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Recent results on the validity of the orbital-motion-limited (OML) regime of cylindrical Langmuir probes, 
which are essential for bare-tether applications, are extended to show how the current lags behind the OML value 
beyond the OML regime, and the possible effects of motion of the probe relative to the plasma. 

The electron current i to a long cylinder at rest in a colli-
sionless, unmagnetized, MaxweUian plasma of density N„ and 
temperatures Te and T„ may be written as 

I = I,h x a function ofR/XDe, e<PP/kTe, T/Te. 

Here, / * = 2flRLeN00 *JkTe 127tme is the random or thermal 

current, XDe = ^kTe /Ane2Na> is the Debye length, and R, L, and 

<PP are probe radius, length, and bias, respectively. For cylin­
ders thin enough, however, IIIth only depends on e<PP/kTe. This 
is the orbital-motion-limited (OML) regime; at high bias one 
has 
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There is a maximum radius, R 
max? 

1,2 

for the OML regime to 
hold with other parameters fixed,1,2 the ratio IIIOML dropping 
below unity when R goes beyond Rmax. The way that ratio drops 
below unity is of interest for the design of bare (uninsulated) 
tethers.3,4 

In general, determining electron trajectories to obtain I 
requires solving Poisson's equation for <P (r), 
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with boundary conditions 0 = &p> 0 atr = R, 0—> 0 as r ^ 
°°. The Boltzmann law used for the repelled-particle density Nt 

is quite accurate for the e<Pp» kTi,kTe values of interest here. 
The basic problem in probe theory lies in the attracted-particle 
density Ne. 

Since the Vlasov equation conserves the electron 

distribution function / ( r , v ) along orbits, and electrons trapped 

in bounded orbits may be ignored,2 we have / ( r , v ) = fjyj 

(undisturbed MaxweUian) if the r , v orbit, traced back in time, 

reaches infinity, and / ( r , v ) = 0 otherwise. Since both axial 

velocity vz, and transverse energy (Fig.l) 
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are also conserved along orbits, values r, v determine v„ wAfM 

in terms of the local potential <P(r); the density Ne at a radius r 
is then obtained by integrating fM over appropriate velocity 
ranges.5 A change of variables v„ v0 —> E, J = m/Vg, and a 
trivial vz-integration yield 

N„ =N, •S 
exp(-E I kTe )dEdJ 

(4) 
KkTep

2
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where the J-integral covers just positive values, and we define 

Jr\E) = 2mf[E + e&(r)] (5) 

J=merve 

Figure 1. Geometry of cylindrical probe and electron motion. 

The it-integral also covers positive values and is carried out 
once for vr < 0 (incoming electrons) and again for vr > 0 
(electrons that turn outwards at a radius between r and R). 

An incoming electron of energy E will only reach r if vj is 
positive throughout the entire range r <' r'' <: °° ; since J is also 
conserved, its range of integration will be 

0 < J < J*(E) = minimum { Jr{E) ; r <r' < °° }. (6) 

If the minimum occurs at some r' > r, electrons in the 
range J*(E) <J< Jr(E), for which v/would actually be positive 
at r, never reach r and are thus excluded from the ./-integral 
(there is an effective potential barrier at r, for energy E). The J-
range of integration for an it-electron outgoing at r is JP(E) < 
J < J*(E), because electrons in the range 0 < J < JR*(E) 
disappear at the probe. Equation (4) may now be written as 
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The current itself is easily found to be 
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A hypothetical potential with no barriers at all [J*(E) = 
Jr(E) for 0 < E < °°, R < r < °°] would everywhere reduce Ne in 
(7) to a function of the local radius and potential. As we shall 
now see, however, actual potentials behave differently. Note 
that in order to have J*(E) = Jr(E) in the entire range 
0 < E < oo at a particular r, it suffices to have J*(0) = Jr(0). 
Using Jr

2(0) <x r2^), it follows from (6) that the condition of 
no barrier at a radius r is 

r2®^) <r'2^(r') (r <r' < oo). (9) 

There are two consequences of that simple result: First, the 
condition of maximum current in (8), JR(E) = JR(E) for 0 < E 
< °° (no potential barriers just at R) is satisfied if 

R2<P„ ir2^). (R<r<°°). (10) 

This is the OML current; with E ~ kTe « e<Pp, we have 
JR(E) ~ JR(0) in Eq. (8), recovering (1). Secondly, a potential 
satisfying the condition 

d^ty/dr > 0 , r0 < r < °°, (11) 

for some radius r0, has potential barrier at no radius beyond r0, 

J*(E) = Jr(E) for 0 < E < oo, r0 <r < °°. (12) 
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Figure 2. Schematics of potential <P versus <Pp(R/r)2 for 

profiles a and b (R < RmJ, c (R = Rmax), and d (R > Rmax), with 
Rmax the largest radius for the OML regime to hold. The 
hypothetical profile a would have no potential barriers. 

Both consequences are conveniently illustrated by display­
ing <P versusiPpR2/)*2 for potential profiles (Fig.2). Clearly, 
profiles a-c would lie in the OML regime, whereas d would 
not. Also, cases b-d, which are schematics of actual profiles, 
present property (11), r0 being the radius where the ordinate-to-
abscissa ratio in the figure, (^/(iPpR2/^), goes through a 
minimum, then increasing monotonically when moving to the 
left past the minimum. Profile c, just touching the diagonal in 

the figure, corresponds to the case of maximum radius, Rmax.
U2 

The extreme condition J*(E) = Jr(E) for 0 <E < °°, R < r < °°, 
requiring a positive dtfty/dr throughout, is, of course, more 
restrictive, and is only satisfied by the hypothetical profile a. 
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Figure 3. Potential profile for R > Rmal. The plasma is quasi-
neutral below point 1; below point 0 there are no potential 
barriers. The broad, ion-free region above the thin layers at 
points 1 and 2 is free of space-charge effects near the probe. 

Figure 3 again shows the profile d of Fig.2 for the R > Rmax 

case. In order to solve Poisson's equation using (7), we need 
J*(E) in the different regions of the profile, and the particular 
function JR*(E), which gives the current / too. The no-barrier 
condition (12), J*(E) = Jr(E) for all energies, holds below point 
0. Property (11) may be illustrated by considering the r-family 
of straight lines J2= J2(E) in the E-J2 plane, for the range r>r0 

(Fig.4a): for r increasing, the corresponding line keeps moving 
to the right for all positive energies. Since point 0 lies below 
the diagonal in Fig. 3, its line reaches to the left of the .R-line 
on the J2 axis. 

The quasineutrality approximation for Eq.(2), Ne ~ Nt, is 
valid below a point 1 where d<P /dr —> - oo (Fig.3). Between 
points 0 and 1, there is an r-dependent energy range with 
potential barrier. Since we have r, < r0 and r,2®, > r0

2<P0, the r-
lines for points 0 and 1 meet at some positive energy, as shown 
in Fig.4b. Also shown is the envelope J2 = Jen

2(E) of the set of 
r-lines in the range r, < r < r0, which is determined by the 
equations J2 - J2{E) = 0, d [J2 - Jr\E)] Id r = 0, leading to the 
parametric representation 

J2 = Jjir) -my e d&ldr. 

E = Eem(r) = - e&(r) - 1/2 re d&fdr 

(13a) 

(13b) 

The envelope touches each r-line at the E, J2 point given by 
Eqs.(13a, b). Since E and J2 diverge with -d<P/dr in (13a, b), as 
r —> r,, the envelope is asymptotic to the r rline; also, it is 
tangent to the r0-line at E = 0 (Fig.4b). Condition Eenv(r) = 0 
in (13b) corresponds to a minimum of r2&, the profile tangent 
meeting the origin in Fig. 3 when point 0 is reached from 
above. The quasineutral solution below 0 has no such property, 
thus breaking down at that point; local use of the full Eq. (2), 



however, suffices to round the profile at 0, with no effect 
beyond its immediate neighborhood. Point 0 will just be the 
point closest to 1 in the quasineutral, no-potential-barrier, 
solution. 

r<r2<rJ 

(b) J' 

Figure 4. (a) Straight lines of the r-family J2 = J2
r(E), defined in 

Eq.(5), for probe point 0 in Fig.3, and any two radii r' > r beyond 
r0. (b) Envelope J2

eJE) (dashed curve) for r-family lines in the 
range r1 <r<r0, and limit lines for points 0 and 1. At the top of 
the thin layers, and for most of the broad region above in Fig.3, 
r-lines lie far to the right; as the probe is approached, however, 
the r-line would move back to the left, finally reaching the probe 
line. 

A simple but accurate approximation for Jem(E) can now be 
readily obtained without knowledge of <P(r), using the r0 and r1 

lines in Fig. 4b, 

JeJ(E)=JrHE)-
r^e^-r^e® a+{r2 -r2)E' 

(14) 

where the values r0, &0, ru and 0 , are yet unknown. For any 
radius r between r1 and rg we would now have 

J*(E) = Jem{E) forE< EeJr), 

= Jr(E) for E>Eenv(r). 

(15a) 

(15b) 

As r approaches rh one has Eem(r) —> °° in (13b), Eq.(15a) 
for J*(E) then holding throughout the entire range 0 < E < °°. 
Above point 1 in Fig. 3 the potential <P rises rapidly to values 
0 » 0j. Note that both e&„ and e&j are of order of kTh 

whereas e<^JkTi is very large (~ 103, 104 for tethers); if Fig. 3 
were drawn to scale, the near-vertical potential rise up from 
point 1 would occur very close to the^ -axis, and point 0 
would lie very close to the origin. With the r-line moving far 
to the right in Fig.4b a s ^ rises, we still have J*(E) = Jem(E). 

Finally, as one approaches the probe, moving toward the 
upper right corner in the diagonal of Fig. 3, the r-line moves 
back to the left in Fig.4b, ending at the .R-line. As it follows 
from Fig. 4b and the preceding discussion, we have JR *(£) = 
Jem(E) below the energy where the envelope crosses to the right 
of the near-vertical R-line. We now assume that R/Rmax is large 
enough, with the crossing occuring at large E/kTe. One may 

then safely set JR*(E) =Jmv(E) for all energies in the integrals 
of Eqs. (7) and (8). We also have J*(E) =Jem(E) from point 1 
to the probe. 

The ratio MOML takes now the form 

I _°rdE 
I ~ * kT 
1OML n « 

exp kT. 
Jenv(.E) (16) 
JR(0) 

To obtain the values r0, &0, rh and &, that determine Jem(E) 
in (14), we solve Poisson's equation with JR*(E) =Jem(E) in (7) 
throughout. The quasineutrality relation at point 0, with Jr*(E) 
= Jr(E) in Eq.(7), and both the quasineutrality relation with 
Jr*(E) = Jem(E), and its derivative with respect to <P at ru where 
dr/d<P vanishes, serve to determine e<&,/kTe, e<Pj/kTe, and rjr0 

as functions of T/Te. Above point 1 there are two non-
quasineutral layers that take the solution to values satisfying 
tpj « tj>« tpp^ and to a radius r2 a bit closer to the probe; the 
structure of these two thin layers can be analysed in a simple 
way, and yields r2lr1 and the behavior <P<x (r1 - r2)

m at the top 
of the second layer.2 

In the broad region from these layers to the probe, we have 
e&/kTi ~ 0/0j large (Fig.3), making NJN„ exponentially 
small in Poisson's equation; also, since r- lines lie far to the 
right in Fig.4b, we have J*(E) = Jem(E) « J£E) « Jr(0), 
considerably simplifying the integral for7Ve /N„ in (7): 

3 - = o , (17a, b) 

although this approximation fails within some neighborhood of 
the probe, the high bias makes space-charge effects negligible 
there (even though R is not small compared with XDe, hDi).

2 

Using (17a, b), and matching to the second layer at r1xr2/r1 , 
one fully determines the solution <P(r) to Poisson's equation in 
this broad region. The boundary condition^ = <PP at r = R, 
yields a fourth relation and serves to determine rh 

Figure 5. Rmal/^De v e r s us e&p/kTe for three values of temperature 
ratio T/T,. 

Figure 5, taken from results in Ref 2, shows RmJXDe 

versus e<PP/kTe and T/Te; at any given bias, Rmax increases 
with the T/Te ratio. Figure 6 shows results from our present 
calculations for I/IOML. Each curve reaches the value I/IOML = 1 at 
a radius R^^ larger than Rmax (See Fig. 5). This is a conse-



quence of our having used the approximation JR*(E) = Jem(E), 
which is only valid for R/Rmax large enough; results valid for the 
entire range R/Rmax > 1 are the subject of a future publication. 
The present, simplified results, giving 1/1 OML = 1 for Rmm < R < 
R^^ and 1/1 OML dropping rapidly beyond R^, are qualitatively 
correct, however, and lead to some simple conclusions: 

1) One might use tethers with R larger than Rmax, but not 
larger than JRmax. 

2) The ratio Rmax/Rmax increases rapidly with decreasing 

T/T,._ 
3) R^, in opposition to Rmax, exceeds XDe for quite small 

values of T/Te. 
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Figure 6. Normalized current I/I0ML versus R fkDe, for e<PP/kTe = 
3000 (a) and 300 (b), and three values of T/Te. In our 
approximate solution (strictly valid for R/Rmax large), the ratio 
I/I OML remains equal to unity between Rmax and some value R^^. 

These conclusions are relevant to the design of bare tethers, 
which find a plasma with Debye length and, to some degree, 
ratio T/Te varying along the orbit; this is more so if the tether 
is used for orbit raising or lowering. The conclusions also 
support a point made in Refl , concerning the effect of a 
plasma velocity U relative to the probe. This introduces a new 
characteristic (ram) ion energy, which, for a tether orbiting in 
the F layer, is large compared with the thermal energy, 

mmIU2« 4.5 eV » kTt ~0.15eV 
(at higher altitudes, with H or He ions—and weakly reduced 
U2—, the two energies are comparable). The unperturbed ion 
distribution function is now strongly nonisotropic, and the 
electric field is non radial. 

Note that the OML current law is still valid, being 
independent of both ion distribution function and cross-section 
shape (just replace 2R with perimeter! n in Eq.l); the law 
applies even if the potential has no rotational symmetry.2 The 
high-bias limit law (1) is particularly robust: it is also inde­
pendent of the unperturbed electron distribution function as 
long as it is isotropic, as in the present case, with 1/2 meU

2 « 
kTe. The effect of a large ion ram energy would just be a 
reduction of the domain of validity for the OML law. 

The fact that I/I0ML remains unity over some domain in 
Fig.5 mirrors the fact that IOMLIIth in (1) is independent ofR/XDe, 
and T/Te. Figures 6a, b extend the case for I/IOML close to unity 
to a much larger domain. This means that one could alter 
substantially, say Te or T„ or the probe cross section (keeping 
its perimeter), thus fully modifying the structure of the 
potential field, without reaching the boundary of the domain of 
OML validity, that is, with no current / variation. This is a 
case quite the opposite of large spherical collectors, as used in 
the TSS1 tethers. In predicting the new domain of validity 
(instead of an actual value for I) one might use crude models, if 
conservative. 

For the conditions of interest, 1/2 mJJ2 « e<Pp, ions would 
be kept far away from the probe for all directions, with some 
(angle dependent) potential structure similar to that shown in 
Fig. 3. In a crude model, one would ignore the nonthermal 
character of the ram energy, excepting the fact that it makes the 
ion characteristic energy angle dependent; for all other 
parameters fixed, the distance r0 in Fig. 3 (and for b-d profiles in 
Fig.2) is directly related to the characteristic ion energy.2 In a 
plasma with Tt ~ Te, one would then have effective ion 
temperatures kT,(eff) ~ 1/2 mJJ2 ~ 30 kTe on the windward side, 
and Tt(eff) ~ Te on the lateral sides. For the lee side, we take 
r0(lee) ~ r0(side)x^nj,.f/2 l2kTe from simple wake considera­
tions, andr0~ R^e<S>PlkTt^TeITt, for T/Te small or about 
unity from the no-U analysis,2 yielding Tt(eff) ~ Te x 
•yJ2kTe / mJJ2 ~ 0.2 Te. One can now see from Figs.5 and 6a, 
that a probe with e&P ~ 3000 kTe and R < Rmax (T/Te ~ 1, 
U = 0) ~ XDe, has R well below R^^ for all three values T/Te 

-0 .2 , 1, and 30; this suggests the probe should collect current 
close to the OML value in Eq.(l). 
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