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Abstract 

We have analyzed a phenomenon heretofore ig-
nored in the analyses of ion traps, which are used 
to determine ion temperature, among other plasma 
parameters, in planetary ionospheres: ions that are 
rejected by the trap perturb the plasma well ahead 
of the Debye sheath at the front of the trap.The de-
termination of the perturbed plasma flow is found to 
depend on the fact that the ionospheric plasma be 
stable to quasineutral, ion-acoustic perturbations. 
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In hypersonic plasma flows past ion-rejecting bod-
ies, the disturbances are not conñned to thin Debye 
sheaths. Ions missing from the wake behind the body 
are those perturbing the plasma far ahead. This phe­
nomenon was noticed in both experiments and nu-
merical calculations [ [1]], and may affect positively 
biased satellites (such as the one used by the TSS-1R 
tether to collect electrons), as well as ion traps [ [2]]. 

Ion traps are ionospheric probes [ [3]] used on board 
satellites, rockets, the Shuttle and in other planetary 
ionospheres [ [4]]. A trap is a multigrid electrostatic 
probé (Fig.l): 

• The entrance grid E in the spacecraft wall is 
at potential VE < 0 relative to the undisturbed 
plasma. It repels incoming electrons. 

• The retarding grid P, biased at potential Vp > 
0, rejects some incoming ions. 

• The collector C at the back collects ions that 
get past P. 

• The suppressor grid(s) G is highly negative and 
turns back energetic electrons. It inhibits photo 
and secondary emission from C. 

The ion current I reaching C is registered as a func-
tion of Vp. This allows determining plasma density, 
ion drifts and composition and ion temperature T¿ (a 
quantity important for establishing the energy budget 
of the upper atmosphere) [ [5]]. 

The ordering of characteristic lengths in the Earth's 
ionosphere simpliñes the analysis of traps. We have 
mean free path > > ion thermal gyroradius ~ satel-
lite size > > trap width (~ 10 cm). Debye length 
\o and distance between grids E — P (~ 1 cm) are 
smaller than trap width. Also, the ion thermal ve-
locity is smaller than the spacecraft speed U. This 
allowed Whipple to use an onedimensional approach 
to derive a relation KVp) for ñtting trap data [ [6]]. 

Discrepancies between results from traps and other 
instruments led to reexamining Whipple's (ideal) trap 
law. It was found that several effects (nonplanar 
sheaths, ñnite trap width, space charge inside the 
trap, energy-dependent grid transparencies, nonuni-
formity of potential in grid planes) may invalídate 
Whipple's law [ [7]]. This led to a better trap design. 
Here we ñnd, however, that traps, even if ideal, dis-
turb the plasma beyond the sheath; this affects incom­
ing ions, and the valué of the current [ [2]]. The effect 
clearly vanishes with the grid-.E transparency UE • We 



shall take aE formally small; tipically aE ~ 1, yet the 
effect of rejected ions proves to be moderately small. 

Let the spacecraft wall be the plane x = 0 (Fig.l), 
plasma filling the half-space x < 0. The grid E is 
a circle of radius R centered at y = z = 0. For 
simplicity, we take VE equal to the spacecraft po­
tential. The potential V(f) and the ion distribution 
function f(f, v) obey steady Poisson and Vlasov equa­
tions, with the electrons following Boltzmann's law 
(e\VE\ » kBTe » meU

2), 

V2V = 47re Noo exp 
eV 

knTP, 
fdv 

v-Vf-—VV-^f=0. 
nii ov 

We partition / in the form 

f = f+ + f-, f+(vx<0)=0, f-(vx>0) = 0. 

The boundary conditions for V, / + and / _ are: 

.oo, v ^ O , f+^f^v) (1) 

a t x = 0, V = VE, f- = H(R-r±)g(f±,v), 
(2) 

where foo(v) is a Maxwellian distribution drifting at 
velocity U , H is Heavyside's step function (there are 
no ions leaving the satellite wall) and for the function 
g we have, for vx < 0, the following expression: 

g = a%H[ \2e^—— - \vx\) x 

x f+(x = 0,r_i,v_i, \vx\) 

(Ions arriving at E with vx < y/2e(Vp — VE)/™,^ 

emerge from E at the point of entry with equal v± and 
opposite vx). The Mach number M = ^rriiU2/ksTi 
is moderately large; here we neglect terms of order 
M~2 . Also, we take the ram angle 6 < 0(1/M), typ­
ically leading to 6 < 20°. 

Whipple's law corresponds to the limit aE —> 0. 
Write 

V = V0 + alVi / ± = / O ± + « B / I ± + 

The lowest order problem is then onedimensional. 
Since VE is negative we have f^ = 0, 

d2V0 

dx2 = 4"7re 

7 ) „ -

[NooeXP{kBTe)-. 

df+ e dV0 df+ 

ff+dv 

- 0 . 
OX dx di 

The boundary conditions (1) readily determine /g~ 
and Vo. As x/Xp, —> —oo, we have /g~ —> /oo and 
VO/VE -^ 0. (We have / foo(vx > 0) dv = 1, within 
terms of order exp(—M2/2)). 

The particle flux along x is conserved. The lowest 
order current IQ is due to ions with velocity vx < 
•s/2eVp/mi outside the sheath, 

In = UAEC I dv 

= aAEeN0U 

l^2eVP/r 

' 1 - erfA 

_Vxfoo(v)dvx 

2 e~ 
(3) 

7T 2M 

This is Whipple's formula (when using cos6> « 1, to 
order M~2) , where a = aE x ap x aa is the overall 
trap transparency (Fig.l) and 

A 
eVP \ 1 /2 M 

~V2 kp,Ti 
(4) 

As Vp increases, the parenthesis in (3) goes down 
from unity to zero, the decrease being centered around 
A = 0. 

Terms of order aE lead now to a correction to 
Whipple's formula. Inside the sheath, the equation 
for / f is 

Vx± + v± . JL) f- e dVo dK = Q 
dx df i / rrii dx dvr 

To solve it, we ignore the second term (smaller than 
the first one by a factor Xp./MR), and use boundary 
conditions (2) with /g~ in g. In the limit x/Xp> —> —oo 
we find 

fr(x/\D^-oo)=H(R-r±) 

x H I ^ 2 e ^ -\vx\j fM(~Ux, U±) (5) 

where JM(—UX, U±) is a Maxwellian distribution drift­
ing at velocity —Ux, U±. 



Outside the sheath, thermal motion spreads dis­
turbances over distances \x\ ~ MR. The equation for 
/•f is now 

8 + - d \f-
VxT- +VJ_ • -J— jX 

ox or\ ' 

0 

Taking the Fourier transform with respect to r± we 
readily obtain 

/ f ( x , k±) = / f exp(-ik± • f±)df± = 

= A (0) exp I - i — — - x 

Here / t (0) is the Fourier transform of f1 (X/XD —> 

—oo) as given by (5) above. Integrating /-f over v 
and Fourier inverting with respect to k± gives N^ . 
At x = 0, for instance, we find 

Ni = ijVooCl + erfA) H(R - r±) 

Also, for —x » MR and z = 0, we find 

wr 
A ^ 

2 
l ^ e r f A i 

2 + ^AT 

{MR 
x ( — ] exp 2 

Outside the sheath f^~ obeys (for vx > 0) the equa­
tion 

vx-r- + v±_ • —— I / f 
o i or\ ' 

e / a ^ i 5 
TOJ V <9x dvx 

dVi d 
df dv u 

(here /Q~ is just /oo)- Fourier transforming with re­
spect to fj_ and using boundary conditions (2) yields 

/•j*" in terms of V\. Finally, quasineutrality makes the 
Fourier transformed Poisson equation read 

0 = Nn 
eVi 

' kBTR 
f+ dv - N{ 

the same function Nt (x < 0). Fourier transforming 
with respect to x: 

z poo ^ 

fi(kx,k±)= / ft{x, k±) exp(-ikxx)dx 

and then inverting f^ with respect to kx, we find 

Na 
eV\{x, k±) 

knTi 

1 exp(ikxx) 

2^ fJ + L(C) 
N1 {kx,k±_)dkx 

where 8 = —?-, C = —, and 

Ni = N± (x,k±) exp(—ikxx) dx 

L(() = / 2aexp(-a) exp(2i(a) da 
Jo 

1 dZ(C) 

"2 dC 

where Z(Q is the plasma dispersion function. 

The solution for V\{x, k±) will be unique for x < 0, 

if unaffected by N^(x > 0), that is, if the condition 

1 exp[—ikx(x' — x)] 

2^ JTW) 
dkx = 0 x' — x > 0 

is satisfied. This is indeed the case because the equa­
tion 8 + L(C) = 0 has no roots in the Im£ > 0 
half-plane; this is a consequence of quasineutral, ion-
acoustic waves being stable, in the Vlasov sense, in 
the case of a Maxwellian distribution. 

To determine the current to order aE, I = IQ + 
a2

EI\, note that ions entering the sheath within the 
cylinder r± < R, reach the retarding grid P if 

vx > 
l2e[VP - uEVx{xlMR - • 0)] 

Vi(x,k±) is now given by a linear integral equation 
defined in the half-space x < 0, singular and with 
a difference kernel (as in the Wiener-Hopf problem). 
Our equation, however, is of Volterra type. In order 
to solve it we consider an extended problem: to find 
Vi(x,k±) for —oo < x < oo, taking for N^(x > 0) 
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I\ = ae / dr± / dv_ 
JAE J Jy/2eVp/mi 

/•0 

dvT x 

/ dkl- I-T - \ f J i I -kl- 'Vl . , x / —TT expu/cj_ • r±) / ax exp i x | x 
4?H J_OC V vx 

x - * £ > i t ± . ( » - _ » ] , „ 
m,- V civ v„ avr, 

Seven of the nine integrals involved can be carried 
out within terms of order M~2 . Using polar coordi­
nates k±, 4> for k±, we finally arrive at 

I\ = -aAseNooU c\ 

where 

1 - erf2 A 

C2 _A2 1 + erf A C3 _A2 1—erf AN 
2 MC 2 i M 

r2« d(f) fov d(» (C+V2Mesin^ 
CJ((3,M6)=I -—I s , . — — x hi 

with 

hi 

ho = 

o 27ry_00 v
/2^(/3 + i(C)) 

£(0 
V2 
[l_(l_2C2-v

/2CM^sin</>)L(C)] 

Fig. 4 

The ion flux through the lateral surface of that 
cylinder, within the sheath, would lead to corrections 
of order Xp/MR. We then obtain 

L(C)[1 - 2(C + V2M9sin</>)(£ + {l/y/2)M0sin</>)] 

Figures 2-4 give Cj versus M<? for several values of (3. 
We directly compare IQ to IQ + O^II, both normalized 



to aAseNooU, in Fig.5, for a% = 0.8, M = 6, j3 = 0.5, 
and two values of MO. An approximate comparison 
between our result and Whipple's results is obtained 
by using a simple feature of the relation I(Vp), the 
extremum of dl/dVp. We find 

Ti(corrected) « T; (Whipple) x (1 - 2a%C2~C3) . 

Differences between Tj(corrected) and Tj (Whipple) 
typically reach 10 — 20% for a2

E ~ 1. 
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