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Abstract 
An asymptotic analysis of electron collection at high bias Op serves to determine 

the domain of validity of the OML regime of cylindrical Langmuir probes, which is basic 
for the workings of conductive bare tethers. The breakdown of the regime is found to 
occur far from the probe, at energies comparable to the ion temperature Tt. The radius of a 
wire collecting OML current in an unmagnetized plasma at rest cannot exceed a value, 
Rmax, that increases with Tt, and exhibits a minimum as a function of Q>p; at Op values of 
interest Rmax is already increasing and is larger than the Debye length XDe. It is also found 
that 1) the maximum width of a thin tape is 4Rmax; 2) the electron thermal gyroradius 
must be large compared with both R and XDe for magnetic effects to be negligible ; and 3) 
an ion ram energy large compared with kTt but small compared with eOp would have a 
complex but weak effect on Rmax. 

1. Introduction 

Each point of an electrodynamic bare tether collects current as if it were part of a 
cylinder uniformly polarized at the local tether bias (9). This is because of the enormous 
disparity between tether thickness and collecting length, which lie in the millimeter and 
kilometer ranges respectively. Bare tether applications rest on the assumption that 
electron collection occurs in the (optimal) orbital-motion-limited regime of cylindrical 
probes. It is thus important to determine the parametric domain of orbital-motion-limited 
(OML) validity. 

Since OML current is proportional to the perimeter of the cross section, a large 
tether current may require a large perimeter. If the crosswise dimension is too large, 
however, the current will not reach the OML value because of electrical screening effects 
related to a short plasma Debye length XDe. Here we determine the maximum radius of a 
cylinder collecting OML current in an unmagnetized plasma at rest, and how it depends 
on the ion temperatue T{ and the bias Op. Values of the ratio e<3?p/kTe of interest for 
tethers (Te -0.15 eV, Op ~ 400V) are 102 times larger than values previously explored 
numerically. We also consider the maximum width of a thin tape. 

Again, if the crosswise dimension is too large, the current will not reach the OML 
value because of magnetic guiding effects due to a short thermal electron gyroradius le. 
We consider how large has le to be for magnetic effects to be negligible. Finally, we also 
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study the effects of an ion ram energy large compared with thermal energies but small 
compared with eOp. 

2. Circular cylinder at rest in an unmagnetized plasma 

The electron current 7 to a sufficiently long cylinder in a Maxwellian plasma of 
density Nm and temperatures Te and Tt, may be written in dimensionless form as 

I , R e®P T. 
— = function of -— , ——,— . (1) 
h he k?e ?e 

Here, Ith is the thermal or random current 

1 8kT 
Ith=2KRLx-—^eN„ (2) 

where R and L are probe radius and length, and XDe is ^kT/4ne2NK. In general, the 
determination of electron trajectories to obtain the current requires solving Poisson's 
equation for the potential O(r), 

X Di d d 
-y 

fe^ 

.kT, V «--£,- J 
&Di = XDe-lT/Te) (3) 

r dr dr 

with boundary conditions 

O = Op > 0 at r = R, O-^-O as r^-oo. (4) 

Both the electric field -V® and the probe acting as a sink of particles affect the 
densities Ne and Ni3 and thus <t>(r) itself. The basic problem in probe theory usually lies 
in the attracted-particle density Ne. Actually, for the very large e<bj/kTe values of interest, 
the repelled-particle density Nt is accurately given by the simple Boltzmann law, 

ll; Nt^Nxexp{-e^/kT), (5) 

except near the probe where, anyway, Nt is exponentially small (as the ion current itself). 
Because of Eq.(5), it proves convenient to normalize potential and radius with the ion 
parameters, 7} and XDi, although final results may be given in terms of Te and XDe. 

For the highly symmetrical case of this section, the axial velocity vz (Fig.l) and 
the transverse angular momentum and energy, 

J = ™ervQ , 
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Es!fV'+2^~e0(rh (vr«>,vr>0) (6) 

are conserved along electron orbits. The density Ne at each radius r may then be 
expressed as an integral of the undisturbed Maxwellian distribution function over 
appropriate ranges of those 3 constants of the motion (1). After a trivial vz integration one 
has 

me ^y(-E I kTe)dEdJ 

where we defined 

Jr\E) = 2m/[E + e(D(r)] . (8) 

The ^-integral, which only covers positive values (all electrons start at infinity), must be 
carried out once for vr < 0 (incoming electrons) and again for vr > 0 (electrons that have 
turned outwards at a radius between r and R); the /-integral can be made to cover just 
positive values by writing dJ -» 2dJ. The E-J domain of integration in Eq.(7) is r-
dependent because of both the electric field and the sink effect of the probe: 

i) For an incoming electron of energy E > 0 to actually reach r, vr? must have 
been positive throughout the entire range r < r' < oo . Using (8) in Eq.(6) for E, 

m, 
2 ,2. 'r\? =Jr\E) -f, 

the /-range of integration at that energy will clearly be 

0 < J < J*(E) = minimum {Jr(E);r<r'<oo}; (9) 

in general, the minimum occurs at a different r' for a different energy E. If Jr (E) differs 
from Jr(E), those electrons in the range J*(E) < J < Jr(E), for which vr

2 would be 
positive, never actually reach r and are thus excluded from the integral in (7); we say that 
there is an effective potential barrier for r, at energy E. 

ii) For an is-electron outgoing at r the /-range of integration will be 

JR\E)<J<J*{E), 

electrons with J<JR (E) having disappeared in the probe. 

Equation (7) may now be written as 

N =N„ 
\dE Qxp(-E/kTe) 

0kTe n 

. ., Jl(E) . ml fR(E) 2sm 7^-smlM. (10) 
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half the first term in the bracket being the vr < 0 contribution. The current itself can be 
easily found to be 

e "tdE E . 
(ii) 

We note at this point that, through its dependence on J*(E) [and JR (£)], the density Ne 

is a functional of <D(r) and thus cannot be known [for use in solving Eq.(3) for <J>(r)] 
before the potential itself is found; this results in a complex, iterative numerical solution 
of Poisson's equation (3). A hypothetical potential with no barriers at all [J*(E) = Jr(E) 
for R < r < co , 0 < E < oo] would simplify Ne in (10) to a function of both r and the local 
value <3>(r), 

N=N 
1 "f dE exp(-E I kTe) l \R2(E + eOp) 
1-J—— sin 1 —r? r 

0kTe n \r2{E + eO(r)) 

(12) 

and would allow a ready solution of Eq.(3), but has no real interest. 

The case of interest here is that corresponding to the maximum possible current in 
Eq.(ll). Since we have JR (E) < JR(E), from the definition of Jr (E) in (9), current is 
maximum under condition JR (E) = JR{E), for 0 < E < oo (no potential barrier for just 
radius R). This is the orbital-motion-limited (OML) current, 

e x[dE 
Inu, = 2LN„ — J — exp lOML me I kZ 

E_ 

V kZ 
^2meR

2(E + eOp) 

-> IRLNve^letbp/me, for eOp»kTe (13) 

With the current known, there would now be no need for solving Eq.(3), except for the 
very purpose of the present work: determining the parametric domain for the OML 
regime to hold. For e<t>p » kTe, this problem comes out to be reasonably simple. 

The OML condition, JR (E) = JR(E) for 0 < E < oo, which does reduce the second 
term in the bracket of (10) to a function of both r and the local value <D(r), is readily 
shown to be equivalent to condition 

r2®(r)>R2% (R < r < oo ) (14) 

on the potential. Condition (14) can be conveniently illustrated by displaying T = e®/kTt 
,2,2 

versus WpR /r for potential profiles (Fig.2); (14) shows that the profile for R = R„ 
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(maximum radius for the OML regime to hold, with other parameters fixed) would just 
touch the diagonal in the figure, as in the case of profile c. Profiles a and b would lie in 
the OML regime, whereas (/would not. 

Next, note that the extreme condition J*(E) = Jr(E) for R < r < oo , 0 < E < oo, 
which led to Eq.(12), would require the potential to satisfy the condition 

d(r20)/dr > 0, (R < r < oo) (15) 

which is, of course, more restrictive than (14). In Fig.2 only the hypothetical profile a 
satisfies (15). Note, however, that if d{r2Q>)ldr is positive just beyond some radius r0 , 
then we do have 

Jr*(E)=Jr(E) for r0<r<oo, 0<£<oo (16) 

and EqilO-) reduces to (12) for r > ry.: cases b-d present this property (0 is the profile 
point where the tangent goes through the origin). 

Figure 3 shows again the qualitative profile c of Fig.2, which we find corresponds 
to the actual profile for R - Rmax at large Wp = eQ/kTi; this may be taken as an ansatz 
that is used in solving Poisson's equation and verified at the end. Below, we sketch our 
asymptotic analysis of Eq.(3) for x¥p»l, following closely a classical study (5), which 
assumed, however, a monoenergetic attracted-particle distribution function, and was 
developed for the non-OML, small XD/R, regime : 

i) Both the quasineutral approximation, Ne « N{ , and the no barrier condition, 
J*(E) = Jr(E), hold below point 0. Use of Eqs.(5) and (12) determines point 0 exactly. 

ii) The quasineutral approximation remains valid up to a point 1 where dO /dr -> 
oo . This property of point 1, and the proximity of values r0 and rh make possible to get 
an accurate approximation to the potential barrier (and the density Ne) for points in the 
vicinity of 1, which can then be determined. The same barrier applies to points above 1, 
i.e., for r<rj we have Jr (E) = Jrj (E) = minimum [Jr{E), r1 <r' < r0,0 < £ < oo]. 

iii) Above point 1 there are two thin, non-quasineutral layers that take the solution 
to a radius r2 a bit closer to the probe, and to values $ satisfying O; « <E>« <3>p. 

iv) Finally, a solution to Poisson's equation (with N{ negligible) that matches the 
inner thin layer at $2

 an<i satisfies condition 0 = Op atr = i?, yields a relation between 
parameters, i.e. determines Rmax. 

Note that both m0 and x¥1 are of order unity whereas ^ is very large (~103,104). 
Hence, if Fig. 3 were drawn on scale, the near-vertical potential drop in the two thin 
layers, down to point 1, would occur very close to the ^-axis, and point 0 would lie very 
close to the origin. With eO0 , eO; ~ kTt, the ion temperature should critically affect 
OML validity. 
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Note also that the high probe bias Q¥p » 1 ) makes space-charge effects negligible 
within some neighborhood of the probe (even if R is not small compared with Debye 
lengths). Within that neighborhood, and ignoring Ne - N( in Eq.(3), &(r) behaves as a 
(logarithmic) solution to the 2D Laplace-equation, 

<D = %[l-a In (r/R)], (17) 

a being a moderately small constant (of order l/lnTp). 

Figure 4 shows i?m(U/A,De versus eOp/kTe for the ionospheric case, T/Te& 1 ; 
Rmax goes through a minimum as the bias Q>p increases and, at high enough Op, exceeds 
A.De. Numerical results for the range e$>p / kTt < 25 had shown Rmax decreasing 
monotonically with the bias (3). Figure 5 shows that Rmax does increase sensibly with Tt. 

3. Thin tape at rest in an unmagnetized plasma 

In the OML regime, the current to a cylindrical probe is independent of the shape 
of the cross section; it just depends on its perimeter (4). The limits of OML validity, 
however, must be determined anew for every cross section. Since angular momentum J is 
not conserved here, there is no close-form expression such as (10) for Ne. Nonetheless, we 
find that the high bias condition Q¥p » 1 ) makes possible to approximately reduce this 
problem to the case of the circular cylinder. 

We use here elliptical coordinates v and w (see Fig.6, where we set a — 1), 

x = a cos v cosh w, y = asinv sink w, 
(0<v<2n , 0<w<°o), 

Poisson's equation then reading 

^Di 

a2(sinh2w + sin2v) 
+ 

\dw dv 2 
J 

EL -exp(-T). (18) 

The ellipses w(x,y) - constant approach circles as w increases; at large radial distances 
one has 

r x2 — v2 a2 

w=ln-+ln2- £—r+... (19) 
a 4r r 

We may reasonably use the approximation w = \n(2r/a) for w > w* , with w* = 1.25 or 
1.5, say. Note also that the limit ellipse w = 0 is the segment y = 0, -a <x< a, which 
may represent the cross section of a tape of width 2a and negligible thickness. 
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As in the previous section, the space-charge may be ignored in some 
neighborhood of the probe, which, for Tp large enough, extends into the region where w-
ellipses are near-circles, that is, beyond w = w*. We may then argue that the potential W 
will be nearly independent of v everywhere, i.e. ^(w, v) *T(w) (and the electric field at w 
>w* will be radial) in the following way : 

i) The electron density for w > w* would then be a function of just w, Ne = Ne(w). 
This is because, at a point in that region, incoming electrons, and outgoing electrons that 
did not reach values w < w*, find a radial field throughout their motion and conserve the 
angular momentum / ; their contribution to Ne will be a function of r, and thus, of w. 
Those outgoing electrons that had reached values w < w* and missed the probe, have J 
changed by a quantity tJ that is small (AJ ~ JAn^p) as a result of the shallow 
(logarithmic) character of the potential in the vicinity of the probe, where the field is not 
radial; their contribution to Ne will be weakly dependent on v. On the whole we would 
have Ne« Ne(w). 

ii) Poisson's equation reads 

forw <w*, and 

. d 
c 

\ 2 

a2 sinh2w 

)2w + 5 2 v ~ 

v92w 82vy 

(20a) 

(20b) 

for w > w*, with some overlapping range of validity. In neither (20a) nor (20b) does v 
show up explicitly. 

iii) Finally, boundary conditions refer to just w, 

x¥ = x¥p at w = 0, *F -» 0 as w -> oo. 

With *F = ̂ (w), and w = ln(2r/a) for w > w*, we now have : 
1) Equation (20a) and the probe boundary condition yield 

¥ = YJ1-Pw] 

^-1F=XF„ 1-p In 
all 

for w > w*. 

(21) 

(22) 

2) Equation (20b) for w > w* recovers (3), whose solution, as in Fig.3 of section 
2, will show an outer quasineutral region, thin layers, and a broad, ion-free, inner region. 
This solution, rather than satisfying the boundary condition at the probe, must match 
smoothly the behavior given in (22), within the overlapping range of validity. Comparing 
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Eqs.(17) and (22) shows that, beyond w*, the solution behaves as in the case of a circular 
cylinder with an effective radius R = a/2 (the coefficients P and a being equal). 

This suggests that, with all other parameters given, the maximum width of a thin 
tape in the OML regime relates quite simply to the maximum radius of a circular 
cylinder, 

2amax = 4Rmax. (23) 

- Note that, since OML current is proportional to the perimeter, use of a tape would only 
increase the maximum current by a factor 4/71, or 27 %. A tape might be actually 
preferable for other reasons: a cylinder with Rmax might be too heavy and rigid (7); a tape 
may lead to a shorter tether (2). The main interest of the result is then that the maximum 
half-width of a tape is twice Rmgx as given in Figs. 4 and 5. 

One must still take into account the fact that the Laplace potential (21), for the 
region w <w*, is quite different from the potential (17). It then comes out that a tape, 
contrary to a circular cylinder, never collects the full OML current, although this has no 
practical consequences. There are potential barriers in the vicinity of any flat collecting 
surface, the effects being weak, however, in the case of a shallow 2D Laplace potential 
(4). Using (21) we find that potential barriers around the tape lie in a thin region of 
thickness ~ a/WVp, and that current reduction below the OML value is of order 
(l/ln1?^)2, or about 1 %. Equation (23) should then properly read that current to a tape 
keeps very close to the OML value for a < 2Rmax. 

4. Circular cylinder at rest in a magnetized plasma 

As in the previous section, there is no closed-form expression for Ne in the 
presence of an uniform magnetic field B, which allows for only two constants of the 
motion, energy and canonical angular momentum. Overall use of these two constants 
leads to the Parker-Murphy current law, which takes the character of an upper bound at 
the high bias of interest (6). For eOp » kTe and cylindrical geometry one has 

,v IPM*IOMJn/2xl/R, (24) 

where le is the electron thermal gyroradius 

le = vth/Qe oc 1/B {vth^<kTJme, Qe = eB/me). 

Equation (24) suggests that if Me is small, IOML then lying well below the IPM bound, the 
OML current will hardly be affected by magnetic effects. 

To get more definite results, we consider the exact equations for electron motion 
in the presence of the electric field due to probe and plasma, -V<D(x, v) [probe and z axes 
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coincide], and an uniform magnetic field B perpendicular to the probe, say along the y-
axis: 

dt2 +Q, l-/ .2 
d2feO^ 
8x2 \kT, IV. = v f l v J > dxdy KkT, 

(25a) 

dv„ 
• = v; dt th d y \KJ 

(25b) 

d2v. 

dt2 -+ne\=-vth
2a- ykT, 

(25c) 

Equations (25a and c) were obtained by deriving the respective equations of motion and 
using the derivative along the electron orbit (10), 

dEr dEr 

dt dx 
8EX 

v +—-v 
* dy y 

The last two terms of (25c) would give the usual E/B drift; the first two terms represent 
gyromotion. The important equation is (25a), which should describe the approach to the 
probe across field lines. 

The left-hand side of (25a) would again represent gyromotion if the second term 
in the bracket were small, that is for B large enough (le small enough). Assuming, on the 
contrary, that le is sufficiently large, we neglect the first (gyromotion) term and use the B 
= 0 solution of section 2 to determine how small must be the magnetic field for the 
second term in the bracket to be indeed large. In the broad region between probe and thin 
layers of Fig.3, the resulting condition is, basically, that the R/le ratio of the Parker-
Murphy law (24) be small; in particular, near the probe, where both Eq.(17) and the 
approximation 

d%_ 

dr2 ! r dr 

hold, the left-hand-side of Eq.(25a) takes the simple form 

d2yx ^ 2 —+ Q 
dt2 e 

1 — 
R2 

R2 x2-y2 

\r2 r2 -a kZ 

with the first 3 factors in the parenthesis moderately small, and the last factor large. In the 
quasineutral region of Fig.3, the second term in the bracket is never large for Tt « Te, but 

413 



the electrons are then hardly affected by the potential before they reach r0 (e<E>0 « 0.194 
kTe). Finally, in the two thin layers, where we have Ne-Nt~ Nx and 

d2® -1 d® 
-JT«—T> dr r dr 

the left-hand-side becomes 

This means that for 5-effects to be negligible, both R/le and ^ D / / / / must be small. 

At the relatively high densities of the F-layer, 'kD
2/l2 oc B2/Nx is indeed small 

(about 10"2 and 10"1 for Nx ~ 1012 and 10n m"3, respectively), but it reaches above unity at 
extreme altitudes. Experiments on board an elliptical-orbit satellite (8) and a rocket (11) 
did show a current dependent on the angle between B and a cylindrical probe (5-effects) 
when Nm dropped low enough, at very low and high altitudes. In all cases probe bias was 
only moderately high. 

5. Circular cylinder moving through an unmagnetized plasma 

The case of interest is that of a large ion ram energy, 

]A mtU
2 » kTb 

where C/is the plasma velocity past the probe; for a tether orbiting in the F layer (oxygen 
ions, orbiting velocity) we have indeed 'A m^U2 « 4.5 eV » kTt ~ 0.15 eV. The 
unperturbed ion distribution function is now non isotropic and the electric field non 
radial, but the OML current law, which is independent of both ion distribution and cross 
section shape, is still valid. The high-bias limit law (13) is particularly robust: it is also 
independent of the unperturbed electron distribution function as long as it is isotropic, 
which is the case here (^ meV « kTe). 

The ion ram energy could affect, however, the domain of validity of the OML 
law. For the case of interest, 'A mtlf « eOp, ions would be kept far away from the 
probe for all directions, with an (angle dependent) potential structure similar to that 
shown in Fig.3. For all other parameters fixed, the distance r7 (or r2) in Fig.3 is directly 
related to the characteristic ion energy. In a plasma with Tt - Te, a crude model suggests 
the distances would correspond to an effective ion temperature kTfejf) = 'A m^f on the 
windward side, and Tt{eff) = fe on the lateral sides; when particularised for a small ratio 
T/Te , the analysis sketched in section 2 would roughly give T^eff) ~ Te x AkTJ^'A m-ff) 
for the lee side. Since Rmax increases with T/Te (Fig.5), a wire with R = Rmax(U = 0, 

d \ 
dt2 • + Q.I 1 — 

I2 x2 N-N: 

K>„ N„ 
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T/Te = 1) would collect current in agreement with the OML law at the lateral sides and at 
the front, and below the OML level at the lee side; a preliminary analysis of how the 
current lags behind the OML value as R increases beyond Rmax shows, however, that 
I/IOML

 k e e P s c l o s e r t 0 ! t h e l o w e r m e ratio T/Te. A wire with R = Rmax(U = 0, T/Te = 1) 
should then collect current very close to the law (13). 

We note finally that conditions in laboratory plasmas may substantially differ 
from those applying in the tether case. The ratio T/Te is usually small and, as a 
consequence of Fig. 5, cylindrical probes will collect current below the OML value unless 
R is well below XDe. Also, in flowing laboratory plasmas the ion ram energy may be 
comparable to the bias applied at the probe, 'A m^U2 ~ e<bp ; again, unless R is much less 
than XDe, the potential would be non monotonic, with an overshoot at the front and a 
trough on the lee side, and the prediction of current would be difficult. 

6. Conclusions 

Bare tether applications are based on the assumption that the tether collects 
electrons in the OML regime of cylindrical Langmuir probes. The definite and simple 
OML current law, which allows for detailed design considerations, has opened the way to 
a technology of electrodynamic tethers (2). Here, we have determined the domain of 
OML validity in parameter space; we studied the surface bounding that domain as a 
relation among the dimensionless numbers 

R/XDe> eOp/kTe, T/T& VimffM^ and XDe/le, 

for the very large e®p/kTe values of interest. (The mass ratio m/m,- enters through the 
irrelevant numbers 'Am. lf/kTe and XD(/l,) 

We found that the ratio XDJle (actually, XD
2/l2) must be small for magnetic 

effects -which would break the OML law otherwise- to be ignorable. This ratio is a 
property of the plasma rather than a free design parameter. In the Earth's ionosphere 
XD

2/l2 is small for JV«, clearly above 1010 m"3; this breaks down at low, and sufficiently 
high, altitudes. 

For XDpl2 small, and first taking 'Amtlf/kTi ~ 0 , we determined the maximum 
radius for the OML regime to hold, giving 

RmaJXDe versus e^j/kTg, and T/Te. 

Rmax exibits a minimum as a function of Op but, at the bias of interest, is slowly 
increasing, and above XDe in the ionospheric case (T/Te ~ 1). For XD

2/l2 small and R ~ 
XDe, we have R2/l2 small too, a second condition we found required for magnetic effects 
to be weak. We also found RmiJXDe increasing with T/Te, 
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We finally found that if 

YMilf/kTi x T/Te x kTJe% = V2miU
2/e% 

is small, as in the tether case, the ion ram energy 'AntiU2 will only affect the potential 
structure far away from the probe. This structure reaches a distance that depends on the 
ion characteristic energy, the ram energy making that distance angle-dependent. Both the 
increase of Rmax with T/Te (for vanishing U), and the fact that, at low T/Te. the current 
hardly lags behind the OML value as R exceeds Rmax, indicate that a wire with R < 
Rmax(U - 0, T/Te = 1) would collect current very close to the OML value. 

If a thin tape is used instead of a wire (with all others parameters equal), the 
maximum valid width is found to be ARmnr. 
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