small in  (2b),  the factor  
½  describing magnetic guiding of electrons. 
          We shall also assume that the bare-tether current follows the  OML  (orbital-motion-limited) collection law for a 
cylinder, whether a tape or a round wire. For an uniform bias  Φcyl ,  this law is 
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where  p  and  L  are cross-section perimeter and length of the cylinder.  In the case of a bare tether, the current btI  
involves some average of bias over the collecting length, which may be different for drag, thrust, and power generation 
applications. 
  
II. Normalized Currents 
        The double appearance of the radius  Rsph  in Eq.(1a) makes comparing performances difficult. It thus proves 
convenient to use  Eq.(1b) itself to rearrange  (1a)  so that  Rsph  only appears once (through its  ψ-dependence), 
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We note that the ratio   fPM (ψ)/ψ    in Eq. (4)  decreases with  ψ,  keeping about unity over a wide  ψ > 1  interval;  it 
ranges from  1.91 at  ψ = 1   to  0.38  at   ψ = 16.  TSS1R  results reach as high as   ψ ∼ 10. 1, 2 

         It is also convenient to normalize currents with the short-circuit value,  σcEmA,  which is a bound to current in 
case of drag or power-generation applications; here  σc,  A  and  Em  are tether conductivity and cross-section area, and 
motional field, respectively. As we shall see, ohmic limitations are fundamental in the comparison between bare tethers 
and TSS1R-like spheres. We first introduce dimensionless values  
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and next introduce a characteristic length  L*  that gauges bare-tether collection impedance against the ohmic 
impedance, 3 
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For the relevant aluminum case one has 
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where  h  is  thickness for a thin tape and radius for a round wire. 
        Results for  bti   versus  L/L*  (and additional dimensionless numbers appropriate to the application considered) 
have been determined in the past and will be recalled in  Secs. III-V.  As regards current to a sphere, we directly obtain 
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For  typical values 
eVkTkmVmEcmel 15.0,/150,5.2 =≈≈ , 

 
and, say,  L* = 1.5 km  in case of a thin tape,  we have 
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i*   thus turning out to be very small, typically about  10-2 - 10-3.  Clearly,  L*  would be always much larger for a round 
wire. 
 
III. Deorbit missions 
          For the sphere, neglecting the small voltage drop at a hollow cathode that would establish electrical contact at the 
cathodic end, the total induced voltage would here equal the sphere bias plus the ohmic voltage drop, 
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where   Zt  = L /σc A   is the tether resistance.  One then finds   Φsph = EmL (1  -  isph),   Eq. (8a) now becoming 
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          As regards the bare tether,  bti   is a function of just the ratio  L/L*,  which the analysis in  Ref. 4  easily shows to 
be defined as 
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with  bti  ≈ 0.3 × (L/L*)3/2   for  L/L*   small;  and 

                                                                            
L

L
bti

*
1 −= ,                        for   L/L*   >  4.                         (12b) 

 
     To gauge performances we consider the ratio between the mass of the system dedicated to producing thrust, and the 
total impulse of the deorbiting mission, written as the product of drag-force  F  times the mission duration  τ.  That ratio, 
which should be as small as possible, is the inverse of the velocity of exhaust gases  (g0 × specific impulse)  in the case 
of chemical propulsion, where system mass is basically propellant mass.  In the case of electrical propulsion one must 
also allow for the mass of a power supply.  An ED-tether needs no power supply for deorbiting, and consumes very 
little expellant (mass) at the hollow cathode. Dedicated mass is then basically tether mass times some factor  αt ∼ 2.5   
that accounts for tether-related hardware  (deployer / end ballast). 
       Writing  F  as  average current  times  LB,  we have 
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where  i   is  given by   Eqs.(11) and (12a, b)  for sphere and bare-tether, respectively.  Since all other factors in (13) 
may have values common to both systems, performance is measured by the dimensionless average current, which 
should be as large as possible. 
       Both  isph  and  bti   approach unity at large  L/L*,  with ohmic effects limiting current collection in either case. This 
occurs for a bare tether at moderate L/L*  values, whereas for the sphere it occurs at much larger values.  These are 
easier to reach with long, thin tapes at daytime.  For  L = 20 km,  N∞ = 1012 m-3,  tape thickness  h = 0.1 mm and  width 
= 25 mm,  and  ψ ∼ 3 (corresponding to a  4m sphere diameter),  we find   isph ∼ 0.12  (note that   i* × L/L*   is 
independent of  Em).  With   L*3/2 ∝ N∞,   current to the sphere would drop by a factor of  10  at night, effectively 
switching off the drag  F.  For the sphere we would then have a normalized current 
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where   fd  is  the  noneclipse or  daytime fraction, and   id*,   Ld*   are   i*,   L*  computed at day density. For a given 
(deorbiting) mission impulse, the bare-tape system appears then to be  10-20  times lighter than the system using a 
spherical anode. 
 
IV.  Power generation 
         For the sphere we would have 

                                                                   sphIlZtZsphLmE )( ++Φ= .                                                        (15) 
 
As with all generators, the impedance ratio  Zl / Zt  determines the efficiency  ηg  in taking energy (from the orbital 
motion) into useful energy at an electrical load of impedance Zl  in the tether circuit. Using  
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instead of  Zl /Zt  as free parameter in  (15)  leads to   Φsph = EmL  (1  -  isph  - ηg),   Eq. (8a) now becoming 
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        As regards the bare tether,  bti   is here a function of the ratio  L/L*  and  ZL/Zt ,  or alternatively  ηg.   From the 
analysis in Ref. 3 and assuming  a large  L/L*  ratio one finds 
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       At an ED-tether, power is generated at the expense of orbital energy; a tether can thus serve as a primary power 
source only for very short times.  It turns out, however, that for longer than 1 - 2 weeks, with solar power not available, 
power generation by a combination  ED-tether / rocket, with the tether providing electrical power and the chemical 
rocket providing thrust to compensate the magnetic drag on the tether, proves more efficient as regards fuel 
consumption than the alternative power source, which would be a fuel cell for direct generation. Note that the magnetic 
power orbUrkvrkm&  (magnetic drag  F  being assumed equal to rocket thrust  rkvrkm&   to keep the orbit stationary)  is 

greater than the rocket output power  2/2
rkvrkm& .  Here  rkm&  and  vrk  are propellant mass-flow-rate and velocity at 

the rocket exhaust;  for  LOX-LH2   (specific  impulse ∼ 460 s),  we have  vrk ∼ 4.5 Km/s  <  2Uorb ∼ 15 km/s.   The 
decrease in rocket energy of motion due to the fuel-mass loss makes for the excess over the rocket output. 
       Performance is gauged by the ratio between the mass of the system dedicated to producing power, and the total 
energy generated, written as the product of mission duration  τ  times the electrical power generated,  Wg = ηg × FUorb.   
System mass is basically made of rocket propellant mass and tether related mass, 
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Using LBIrkvrkm =&  we find 
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for aluminum and  Em ∼ 150 V/km. 
          At the large  L/L*  values favoring the spherical collector we just set   bti  ≈ 1 - ηg   in  (16b)  for the bare teher. 

For the sphere, with drag again effectively switched off at night, we set  i (sphere)  ≈ (1 - ηg)  fd id,   with  id  as given by 
Eq. (14).  For a given mission duration  τ,  the ratio in (18') has a minimum at 
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One finds   ηg  ≈  0.5   at short times;   ηg  ≈  0.59   at   τ  = τ~    (or   τ~ / fd id );    ηg  ≈ 1 - ττ /~   at long times.  For the 
case considered in  Sec.III,  having  1/fd  id   about  15,  the system with the spherical collector is heavier than the bare-
tether system by a factor of  10  for mission duration  τ  ≈ τ~ ,  and a factor of   4.5   for   τ  ≈ τ~ /fd id,   or about two 
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months. Both systems would have similar masses for durations much longer than two months, where system mass is 
basically propellant mass for the rocket. 
 
V.  Thrusting missions 
          For the sphere we would now have 
 

                                                      Ws  =  εs × Isph  =  (EmL  + Φsph  +   Isph Zt ) × Isph,                                                 (21a) 
 

where  Ws  and  εs   are the supply power and voltage, with  Isph  and  Φsph  related by  Eq. (8a). 
          In thrusting, a bare tether is more efficient if some upper segment is insulated. 3  The analysis in Ref.5 shows that 
at low  L*/L,  the lower segment left bare should be a small fraction of the full tether legnth. 5  Then the required power 
supply is just 
                                               Ws  =  εs × btI  =  (EmL   +   btI  Zt )  × btI ,                                                           (21b) 

 
corresponding to negligible impedance in bare-tether collection. 
        To gauge performances we consider the ratio between the mass of the system dedicated to producing thrust, and 
the total impulse of the deorbiting mission, 
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where   β   is the inverse specific power of the supply.  Typically,  β   is a few tens of   kg/kW,  where a dedicated solar-
power is required, as in the case of a  'space-tug';  and less than   10 kg/kW,  where a solar-power system can be taken 
for free, as in the case of reboost of the International Space Station. 
       For the bare tether one then finds 
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The expression in the parenthesis is minimum for  Ws  such that  bti = 1/ mE~ ,  yielding  a minimum mass-to-impulse  
ratio 
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Here, mE~  is a normalized value of the motional field,  ctmE βσρα // , which is typically near unity. 
        For the tether with a sphere, taking  Φsph  from  Eq. (8a), one finds 
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A minimum now occurs at   i(sph) = mEdi

~/   yielding a  mass-to-impulse  ratio 
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For a given mission impulse in the case considered in  Sec.III,  the system with the spherical collector would be heavier 
than the bare-tether system by a factor of about 4. 
 



 6

VI. Conclusions 
       We have shown that, in the absence of ohmic effects, bare tethers substantially outperform tethers using a sphere as 
passive anodic collector. For wires with not unreasonably thin cross sections, ohmic effects are typically small. On the 
other hand, ohmic effects on (long) thin tapes, may be strong. The greater current-collecting capability of a bare tape 
makes it more vulnerable to ohmic limitations. As a result, spherical-collector performances do approach performances 
by bare tether.  Systems with tapes  20 km long and as thin as   0.1 mm, left bare, are lighter than insulated-tape systems 
with collecting spheres, by factors of about  10-15  in deorbiting;  about  6-8  in power generation; and about  4  in 
thrusting. 
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