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A B S T R A C T 

Various systems for measuring propellant content in 

spacecrafts under weightlessness conditions are reviewed. 

The cavity resonator method is found to be the most suit

able measurement; technique. This method is analyzed in 

detail. A determination of errors intrinsec to the method 

is carried out. 
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STUVV OF 1/ARIOliS TECtfNI£UES FOR MEASURING PROPELLANT CONTENT 

IN SPACECRAFTS IN WEIGHTLESSNESS CONDITIONS 

I. INTROVUCTION 

This is the final report of ELDO Contract No. 17/8/4 

"Zero G Gauging Systems". It includes first the selection of a 

promising system suitable for gauging liquid propellants con

tained in the tanks of a spacecraft with a specific application 

to the tanks of the Shuttle vehicle (Orbiter); and second a 

study of the selected system. 

Propellant gauging in the Shuttle vehicle presents some 

important difficulties and additional problems as compared with 

the case of a conventional aircraft. Among these, the principal 

is that the vehicle will be operating under zero-g or low-g con

ditions during some stages of its operation. 

Under stationary conditions in zero-g or low-g field the 

geometrical configuration of the propellant in a spacecraft tank 

is dictated by the surface tension forces. When the accelera

tion increases, the shape that the propellant will adopt, will 

be depending upon the relative importance of the surface tension 

forces. Viscosity forces may be neglected due to the fact that 

the gradients of velocity that will appear in an actual case will 
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be small. 

The available experimental evidence shows that surface 

tension governed configurations break up if the Bond number, 

_ , Acceleration Forces n L2a 
Bond - —= s ™ : 5 = P 

Surface Tension Forces a 

is greater than a number of the order of 1. (Table I). 

This Bond number criterion shows that the greater is the 

tank the smaller is the acceleration that may disrupt a capillary 

governed configuration in - it. 

The Shuttle will be subjected to a great number of accel

eration perturbations. Orientation maneuvres, separation and 

docking of vehicles, equipment and crew movement, atmospheric 

drag in low orbits, will produce a random distribution of the 

propellant in the tanks. 

For this reason the principal constraint for the gaging 

system in this specific case is the lack of knowledge on the pro_ 

pellant configuration in the tank. Furthermore, the cryogenic 

nature of propellants and the hazardous environment surrounding 

the spacecraft has to be taken into account. 

Another important requirement to be considered is to re-
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duce the interference of the propellant gauging system with the 

rest of the Shuttle vehicle. 

In order to fulfill this requirement the selected system 

should have: 

a) Reasonable weight and size. 

b) Low power consumption 

c) Few tank modifications (holes, structures ...) 



I I . SEIECTIOW OF A GAtiGIWG SVSTEM 
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II.1 TECHNICAL SPECIFICATIONS 

The details of the final configuration of the tanks of 

the Shuttle vehicle are not yet known. For this reason, the 

available data will be completed with some reasonable assumptions 

Data* 

a) Propellants : LOX and LH (Table II). 

b) Size and shape as given by- ELDO (see fig.l). 

c) Material of the tank wall: Aluminium Alloy (for this 
study supposed rigid). 

d) Inner PVC or PU foam insulation. 

e) Tank vented. Pressure range form 17 to 30 p.s.i.a. 

f) No provisions for bladder or any positive expulsion 
method. 

A.&&ump£lonA 

a) Number of measurements is not limited, but these meas_ 

urements may be discrete. 

b) Overall response time: less than 5 seconds. 

c) Initial ullage volume; 2% of total tank capacity. 

d) Range of working temperature for the elements of the 

system placed outside the tank: -50°C to +100°C. 

e) Power supply voltage: 24 to 30 V D.C. 
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f) Accuracy; desirable + 2% of full scale. 

g) The output of the system should be processed in the 

spacecraft. 

11.2 POSSIBLE SYSTEMS TO BE USEV FOR GAUGING PROPELLAhlTS 

Several gauging systems have been proposed in the litera

ture as possible systems to gage propellant tank content in zero^g 

conditions. 

A list of these methods, including a brief explanation of 

their working principles , is shown below. 

PKOpctlant Etow lyitQ.QKa.tlon*- The gauging is performed by meas_ 

uring the propellant consumption by different methods. 

( 

Capacitance. SyAttmA. - They are based upon the variation of elec_ 

trical capacity between conductors placed inside the tank, as 

the propellant is being consumed. 

J6 0tope Technique*- These systems measure the absorption by 

the propellant mass, of a nuclear radiation produced by a radi-

active source. 

?JlQ,&&tViC Rfe-ftpon-Ae. to Votumo, VcKtu.Kbatlont> * - Volume perturba

tions are introduced in the tank and the propellant mass is 

lyitQ.QKa.tlon*-


) 

6. -
i 

deduced from the measurement of the pressure response. 

TfiCCfLK. Ga&. - This method is based upon the measurement of the 

partial density of a tracer gas, previously introduced in the 

ullage volume. 

Cavtty He.Aona.tofi, - The fundamental frequency of resonance of 

the tank, considered as a resonant cavity, and being excited 

by RF. would be measured. 

A short discussion of the application of all the above-

mentioned systems to the Shuttle vehicle is included in the 

following section. 

II.3 SELECTION OV A SVSTBM 

VKOpzLZant Flow lnte.gfiatX.On.- These systems introduce cumulative 

errors due to the nature of the measuring method. In addition * 

flow rate changes originated by throttling of the rocket engines 

would make more difficult to carry out accurate measurements. 

Those difficulties might be overcome, but ther'e exists the fun

damental problem of propellant losses through leakages or venting 

which would not be detected. 

t&otope. Te.chn'Cqtie.A . - This system requires a great number of 

emitters and a very complicated hardware, if the measurements 

He.Aona.tofi
lnte.gfiatX.On.-
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are to be independent of the propellant configuration inside the 

tank. The analysis of the measurement data resulting from this 

arrangement would be complex and the required hardware would be 

cumbersome. Only a single emitter and the corresponding detec

tor would be necessary in the case of tanks of aspect ratio of 

50 or more. In this type of tank the utilization of isotope 

techniques for gauging propellant would be of interest. 

P-teA-flU-fre. Re-apOfUC to Votume. PtJituSibatsLonA . - These systems have 

been treated in the literature under the name of "Gas Law Sys

tems". It would be possible to employ these techniques if the 

volume perturbations required to produce a measurable pressure 

response were to be reasonably small. 

For the Shuttle case, according to ELDO data, for a tank 

volume of the order of 200 m , if a pressure variation of 0.05 

kg/cm2 is specified, the perturbation volume required will be 

of 0.1 m^. This figure seems to be too high to be employed in 

an actual system. 

In the case of propellant tanks for satellite propulsion 

(volume less than 0.1 m 3) this system seems to be attractive. 

T/uiceA Ga.6. - The measurement is performed in this system under 

the assumption that the mass of a tracer gas in the ullage vol

ume of the tank is constant. 
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Tracer gas solution in the propellant, tracer gas losses 

through the venting or propellant outlet or tracer gas leakages 

make this assumption to be very doubtful. -This problem might 

be probably overcome if a recalibration is carried out before 

each measurement is performed. This would greatly increase the 

complexity of the system. 

Capacity System.- There is some experience in capacity gauging 

of liquids. NASA awarded a contract in 1967 to study the feas£ 

bility of such method for use in spacecraft tanks. One of the 

principal conclusions of this work |l | has been that* in order 

.to perform a measurement independent of the propellant shape it 

is required to establish an uniform electrical field inside the 

tank. The electrical field would be obtained by giving an ap

propriate distribution of potentials to a number of conductors 

placed in the inner surface of the tank walls. In some parti

cular case (spheres, cylinders of high aspect ratio) a limited 

number of electrodes would be required in order to produce an 

electrical field sufficiently uniform. When the tanks have 

another geometrical configurations, the problem requires a fur

ther analysis. 

The placement of electrodes in the inner surface of a 

tank, including the insulation between their edges, would pose 

some technological problems. If the number of electrodes is 
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not too large this problem appears to be feasible. 

An important study which is required in order to estab

lish the feasibility of a capacitive gaging system is the defi

nition of the method which would be employed for measuring the 

electrical capacity existing among the electrodes when consid

ering the propellant as a dielectric. It is thought that by 

using the existing technologies it is possible to devise such 

measuring system. However, the great capacity existing among 

the electrodes and the tank wall will complicate considerably 

the acquisition of an accurate measurement. 

It has been concluded that although a capacitive gauging 

system would be in principle' feasible , the need of placing elec 

trodes in the inner wall of the tank would make fabrication 

complex and cumbersome. For this reason the capacitive gauging 

system has been considered as an alternative solution to be 

studied in case in which the most promising system*"Cavity Reso 

nator System" as indicated below, would not be feasible. 

Cavity RzAonatOA. Sy&tm&.- The idea of gauging propellant in a 

tank considering it as a resonant cavity for electromagnetic 

modes has been proposed in the past. The principal question on 

which the feasibility of the system essentially depends, is 

whether or not the frequency of resonance is influenced by the 

i 

propellant configuration. 
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This is a difficult problem since its rigorous, theoretical 

treatment requires the analysis of the Maxwell equations with very 

complicated boundary conditions, In Part II of this report, this 

problem is studied and solved. 

The electrical properties of the propellants LH and LOX 

(see Table II) are adequate in order to use a gauging technique 

of this type. They may be considered as good dielectrics with 

extremely high electrical resistivity. On the other hand, the 

relative dielectric constants are small enough to reduce the in

fluence of different configurations for the same amount of propellant 

in the output of the system and they are high enough to allow sus-

tantive change of resonant frequency between empty and full tank. 

The existence of an inner heat shield will not produce additional 

difficulties for the application of this method due to the fact 

that generally the heat insulation materials are good dielectrics 

and the foam structure increases this property* For all those 

reasons the electromagnetic waves will be attenuated very slowly 

inside the tank, the Q of the cavity will remain in all conditions 

very high and the power required in order to mantain the oscilla

tions in the cavity will be small. 

A rough estimation of the order of the resonant frequency 

for the first mode has been done considering the largest LOX and 

LH_ tanks when they are empty. 
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The first mode for the LH2 tank gives a resonance freque 

cy of: 

fLH2 =250 Mc/s. 

and for the largest LOX tank 

fLOX =330 Mc/s. 

Production, coupling and detection of such frequencies 

to and from the cavity is well below the present state of the a 

of the electronics. In general the technical details of this 

method appear to be much less complicated than those of all 

other methods. 

A detailed review of all abovementioned methods can be 

Found elsewhere | 2 |. 



III. SrUVV OF TUB CAVITV RESONATOR METHOD 
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As it is well known, the purpose of the cavity resonator 

method is to infer the propellant content in a tank from the 

shift in the frequency of one of the resonant modes of the cavi. 

ty; unfortunately, this shift should also depend, in general,on 

the propellant configuration, and this can not be exactly pre

dicted because of the weightlessness condition. 

Previous theoretical and experimental studies |3 | , | 41 , 

|5| of the configuration dependency have, in our opinion, been 

unconvincing. This part of the report includes a theoretical 

analysis of this point; we find that, in general, the frequency 

shift does depend on the propellant configuration. Nevertheless, 

we also find that, under particular conditions of practical in

terest, this dependency can be made acceptable so that the meas_ 

urements of the frequency shift will indeed determine the pro

pellant content. In particular, we show that this is the case 

of the Shuttle vehicle tanks. 

III.l GENERAL FORMULA FOR THE VR€Q,U€UCV SHIFT 

The microwave cavity perturbation method, a technique 

frequently used in plasma diagnostics 9 is based on the fact that 

the resonant frequency of a microwave cavity resonator is changed 

when a plasma is introduced inside the cavity. This problem, 
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which is mathematically identical to the present one, has been 

extensively analyzed in the literature. Below, we resume the 

main mathematical steps leading to a general expression for the 

frequency shift |6||7| . 

Consider a cavity of arbitrary shape and conducting 

walls, which in a first case is empty, and in a second case is 

filled with a substance of dielectric constant e (in general a 

function of space coordinates). Writing Maxwell's equations for 

these two cases, we have I8 

V A E. = 
1 

-J0)iMoHi , (1) 

V A H1 = *»iEoeiEi ' 
(2) 

where i= 1 for the first case, i= 2 for the second one, and 

e. = 1 , en = e . E. and H. are the fields inside the cavity,which 1 ' 2 I I
 J 

are assumed to have a temporal dependency of the form exp(jw.t) 

The boundary conditions are that, at the cavity walls, E. must 
->-

be normal, and H. tangential, to the walls, that is 

H, = 0 
in 

Eit = ° (3) 

From Eqs. (2) (i= 1, 2) we immediately obtain 
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3Eo/y [ ^ i - ^ ^ i - V V = / 
V 

tn. v AB, - -
1 E 1 ' V A H 2 

dV = 

•',[' WV fa . &t + / H1 .VA E 2 - H2 . y A 2 1 dV ( 4 ) 

where V and £ are the volume and surface of the cavity respec-c c 

tively, and we have used Gauss1 theorem to obtain the last equal^ 

ity. Because of the second boundary condition in Eq.(3) the sur 

face integral vanishes. 

Similarly, from Eqs.(l) (i=l,2) we get 

JP0(w1 - <D2) / H± . H2dV = / h ^ . VA E2-H2.VAE^|dV (5) 

c c 

and finally, from Eqs.(4) and (5), |6| 

w 2 " w l 
/ v ( e - 1 ) E , . E dV 

oJV 

EO/V ^ • *2
dv - %/v

 s i • V v 
( 6 ) 

Usually the microwave cavity plasma diagnostic tecnique is used 

under such conditions that e * 1 so that oi2 * o> and Eq. (6) 

becomes |6| 
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W2 " Wl 

(0. 

ej (e-DEjdV 
° y 

c 

eo/ E l d V - % / H l d V 
y x u y -1-
c c 

/ (e-i)Ejdv 

C 

2/ E*dV 
(7) 

where we used the equality 

t j EjdV = - p / H^dV 
0 V 

c 

(8) 

which can be easily obtained from Eqs.(l) and (2) (i= 1). 

In the case of interest to us, we have e = e (a constant) 
L 

in the region occupied by the propellant liquid, and E = 1 in the 

rest of the cavity, since the propellant vapor has a dielectric 

constant practically equal to unity. Thus, £ is then a discon

tinuous function, it is possible to show however that, since H„ 

is still continuous 9 Eqs. (6) and (7) are valid even for e discon_ 

tinuous. 

Equation (6) takes now the form 

w2 " wl 

0), 

eo ( E L - ^ / v
 £1 • J2 d V 

c 

ej t±. t dV - M / V V V 
(6a) 

where V_ , is the volume occupied by the liquid. For eT - 1 , 
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Eq. (6a) becomes 

/ E*dV 
w - to e - 1 y 

_ 2 1_ M L L ( ? a ) 

W l 2 / EfdV 
c 

We have further found that Eqs.(6) alid (6a) can be simply 

fied by using the equality 

u i 
•' eo/ K ' f 2 d V = ""o/ W V • (9) 

<*2 - V - ' " V 
c c 

To derive Eq.(9) we multiply Eq.(l) (i = 2) by 8^ and integrate 

over V to obtain c 

-jw2uoJ 1^ . H2dV = / H1. V A E2dV = / (B2A H1) . d? + 

c c c 

+ / E. . VAH.dV = / 19 . V A t . d V ( 1 0 ) 

c c 

where Eq.(3) was used. Multiplying Eq.(2) { i - 1) by E2 and 

integrating over V we get 
c 

j o ^ e j E2 • f^dV = / E2 . VA^dV . (11) 

c c 

From Eqs . (10) and ( 1 1 ) , Eq . (9 ) fol lows immediate ly . 
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Equation (6a) then beco mes 

" 2 - M l 
I 2 . . g d V 

t W 1 

(i + -i) = _( 1 } 

V, l ' ~ 2 

/ E \ . E \ d v 
v 

1 2 

( 6 b ) 

For eL « 1 s we write this equation as 

U), u> 1 /• W , 

u2 
- (eT-l) 

/v
 E l d V 

L 

/V
 E l d V 

(7b) 

this equation should extend the range of validity around eL= 1 

of Eq. (7a), since (7b) is exact for the limiting cases VT -*• 0 
XJ 

and Vr = V . 
h c 

Finally it should be pointed out that it the frequency 

shift is measured respect to the frequency corresponding to full 

tank conditions, we would have 

to. 
= 1 -

eT - 1 

(o. 

/ Ei • * dV 

/ E l . EdV 

(6c) 
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,2 

= 1 
EL" % 

/ ^dV 
V 

"i 
c 

(7c) 

where V = v - V (the volume occupied by the propellant vapor) 

and 0) = oj /e^/2 
1 1 L is obviously the frequency corresponding to a 

full tank condition. 
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III.2 VRtQUZHCV SHIVT TOK eL CLOSB TO UNITY 

Equation (6b) clearly shows that the frequency shift,to^-io., 

does depend on the liquid configuration. To determine that de

pendency would be a quite difficult task because in the integral 

!1 • t2 E. . EQdV not only the region of integration VT , but E 0 itself. 

will depend on the particular configuration existent. 

A case for which the determination of that dependency be

comes quite simple is the limit e = 1, since Eq.(7b) does not 

- * • . - > 

involve E s and for relatively simple cavity geometries E can 

be obtained once a resonant mode is selected. 

This limiting case has the additional advantage that for 

particular resonant modes (perhaps not the fundamental one), the 

integral f^ E?^V can be shown to be weakly dependent on the con-

figuration of V_. On the other hand for eT not too close to 

unity s E will certainly depend on the liquid configuration, so 

that it appears impossible to make / v E1 . E2dV independent of 
L 

the configuration, by selecting a particular resonant mode £ . 

It is fortunate that for our case eT is not far from unity 

(Table II), so that Eq.(7b) can be approximately substituted for 

Eq.(6b). It is convenient nevertheless to improve upon Eq.(7b) 

by carrying out an expansion of E in powers of e^-l, and retaining 

terms beyond the lowest one in Eq. (6b). 
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To this end, let us consider the tank empty. By takinj 

the rotor of Eq.(l) and using Eq.(2) and equation 

V. E = 0 (12) 

we get 

V (V.E) -> - V2E = -V2E = ^ P ^ o 1 (13) 

The equation 

V2E + XE = 0 (14) 

(where X = u>2u e ) for an arbitrary cavity, with boundary condi

tions at the walls 

n A E = 0 (15) 

(n being the normal to the wall) and the auxiliary condition Eq. 

(12) is known to have a discrete, numerable spectrum of eigen 

values A and eigen-functions E , such that 
n n 

V2E f X E = 0 , n = 1, 2, • . • ; 
n n n * ' * 

to2 = X /u e is the frequency of the n resonant mode E . 

(16) 

Since Eqs.(12), (15) and (16) are homogeneous, E can be 

normalized: 

/ 2 2 dV = 1 
V n 

c 

On the other hand we have 

(17) 

/ £ 0 S dV = 0 , n =jt 
V n m 

c 
m . (18) 
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To show this we multiply Eq.(16) by E and integrate over the 
m 

volume of the cavity V 

/ E . (V2E )dV + X / E . E dV = J „ m n nJ v m n 
c c 

= / V . (I .VE )dV - / VE : VE dV + X / E .E dV =0. (19) 1 „ m n * „ m n nJ„ m n ' 

E • VE inside the third integral above is the product of the 
m n r 

-y - > - + - > 
vector E with the tensor VE ; VE : VE is the tensor product m n m n r 

of VE and VE . Similarly we get 
m n 

/ V . ( E .VE )dV - / VE : VE dV + X / E .E dV = 0 . ( 2 0 ) 
4

 v n m ' n m nr „ n IB 

c c c 

The d i f f e r e n c e b e t w e e n E q s . ( l 9 ) a n d ( 2 0 ) y i e l d s 

(X -X ) / E . E dV = / V . ( E .VE -E .VE )dV = / m n J „ n m J „ m n n m J 

V 

Using Eq.(15) the surface integral becomes 

dE.CE.VE-E.VE>. m n n m 
c 

(21) 

/ d£ 'nN - EnN mN 
" mN 3** 3N 

that Vanishes because from Eqs. (12), and (15) , 

3E. 

(22) 

9E nN „ EnN mN * E 

9N 
9N mN 

(23) 

where the proporclonality factor depends only on the local geometry 

of the wall; 9/9N is the derivative along the normal to the wall 

dE.CE.VE-E.VE
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and E „ * E „ are the normal components of E •> E at the wall. 
nN mN n m 

Under very general conditions the orthonormal system of 

eigen-functions {E } is complete, so that any vector function A 

satisfying condition A = 0 at the cavity walls and the auxiliary 

condition V . A = 0, can be expanded as a series in terms o 

n = 1, 2, - - - . 

It is evident that when the cavity is completely full,the 

eigenvalues will be A* = X /eT , obviously E' = E„ • te n n L J n n 

Let us now consider that the cavity (tank) is partially 

filled. The best way to proceed is to assume that the transition 

of the dielectric constant e across a vapor-liquid interface is 

not discontinuous, but varies continuously through a thin layer 

from 1 well inside the vapor to eT well inside the liquid; in the 

results the case of interest here is recovered by letting the 

thickness of that transition layer become vanishingly small. 

Then instead of Eq.{12) we will have 

or E 

eE = 0 

= -E . Vine (12') 

so that instead of Eq.(li+) we will have 

V2E + V<E.Vine) + eXE = 0 (14') 
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Equation (15) remains unchanged. 

For e -* 1, Eqs.(l2f) and Eqs.(l4') go into (12) and (14). 

For e * 1 the eigenfunctions E * and eigenvalues X will be very 

close to E and X . Writing n n 

E* n 

n 

E + E , + E 0 no nl n2 

X + X . + X n -8-no nl n2 

(24) 

(25) 

•*• "** i w h e r e E = E , X = X , a n d E . a n d X . a r e of o r d e r o f 6 no n no n n i n i 

<<5 b e i n g e - 1 ) , E q s . { 1 4 ' ) , ( 1 2 ' ) a n d ( 1 5 ) p r o d u c e 

V2E + X E = 0 , no no no ' 

•> v E< + * E < + ^ ^ E B A + * fiE„rt + Vj(B rt .V6) = 0 , 
n l no n l n l no no no no 

V2E rt + A E „ + A ,E . + A nE + X . 6 E n2 no n2 n l n l n2 no n l no 

(26) 

+ X 6E . + V(E , . V6) - i V(E . V62) = 0 no nl nl 2 no ' 

(and similar equations for i = 3, 4, . . . ) ; 

V. E = 0 , no 

v. i 
n i •t 

no 
. V6 (27) 

V. 2 _ = -t . . V6 + i £ , V62 

n2 nl 2 no 
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(and similar equations for i =; 3, 4, . . . ) ; 

n A fni = 0 9 i = 0 , l , 2, ... " (28) 

It is clear that En. (i=l, 2, ...) does not satisfy Eq. 

(12), so that En . (i = 1, 2, ...) can not be expanded in a series 

of the eigenfunctions for the empty cavity, {E } . Nevertheless, 

since any vector function can be expressed in terms of the gra

dient of a scalar and a divergenee-free vector, we can write 

n i i i 
V r. 

i = o (29) 

and t h e r e f o r e s f rom ( 2 7 ) a n d ( 2 6 ) we h a v e 

V 2 * A = -E . VS , 

V 2 ^ 2 ( V V O -V(5 + i E„ . V6 1 1 2 n 

( 3 0 ) 

a n d 

v 2 r „ + x ? . + x ( 6 E +v^»,) + A E = o , 
1 n l n v n r l / n l n ' 

(31) 

V 2 V V 2
 + "n ( V V 6 V 6 V *1> + " n l ^ l + a = „ + V * i > + X n 2 S n = ° 

Equations (30) are to be solved with the boundary condi

tions 

n A VTJ> . = 0 (32) 

it the walls, or equivalently, IJJ. = constant at the walls. Since 
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T. satisfies Eq.(l2) and is tangent to the walls, it can be ex
panded in {E } . We thus write 
r n 

r = S « p * p . ( 33 ) 
p v v 

and t h e n 

Za (X -X ) E + X (6E + V¥, ) U j = 0 . (34 ) 
p n p p n n l n l n 

Multiplying Eq.(34) by E and integrating over the entire cavity, 

we get 

a
m < X " X T n > + \ » l / Etn • Er,dV + X J < 6 E in * E n + E . V* )dV = 0 ( 3 5 ) 

m n tn n l ' , , m n n ,, w n m 1 V " v 
c c 

For m = n , we g e t 

A „ i * " X ~ 6 J K d V * < 3 6 > 
n l n u4„ n 

L 
where we have used the result 

/ £ . V^.dV = / V.CtjJdV - / (V.t)*1dV = y n * y n ± y n j . 
c c c 

= / * J f&t « / f . d? = 0 . 
s a n s n 
c c 

For m ^ n , we get 

X 
n 

m X - X "LJVT ̂ m " ̂ n 
6 T L E . E dV . (37) 

m n L 

We can set a =0 , by requiring normalization of E* to order $ , 
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t h a t i s 
2 

1 = / ( E * ) dV « / t l 2 dV + 2 / E . ( V ^ . + S a 1 ) 
J v n v n v n 1 D P P 

dV = X + 2 a 

c c c r 

Multiplying the second Eq.(3i) by E and integrating over 

the cavity we get 

n2 + X n l 6 L / E n d V + \ I dVEn ' 
V 

&r± + s v ^ = o 

so that finally 

n n 

(u v= dv) 
i-« / E?dv +«? / E 2dv-«? s — - £ — L " n 

VL 
L - n 

VL P*n (X /Xn) - 1 

-«J dV En.V* +0(«3)" 
L V _ 

Substituting back wz for */** e , we obtain ° ' o o ' 

( » * , 
(i)' 

n 

l + 6 T x 
i + - «* E ^ 

pjtn (u> p / o ) n ) 2 - l 1 + S J v t
E n dV 
L 

where 

- 6 L / dV VV*i + ° < 6 L > ( 3 8 ) 

-> V 2 * 1 = - E „ . V ( S / 6 T ) f 
n 

and <j> is a constant at the walls. This constant can be chosen 

to be zero. Then we have 

6 ± 
•i-TT" /.V-(£*»)" (38' ) 

where G is the Green function for Laplace *s equation inside the 

cavitys with Dirichlet conditions. 



Calling the last bracket in (38) 1+A, we get* 

VT (w /w*)2 -1 w2 

L
 5 x = 2_* f Vc fi

L h^V2 

If the last term can be neglected above, V can be deduced 

measuring to* (the resonant frequency of the selected mode 

the desired time) and using Eq.(39) > It is clear that the 

of the measurement is due to the fact that, in general, A 

not vanish and depends on the (unknown) configuration. 

* Using the symbols of, Sea* IIIcl., ai s 6)̂  <| w =w2 > and 

n 1 ' ,n 2 
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III-3 VJSCUSS10N OV TUB MEASUREMENT ERROR 

The analysis of the last section yields Eq.(39) for x . 

If one takes the approximation 

X ee (, «n^:>2 - *] 
- i 

(40) 

as the value predicted by the analysis, the resulting error is 

^2 

Error (x) = 

2 A to A 
n 

•t**)26r 

n h 

X 1 -

/ E^ dV 

h 
x 

"6L l 

(/ £ .t dV)2 

L a J E .v<j>.dv . 
p^n (wp/

w
n) " 1 

L < n 
L 

(41) 

Error (x) vanishes, of course, for x=0 and x= 1, and will reach 

maxima not near to the ends of the range 0 < x < 1 . 

In the general specifications of this study a maximum error 

in the determination of propellant content , of 2% of full scale , 

was established as desirable. It is clear however that such ac

curacy is really necessary when the tank is far from being full. 

To make definite the discussion we shall require below that 

Error (x) 'in (41) be less than 0.02 for x < 0.10, and less than 

0. 05 for x = 0.50. 
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For 6 sufficiently small the last two terms in Eq.(41) can 

be discarded. How small 6 has to be in this respect, must be ver 

ified in every particular problem; such verification is not great

ly difficult, however, for tanks with shapes that not differ great 

ly from relatively simple geometries, as it will be seen below for 

the Shuttle case. Then, the error bounds above indicated imply 

the following conditions: 

X 1 -

/ B*dV- . 
V L 1 

* / 

< 0 . 0 2 

< 0 . 0 5 

(x- 0.10) 

(x=0.50) 

(42) 

or equivalently, 

0.80 < 

E dV n 

< 1.20 9 (VL±o.l0 V ) 

0.90 < < 1.10 

(43) 

(VL=0.50 V ) . 

The meaning of these requirements is that the mean value of E 2 

n 
over the liquid region must be close, within certain bounds to 

32 the mean value E* over the entire tank. Obviously such require-
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ments are, in general, the easier to satisfy, the larger the val_ 

ue of n , since the eigenfunction E becomes more complicated (it 

has more nodes) as n increases. There are,, however, limitations 

on the magnitude of n , because the resonant frequencies become 

too crowded for n large enough. For every particular problem, a 

suitable mode (w and E ) should be Selected; the way to carry 

out this, will be illustrated below, for the Shuttle case. 

B) The. Shuttle. Ca&t 

We will first study in detail the case of the small LOX 

tank (see Fig»l)« The first step of the analysis is to determine 

the eigenf requencies and eigenf unctions , cu and E , of the tank, 

so that a suitable resonant mode can be selected. In most cases, 

the tank shape can be approximated by a relatively simple geometry 

so that 0) and E can be calculated analytically and the general 

characteristics of any mode can be approximately determined.(Nev

ertheless, the present method can also be applied to complicated 

tank shapes, by measuring experimentally the characteristics of 

the resonant modes). It should be understood that the value of 

to used in Eq.(39) should be found experimentally by identifying 

in practice the mode selected analytically, the real and the the

oretical modes having very similar characteristics, because, as 

it is well known, the eigenfunctions and eigenvalues of Helmholtzfs 



31.-

equation (14), for two cavities that differ little from each other 

are approximately the same |B| . 

The LOX tank considered can be approximated by a cylinder 

of R = X»0 m. radius and' L = 2-00 m. length. The resonant modes of 

a cylindrical cavity are well known | 9 | . There are two kinds of 

modes, TM and TE modes. Their eigenfrequencies and eigenfunctions 

are s 

< 

0) 

o o 
1/2 

Xqg TT2Y2 

R* 

/2 

h - •< ««•• (II*)ja (xa6 |) 

E, = -K 
TTYR' 

cos ct4> 

sen onj) 

L x a $ 

Ja( X«3 |) 

c o s a<j> 

s e n ccf1 j 

( 4 H ) 

to 

E z = 0 , 

X a 3 

^ o - 6 » 1 ' 2 1 ** 

tx - K'sin (115.) J A V 

T T 2 Y 2 
1/2 

J
a K B D 

c o s a<J> 

s e n atj) 
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where E and E. are the components of the electric field parallel 
z * 

-> 

and transverse to the cylinder axis; u z is a unit vector along 

that axis; Vx is the transverse gradient; z,r and 4 are defined 

in Fig.II; K and K' are normalizing constants; J is the Bessel 

function of the first kind and a order; x a nd x' are the 3 

zer o of J (x „) = 0 and J£Gc
fa3) = 0 respectively, and y is an in

teger number. 

It is obvious that if the electric field were constant in 

space, the first term in Eq.(41), would vanish. In our case,the 

mode that best approaches that condition, is a TM mode with 

a = y = 0 . To make the experimental identification of such a 

•mode easier, we choose $ = 1 , so that our E n will be 

E = u KJ <xn, r/R) . n z o 01 
(46) 

We can now discuss quantitatively the error of the measure 

ment. Let us, first, assume that the last two terms of Eq.(41) 

can be neglected. There are two limit situations in weightless-

nes conditions: 

1) When accelerations are small, the liquid-vapor configu

ration is governed by surface tension effects. The contact angle 

of LOX is known to be close to zero (perfectly wetting liquid). 

As it is well known, for such liquids, the liquid-vapor interface 
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is a constant-curvature surface, concave toward the vapor phase 

|lo| . It is clear that for this tank, the propellant will adopt 

almost always the configuration shown in Fig.Ill (a), as long as 

its volume lies between 16.7% and 66.7% of the total volume, 

R < x < 1 - -II- (47) 
3L 3L 

Writing Error (x) = U, +Q„ , where U. is the first term on the 

right side of (41), and Q is the sum of the other two terms, we 

will have 

VL 

Vl '2 / I2 dV + / P dV V V ' , n "' ' n 
c c V1 V2 

V 
= / E 2 dV — s (48) 

V2 " Vc 

where V. is the volume of that part of the tank below the M-N sec 

tion, and V is that part of V, occupied by the vapor (which is a 

hemisphere of radius R ) ; the first and third terms in the second line 

of Eq.(48) balance each other, since E does dot depend on z . In 

serting (46) in (47) we get 



/ E* dv - v A 

2TT R 
/ d < J > / r d r J 2 ( x o l r / R ) / R 2 - r : 

o o 
2TT R 
/ d < j ) / r d r j 2 ( x 0 1 r / R ) L ' 
° o 
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_ 2 T T R 3 / 3 

TTR 2 L 

* 0.424 -' 0.333 « 0.09 (49) 

by-numerical integrations, and substitution of the values of x ., 

R and L„ 

It is clear that ft^ . is independent of the liquid con

tent for the range given in Eq.(47). When x becomes smaller than 

0.167, ft, will decrease as it is easy to verify the volume V- in 

(48) becomes smaller than a hemisphere, while it gets closer to 

1 2) When accelerations are dominant, the liquid will adopt a 

configuration, of the type shown in Fig.IV, that is, with a plane 

liquid-vapor interface. For configuration (a) of this figure ft. 

vanishes. As the angle between the cylinder axis and the normal 

to the interface plane is increased, ft. remains, obviously, zero 

until configuration (b) is reached. When that angle increases 

further and the tank is 10% filled, it is clear that U. becomes 

positive and reaches a maximum when the liquid adopts the limiting 

case (d). If the tank is 50% filled, ft. remains always zero. The 

maximum of ft for x=0.1 is easy to calculate. We have 



fi„ = x -1 

R *(r) 
/ rdrj2(x01r/R)2/ d«J> 
r o 
c 

R 2TI 

! rdr J^(x01 r/R) / d cf> 
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* 0.1-0.021 = 0.079 , (50) 

-1 
where <|>(r) = cos (r /r) and r = 0.69 R 

c c 
see Fig.IV(d) 

Let us now consider n~ . This quantity is very easy to com 

pute for configuration (a) of Fig.IV. We first need to explicitly 

obtain & . From Eq.(3§!) we get 

*1(?) = -(ftf)"
1 / 2n(?') • V»GD(?,?*)dV* (51) 

so that fi2 becomes 

'(/ E .E dv) 
V P n 6 

fl2 = ~*L Z 

~y .»• -*- ,-+• 

p¥n <w /w ) 2 - 1 4* Vr VT p n h L 

+ — L _ J dv/ dV'En(r)En(r
?):VV'Gfl(r,r

f ), 

(52) 

As it is well knowri, Green's function for a cylinder with Dirichlet 

conditions is 9 

-+• •+• 8 
co co 

E e 
ia(<j>-<t>' ) . (Y*z\ . (yjz* 

LRZ a = -«» gal Y = l 

J a(x a er/R) J f l(x f l $f*)
f 
.*_... 2 .yiT.2-

-1 

(-f1) • (; 
R 

-2 

Ja+l
(xa3> . (53) 

After long and tedious manipulations, (52) can be written as 
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«o = ST / E E dv) 
2 L , \', n pz J 

p^n V L
 F 

1 + 'ag /R
: 

(TTY/L)Mx0i/R) 
(54) 

-* -f 
where we used the fact that E H u„ E , so that only the TM modes 

n ^ n 

contribute to the series in the first term of (52); the p-index 

represents the p combination of the a , 3 and y indices, and 

E has been renortnalized to have / E 2dV = 1. PZ pz 

For configuration (a) in Fig.IV, 

/ „ V p « d V " / J o ( x 0 1 r / R ) J a ( x c B r / R ) / "d* 

cos a<j) 

sin a<|> 

\ 

(55) 

so that only the a = 0 9 0 = 1 values need be considered in (54) 

Then we have 

2 = '* A * 

r- R 2 XL — 
27r/rdrJo(x01 r/R)/ dz COS(TTYZ/L) 

R R 
2TiL/rdrj2(x01r/R)2 7r(L/2)/rdrJ^(x01r/R) 

" *oiL n 
l-( ) 

TTYR 

26r K 
y-\ 

sen (TTYX) 

Try 
1 -

6Lx(l-x) 
x_.L 2 x(l-x) 

(-^} - i 2 7.71x (l-x)-l .(56) 

The maximum of in (56) occurs for x = 1/2 , 
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a2 (x=i/2) * -0.11. (57) 

The reason why Q reaches such a relatively large value is that 

obviously the configuration of Fig.IV(a) brings in modes that are 

z-dependent ("YT^O), with a and 3 the same of the selected mode 

(a = 0, B=l); for such modes the quantity inside the bracket in Eq. 

(5 4) is small (a nearly-resonant effect). On the contrary, for 

configuration IV (d) s only modes with y = 0 are brought in, so 

that there is no such effect and fi„ will be much smaller. Config

urations like IV(b) and IV(c) will present fi„ values that lie be

tween those extremes ; for configuration III(a) , fi„ will be close 

to the value for IV(a). 

In setting Error (x) = Q. + £1- in Eq.(41) we neglected 

terms 0(6^). Since Q - 0 for Fig . IV( a ), and n« I c a n peach up to 

0.11, it would be convenient to calculate the terms 0(6?). in 

fact, for such configuration, it is possible to exactly calculate 

2 
h 

w , and thus find out the importance of the terms 0(6^) and beyond 
n i. J 

To this end the equation 

V 2E* + X*eE* = 0 
nz n nz 

with e = er in the liquid and e = 1 in the vapor, must be solved 

with boundary conditions E* = 0 at r = R s 3E* /8z = 0 ¥t^z = 0 , L, 
nz nz 

and the usual conditions for the interface of two dielectrics 

satisfied at z = xL , After cumbersome transformations, we get 
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tan x(ye L-l)
1 / 2Lx 0 1/R (l-y)/(yeT-l) 

1/2 
tanh (1-x) 

x (l-y)1/2Lx01/R (58) 

where y = (ti)#/io ) 2 . This equation gives y as a function of x , 

and may be compared with Eq.(M-O), that is. 

y = (l+6Lx) 
-1 

(59) 

For x = 0.43 we find from (58) that the error of Eg..(59) is 

Error (x) = -0.07, and for x = 0.19, Error (x) = -0.01. It is 

clear that retaining terms 0(6^) in Error (x) reduces the error. 
it 

As it can be seen, the measurement errors,although reason 

able, exceed somewhat in some cases the error bounds previously 

suggested. It should be noted, however, that the selected mode 

is the fundamental one, that is, it has the lowest frequency of 

all modes; this makes mode detection extremely simple. It is 

clear that if one would have chosen a higher mode, the error of 

formula (40) would decrease. 

Let us now consider the larger LH2 tank (Fig.l). This tank 

can be approximated by a cylinder of length L = 20.3 m and radius 

R = 2,1 m. The first point to note is that for such large L/R 

ratios, the "resonant" effect previously noticed when discussing 
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the fi2 term, becomes quite large see Eq.(56) ) .To avoi id this, 

we select the first TE mode, which has a = 1, 3 = 1 , y = l . This 

mode has a z-dependency, so that the above effect is much less 

important. For such large L/R ratios this TE mode is the funda

mental one, as can be seen from Eq.(^), 

We first consider the case when accelerations are dominant. 

For the configuration of Fig.IV(a) we have for ft 

n. =x-
1 

xL 
/ dzsin2(Trz/L) 
o 

J dz sin2(TTz/L) 
- 1 

- ( s i n 2trx)/2fT, ( 6 0 ) 

F o r t h e c o n f i g u r a t i o n o f F i g . I V ( d ) we h a v e ft = 0 f o r x = 0 . 5 , 

a n d f o r x = o . 1 

j r d r 2 J d<J) 

V* 
tt 

J i ( x i ± r / R ) 

r 
sin<|> + 

x ' J ! ( x ' r / R ) 
11 1 11 ' c o s 

R 2 IT 

/ r d r / d<j> r J l ( x i l r / R ) 

s in<H + , 
* i i J i u i i r / R ) 

R c o s 
2 - i 

- 1 w h e r e r = 0 . 6 9 R , and * ( r ) = c o s ' ^ r / r ) ; t h e n 

( 6 1 ) 

^ = 0 . 1 - 0 . 0 2 2 = 0 . ' 0 7 8 . 
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For configuration IV(a), &0 can be calculated as in the case of 

the small LOX tank, but it is as simple to compute exactly 

Error(x). Following a mathematical development quite similar to 

the one leading to Eq.(58), we obtain 

tan 
e v* -1 

(JZ—1 
1 y*-l 

1/2 

tan (l-x)(y»-l) 
1/2 Lxii 

R 
(62) 

X + (nR/Lx!.) »and when y' < 1, the right 

hand side of Eq.(62) should be 

where y1 = (w*/w ) n n 

cLy'-i. 
1/2 

1 i-y,; 
tan (l-x)(i-y») 

1/2 LxIl 
R 

for x = 0.208, Error (x) * 0.067, and for x = 0.30fError(x)=-0.073 

For the configuration of Fig.IV(d), P, is negligible. 

For the configuration of Fig.III(a), Error (x) is close to 

its value for case IV(a). It can be verified that the error for 

configurations 111(b) and (c) is smaller. 

The analysis for the other two tanks, is identical to the 

preceding one. For all these three tanks, the error can be de

creased by choosing higher modes, as in the case of the small LOX 

tank. i 
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111 •* COMPUTATION OF R.ESOMAMT FREQUENCIES, RESPONSE TIME AMP 

POWER CONSUMPTION 

For the tanks considered in detail in Sec.III.3, Eqs.(44) 

and (45) give the frequencies of the selected modes 

u (LOX) = 722 M H z 

(63) 

w (LH2) = 267 MHz . 

For the computation of the time response of the gaging sys_ 

tern it is necessary to previously calculate the Q-factors of the 

tanks. From Ref.|9|9 we have 

Q(LOX) = -A- h 1 <6H) 
2ir S l + L/R V ' 

where S is the skin depth, 

S = C(27ro)0)"
1 , (65) 

and a is the electrical conductivity of the tank walls. We also 

have 

4 2 4lT S ~ * 0.209 L/R + 0.242 L3/R*~ ' ( 6 6 ) 

where S is again given by (65). Using the w-values from Eq.(63) 

and an approximate value for alluminum alloy conductivity 

a « 3x10 sec" 9 we obtain from Eqs. (6U)-(66) 
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Q(LOX) * 1.3 x 104 , 

Q(LH2) « 1,8 x 10
4 . 

(67) 

If the energy U of a resonant mode is stored in a cavity, 

it decays at the rate 

0 = u exp (- -§V) 
o * K 2TTQ J 

(68) 

where t is time and U is the energy at t = 0 . If there is a 

power source P in the cavitys we will have 

dU 
dt 

- - vU + ? v = 
(0 

2TTQ 
(69) 

For constant P s a stfeady-state will be reached in a time (response 

time) of the order of v . From Eqs.(63) and (67) we get 

T (LOX) « v"1(L0X) = 1.1 x 10"4 sec. response 

T (LH0) « v"*
1(LH0) = 4 x lo"

4 sec. response 2 2 
(70) 

From Eq.(69) we find the power necessary to maintain a 

given energy in the cavity 

= vU (71) 

The energy U can be easily computed in terms of the electric field 

inside the cavity |9 | 9 
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2TT R 
U(LOX) = -~- K2/ d*/ rdr ^ ( X Q - ^ / R ) * 0.85 K2 

o o 

where the electric field is defined in Eq. (44) , and U and K are 

given in joules and volts/meter respectively. The value of K is 

determined by the sensibility of the receiving antenna (see Sec. 

IVW.5)j an electric field intensity of 10 V/m. is well within 

the sensibility of present antenna technology. 

For r = 0.6 R , J
o*

X0i r^ R^ * 1/'2 a n d w e f i n d 

K(LOX) = 2 x io"H V/m 

and 

U(LOX) = 3.4 x 10" 8 joules. (72) 

Similarly, we obtain 

U(LH2) = 3 x lo"
6 joules . (73) 

From Eqs.(70)-(73) we get the power required for the measurements: 

P(LOX) « 0.3 mW , 

(74) 

P(LH2) « 7 mW . 

For the other two tanks not studied in detail in the last section, 

the power required would be of the order of the second quantity 

in (74). Thus, on the whole, a power of the order of 0.02 W will 

be required, intrinsecally, for the realization of the measurement. 
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IV. FINAi CONSIDERATIONS 

The cavity resonator gaging system for measurement of pro-

pellant tank content under weightlessness Conditions, is based on 

considering the tank as a resonant cavity, selecting an appropri

ate resonant mode whose frequency is determined on the ground 

under empty (or full) conditions, and detecting the new value of 

the frequency of that mode under the particular conditions of pro_ 

pellant content and configuration at a desired time. 

The essential elements of this method would be a sweep 

oscillator, a coaxial line that connects it to an input probe in 

the tank, a receiving antenna, and a detector which by means of 

a signal conditioner would allow digital reading of tank content 

to be performed inside the spacecraft. A coaxial line appears 

appropriate for the resonant frequencies found in the previous 

section. 

This gaging system satisfies well the general specifica

tions indicated earlier in this report. Specifically, little mod 

ifications of the tank would be needed (just introduction of a 

receiving antenna and an input probe), weight and size of compo

nents are minimal, and the response time and power consumption of 

the method are optimal. 

The measurement error of the method, calculated in this 

report for some Shuttle tanks,is reasonable, although for certain 



H5,-

propellant configurations exceeds somewhat the bounds suggested 

in Sec.II.1. It should be understood however that the calcula

tions just mentioned were performed,for every tank considered,on 

the basis that the selected mode was the fundamental one. As 

observed in Sec.Ill, the measurement error would decrease if an 

(appropriate) higher mode were selected. The experimental detec

tion of such modes is made easier by the fact that the Q - factor 

of the tanks is quite large (Q * 10 ) , and by the use of electric 

field sensors on the tank walls. These sensors would allow deter_ 

mination of mode characteristics - For the particular case of the 

Shuttle tanks, these characteristics , as shown in Sec.Ill, would 

be that the electric field of the mode were parallel,or perpendi

cular, to the main axis of the tank* or were independent of dis

tance along, or from, that axis, or of azimuthal angle around it. 
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CRITICAL ACCELERATION FOR SURFACE TENSION 
GOVERNED PROPELLANT CONFIGURATIONS 

Bond Number B = £ ^ = 1 

P = Density 

L = Characteristic lenght 

a*= Critical acceleration 

cr = Specific surface tension 

L cm. 

1 

to 

\0* 

fO3 

JO4 

a L H 2 cm/sec2 

32.5 

0.325 

3.25 - 10~B 

3.25«/<Ts 

3.25«f0~? 

a * L O X c m / W 

9.14 

9.14 MO" * 

9.<4'fO"4 

5/4 * / 0 " 6 

S.f4 «/0"a 

TABLE I 



PHYSICAL PROPERTIES OF THE PROPELLANTS 

LOX LH 2 

BOILING TEMPERATURE AT ATMOSFERIC PRESSURE T*(N.B.P) 90,03°K 20/K 

DENSITY AT ATMOSFERIC PRESSURE (LIQUID PHASE) _f?" _ 1,44 %i 0,071 %l 

SURFACE TENSION (IN CONTACT WITH ITS VAPOR) (T , 1 3 . 2 ^ 2,31 ̂ £2 

RELATIVE DIELECTRIC CONSTANT £ /£ 0 1,507 1,228 

TABLE II 



MAIN TANK 

SECONDARY TANKS 

1.70 m 

e 
o 

21 

"Si 

£ 
QO 

1* 
:. 71.20m3 

Thick. CU8mm 

Vol. 8.35 m3 

Thick, 0.91 mm 

FIGURE I 
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LIQUID CONFIGURATION WHEN SURFACE TENSION DOMINATES 



(d) 

LIQUID CONFIGURATION WHEN ACCELERATIONS DOMINATES 


