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The Alfven wave signature left far behind in the ionosphere by tethers operating as thrusters or 
generators is analyzed. A recent description of tether radiation is used to determine the far-field in the 
ionosphere. It is shown that the Alfv6n wings have an Airy function crosswise structure (a feature com­
mon to other wavefronts and now identified in published numerical results on Alfv6n waves), with the 
field amplitude weakly decaying as the inverse cubic root of distance along the fronts. This corrects and 
completes a previous far-field analysis, which holds behind the wings. 

In the standard picture of a tethered satellite system that has a steady electrical current flowing 
through it by means of continual charge exchange with the ambient plasma, "circuit closure" is accom­
plished by charge-carrying electromagnetic waves excited in the ionosphere by the passage of the sys­
tem. The dual constraints of steady-state operation (Doppler condition) and satisfaction of the plasma 
wave dispersion relation are quite stringent and, as demonstrated by Barnett and Olbert1, greatly restrict 
the types and frequency ranges of waves available for circuit closure. We note in particular that whistler 
waves, which have been observed in plasma chamber experiments meant to model the operation of a 
tethered system2, do not satisfy the criteria for propagating waves from a constant-current tether orbiting 
the Earth3. 

Among the propagating waves that can be excited by a constant-current tether are those lying on 
the Alfven branch with frequencies below the ion cyclotron frequency. Alfv6n wave packets associated 
with the motion of a large conductor moving through a magnetoplasma and which serve to carry current 
in the ionospheric transmission line, completing the electrical circuit that includes the moving conduc­
tor, were first described theoretically by Drell et at4 in 1965. Since then a number of authors1,3,5"8 have 
considered the so-called "Alfven wings" with particular application to tethers in space. 

Ground-based measurements of electromagnetic signals associated with tether-induced ionospheric 
waves have been attempted during the PMG experiment and will be attempted during TSS-1R. The use 
of properly equipped satellites already in orbit to measure waves from TSS-1R in the ionosphere is a 
possibility being actively pursued at present. It is thus desirable to have a good theoretical representation 
of the plasma waves associated with the tether hundreds of kilometers from the system to guide the 
planning of data collection and analysis, which could in turn help validate the theory. 

The present work is a step in that direction. We obtain far-field values of the Alfven wing field 
components and the general shape of these wing structures. Rasmussen et al.6 have also derived asymp­
totic approximations to part of the tether Alfv6n waves, and we compare our results to theirs below. 
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We consider a tethered satellite system orbiting in a magnetized plasma and consisting of a con­
ducting tether with terminating contactors, where we use the term generically to include metallic sur­
faces in electrical contact with the tether and exposed to the ambient plasma as well as plasma devices 
such as hollow cathodes which define the regions of charge exchange between the tethered system and 

the ionosphere. 
Our'calculations use cold-

plasma theory and assume an in­
finite, uniform ionosphere and a 
constant background magnetic 
field. Motion of the system is 
taken to be linear with a constant 
speed. The geomagnetic field is 
perpendicular to the system's ve­
locity vector, but it is allowed to 
tilt at an arbitrary angle with re­
spect to the horizontal. (See Fig-
urel). The tether is vertical. 

Results apply equally to a 
system operating in the thruster or 
generator mode. We are not study­
ing transient effects that may oc­
cur when the tether is first "turned 
on", e.g., when current flow is ac­
tivated by closing a switch; rather 
we assume that a steady state has 

been reached in which a constant current is flowing in the tether with charge-exchange taking place 
between the system and the ionosphere through the terminating contactors. This implies that the plasma 
has adjusted to the presence of the tethered system so that, in the rest frame of the tether, currents and 
fields measured in the system or the plasma are constant in time at any point fixed relative to the origin 
of the tether co-ordinate system. 

Thus in the tether rest frame an observer sees a steady "structure" of fields and currents extending 
indefinitely into the plasma. The situation is rather like an idealized version of the bow wave of a boat, 
which appears unvarying when viewed from the boat. From the standpoint of the plasma things seem far 
more dynamic. As the tether approaches, plasma upstream from the system begins to feel the effects of 
the tethered system's perturbation in the form of the fields and currents induced in the plasma closer to 
the system. At a given point in the plasma rest frame, the fields and currents will vary (markedly for a 
point near the track of one of the terminating contactors) as the system passes by. 

As we are interested in the Alfv6n wings, we restrict consideration to frequencies below the ion 
cyclotron frequency Q, and follow the method introduced in reference 3, which expresses the electro­
static potential for propagating waves in this frequency range as 

Orbital velocity V 
along x' 

Geomagnetic field 
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Figure 1—Co-ordinate systems used in the analysis 

(1) 

where r = (x - Vt, y7 z) with V being the tether velocity. The time-dependence is contained in the expo­
nential, and it should be understood that co = kxV, this equality being the mathematical expression of the 
steady-state condition. 



Electric field components perpendicular to the geomagnetic field are the corresponding deriva­
tives of the potential. Magnetic field components follow directly from the electric field. This formula­
tion, while equivalent to others previously used, emphasizes the electrostatic nature of the phenomenon 
of tether-induced waves. These charge-carrying waves are excited by the regions of net charge being 
continualy created in the plasma at the terminating contactors of the tether as the plasma flows by. 

The physics of the plasma response is largely governed by the diagonal components perpendicular 
to the magnetic field of the cold-plasma dielectric tensor 
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where VA is the Alfveti speed and c the speed of light; while the tethered system's excitation of the 
plasma is contained in the factor 

^ V - j _ e - ' k - \ (3) 

where i is the current density in the tethered system and / is the tether current. 
"source •* J 

For computational convenience we consider the case where the contactor dimension along the 
direction of flight Lx « V/£2(. ~36m (in the F-region of the ionosphere). This is an appropriate ap­
proximation for the TSS-1R satellite. In this case we have 
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where L is the length of the tether. 
For what follows it is convenient to define a number of quantitiies: 

a, 
*, = *,-?, 
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Y+_ = y ± i L c o s # , and Z+_ ^z±iLsin6. 

The integrals over k and kz in (1) can be carried out easily by applying residue theory to obtain me 
following expressions for the electric field components (for Z > 0): 

Ex = F(Y_,Z+)-F(Y+,ZJ (5) 

and 



E =G(F. ,Z + ) -G(r + ,Z_) , (6) 

where the first terms correspond to the contibutions of the top contactor, the second terms to those of the 
bottom contactor, and 
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For 0 = 0 , these expressions reduce to the corresponding quantities derived in reference 5 (when 
the small contactor limit is taken). The Alfven wings are wave packets composed of frequencies up to Qr 

Near the tethered system they start out as rather compact structures with significant fields and currents 
largely confined to regions within a hundred meters or so of the contactors (for the small contactors we 
are considering). But as they travel away from the system the wings progressively lose their coherence 
because wave components of different frequencies have different phase velocites, a consequence of 
expression (2). The leading edges of the wings become progressively sharper, while "ripples" in the 
wake become more extensive and attain greater amplitudes5. 

The fields obtained above in equations (5)-(8) can be evaluated by numerical integration. This can 
So 

be time-consuming without necessarily being illuminating, however. There is considerable virtue in 
having approximate expressions that are more easily understood and which elucidate the general behav­
ior of the solutions, particularly if they are easier to calculate. We now obtain such useful asymptotic 
approximations in two different domains far from the tethered system. 

Let us first consider the far field near the leading edge of the wings, which is of primary interest 
from the standpoint of experimental measurement. This is defined by the conditions that \x\ is very 
large, while 

{V/VA)Z/\x\ = \. (9) 

Far from the tether components with CO « H, ( K « 1 ) dominate in this region. Thus we take 

K = K(z + (V/VA)Z(l + iK2))=,K{x + (V/VA)Z) + iK3\x\ (10) 

in the arguments in (7) and (8). Neglecting K2 in the square root factor, we make the substitutions 

f3i~\\\ , y x + (V/VA)Z 
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and extend the upper limit of the s integration to infinity, which we justify by the assumption of large \x\ 



and the highly oscillatory integrand, to obtain 
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and 
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In the plane of the top or bottom Alfven wing (i.e., for Y —> 0) we have simply 

G = (llJcl)47rsgn(F)l Ids cos (^ + ̂ 3 )=( f l Jc l ) 4 ^sgn(F)Ai( f ) , (14) 
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where Ai is one of the Airy integrals9. A similar expression holds true for F and the Airy integral Gi9. 

F = (f|jcl)47ri Ids sin(ft + 4s3)=(||jcl)~*/rGi(f) (15) 

o 
This asymptotic behavior is a feature common to other wavefronts (See, e.g., reference 10). A 

transition toward this behavior can be seen already in the figures displaying fields and currents in refer-
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Figure 2—Comparison of asymptotic Alfven wing solution and 
numerically integrated exact solution of E^EQ 



ence 5 for points too near the tether to be in the asymptotic region. 
Figure 2 displays a comparison between the values of E obtained by numerical integration of 

expression (8) and the approximation of expression (14) for points in the top Alfv6n wing some 283 km 
away from the top contactor. Agreement is seen to be quite good for a distance of about 2 km along the 
x axis. The "exact" solution decays with x more rapidly than the approximation. Even beyond the region 
of good agreement the approximation continues to provide a useful qualitative picture of the variation in 
the field component in the plane of the wing. Thus the approximation does all we ask of it in terms of 
accuracy. It also succeeds in the area of speed and convenience. The Airy function curve in Figure 2 
required seconds to generate, while the numerically integrated curve required minutes. The approxima­
tion to E of (15) is shown in Figure 3 for the same distance from the contactor in the top wing. 
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Figure 3—Asymptotic approximation to E /E0 in the plane of the top 
Alfven wing at a distance of 283 km from the top contactor. 

The asymptotic approximation reveals other general features of the far-field wing structure. As we 
can see from (12) and (13), amplitudes decay across the wing according to the inverse cube root of the 
distance behind the contactor (i.e., IxP), although, as we have seen in the example of Figure 2, this 
somewhat underestimates the rate of decay as we get away from the leading edge of the wing. 

Another observation we can make from the asymptotic solution is that the wings, while maintain­
ing their general shape with increasing distance from the contactor, undergo a general broadening, Le„ 
peaks broaden, etc. This broadening is due to the progressive loss of higher frequency, shorter wave­
length, components, as noted in reference 6. This broadening occurs proportionally to the cube-root of 
Ixl, which follows from the scaling of the Airy function argument defined in (11). 

We now turn our attention to the far field well behind the wings. Although, strictly speaking, there 
is no well-defined back edge to the wings, Rasmussen et al.6 pointed out that far behind the leading edge 
of a wing, along a given ray (defined by constant Zlx) and far enough away from the contactor, only 
wave components close to a single well-defined frequency are found to radiate. We now obtain an 
asymptotic approximation appropriate to this region by applying the method of stationary phase to the 
integrals in expresssions (7) and (8). 

This method depends upon the integrand's being highly oscillatory for large values of Ixl, which 



implies certain conditions on x/Z. Only a narrow range of K values around the stationary point of the 
argument of the sinusoidal function then contributes significantly to the integral. We define f(/c) by 

lxif(K)=r(x + Z J^AA (16) 

and look for stationary points of 

f(K-) = -K- + - ^ % Z / U I (17) 
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defined by f'(/c*) = 0, which occur for 

l-Kl = [{VIVA)2l\x\f, (18) 

so that f (x**) = -KI, which shows the method is applicable only if 
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We have further that 
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Then, in the neighborhood of the stationary point 

i(K) = -Kl +if"A?r2, where AK=K- K* . (22) 

We change the variable of integration to 

s = <$\m?AK, (23) 

extend the limits of integration, and extract the non-oscillatory factor from the the integrand (evaluat­
ing it at the stationary point) to obtain 
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The integral is well known, and with substitutions we finally obtain 
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for the far field behind the wings. Similarly, 
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Rasmussen e* a/.6 applied the stationary-phase method to obtain results similar to (25)~(26) for a 
special tether current distribution, ignoring phase factors. They found, in particular, the amplitude along 

a ray of constant \Z/x\ to decay as the inverse square-root of the distance r — -\lx2 + Z2 from the contactor 
in the x-z plane, which agrees with our results far back in the wake. They also found the far-field narrow­
band radiation around a frequency ft?* s x;!} . to be at an angle, defined by constant \Z/x\ such that our 
equation (18) was satisfied. 

However, we do not agree with some of the interpretations of Rasmussen, et al.6 They identify the 
region in which their stationary-phase results are valid as the "far field". Actually, a far-field analysis is 
valid for all I J l » 1 . As we have seen, the stationary-phase results apply to only a part of the far field. 
Their focusing on a distance criterion for a given frequency to define what they call the far field 

r > > * ; 3 % . ( 2 7 ) 

rather obscures the decisive angle condition hidden in K; (expressed in (20)). For small K"*, (18) implies 

V 
(9); so that r = x—, thus reducing condition (27) to our (19). However, for the region well behind the 

wings, where r ~ x , (27) becomes 

KI\X\» % , (28) 

which is more stringent than necessary, according to (19). 
We have obtained approximate far-field solutions for two different domains. Interestingly, and 

serving to confirm the results, in cases of small K; for which (19) is still satisfied, one can apply the 
stationary-phase method to (12) and (13) and use asymptotic approximations for Airy functions to ob­
tain expressions (25) and (26). 

All frequencies in the range 

r V 

K&U 

<0(\x\~l) (29) 

make up the Alfv6n wing, the structure of which is, as we have just shown, that of Airy functions. 



CONCLUSIONS 

We have derived integral expressions for the fields associated with the Alfv&i wave packets ex­
cited by a constant-current tethed system operating in a uniform, infinite magnetoplasma with plasma 
parameters like those in the the F-layer of the Earth's ionosphere and with the geomagnetic field perpen­
dicular to the direction of tether motion but making an arbitrary angle with respect to the horizontal 
plane. Taking these integrals as a starting point, we have then obtained approximate solutions for the 
fields far from the tethered system in two different domains. 

In the Alfv^n wings proper, we have identified the general structure of the fields to be that of Airy 
functions. That is, the variation in the Alfv6n wave fields along the direction of motion of the system, far 
from the system and in the wings, is given by the Airy integrals Gi (for the electric field component 
parallel to the tether's velocity vector) and Ai (for the electric field component perpendicular to the 
velocity and geomagnetic field vectors). The asymptotic result also shows the Airy function amplitudes 
to fall off as the inverse cube root of JC, the co-ordinate of the point (relative to the tether) along the axis 
parallel to the velocity of the system . 

For the far field well behind the wings we have confirmed a previous result that in the plane of the 
wings, along a given ray from the contactor, the amplitude falls off as the inverse square root of the 
distance from the contactor, and we have obtained analytical expressions for how the field varies. We 
have also clarified a statement in reference 6 about the boundary of the far field. 

These results could be of some practical utility in the near future, from the scientific standpoint, 
should efforts to obtain ionospheric plasma wave measurements by satellites during the TSS-1R mission 
prove successful. They also represent a step toward obtaining the Alfv6n fields at the boundary with the 
atmosphere, a prerequisite for calculations of the field on the Earth's surface. The wave reflected at the 
boundary must also be taken into account for this task. Efforts are underway to make these calculations. 

Because of the exponential decay of the fields as one moves away perpendicularly from the plane 
of a wing, for long tethers one need consider the contribution of only one wing (contactor) or the other 
for any point in a horizontal plane, unless the dip angle of the magnetic field is large. For TSS-1R the 
contribution of the wings in a given horizontal plane is always disjoint. This was not the case for the 500-
meter- long tether of PMG. Our results provide the means to determine when both contributions need to 
be calculated in any case. 

The assumption of a uniform ionosphere is among the least realistic features of our model. Future 
work will take into account vertical variations in plasma density, collision frequencies, etc. Since the 
outlook for detection on the ground of the constant-current waves is not good due to the total reflection 
of such waves at the atmospheric boundary11, the TSS-1R current will be pulsed at times. Future work 
will consider this case and the fast magnetosonic waves, which are evanescent for constant current. 
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