INSTITUTO NACIONAL DE TECNICA AEROESPACIAL
«ESTEBAN TERRADAS»

FINAL REPORT

«“ZERO-G GAUGING SYSTEMS«

CONTRACT No 17/8/4

Authors:

J. R. Sanmartin
E. Fraga
A. Mufioz

June, 1972

MADRID
SPAIN



FINAL REPORT

"ZERO-G GAUGING SYSTEMS"

CONTRACT No 17/8/u4

Authors:

J.R. Sanmartin
E. FPraga
A. Muficz

June,

1972




ABSTRACT

Various systems for measuring propellant content in
spacecrafts unde£ weightlessness conditions are reviewed.
The cavity vesonator method is found to be the most suit-
able measurement: technique. This method is analyzed in

detail. A determination of errors intrinsec to the method

is carpied out.
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STUDY OF VARIOUS TECHNIQUES FOR MEASURING PROPELLANT CONTENT
IN SPACECRAFTS IN WEIGHTLESSNESS CONDITIONS

I. INTRODUCTION

This is the final report of ELDO Contract No. 17/8/4
"Zero G Gauging Systems". It includes first the selection of a
promising system suitable for gauging liquid propellants con-
tained in the tanks of a spacecraftwith a specific application
to the tanks of the Shuttle vehicle (Orbiter); and second a

study of the selected system.

:

Propellant gauging in the Shuttle vehicle ppesents some
important difficulties and additional problems as compared with
the case of a conventional aircraft. Among these, the principal
is that the vehicle will be operating under zevro-g op low-g con-

ditiens during some stages of its operation.

Under stationary conditions in zero-g or low-g field, the
geomefrical configuration of the propellant in a spacecraft tank
is dictated by the surface tension forces. When the accelepra-
tion increases, the shape that the propellant will adopt, will
be depending upon the relative importance of the suyrface tension
forces. Viscosity forces may be neglected due to the fact that

the gradients of velocity that will appear in an gctual case will



be small.

The available experimental evidence shows that surface

tension governed configurations break up if the Bond number,

. Acceleration 'Forces L2a
Bond = : = P ——
Surface Tension Forces a

is greater than a number of the order of 1. {Table I).

This Bomd number criterion shows that the greater is the
tank the smaller is the acceleration that may disrupt a capillary

governed configuration in.it.

The Shuttle will be subjected to a great number of accel-
eration perturbations. Orientation maneuvres, separation and
docking of vehicles, equipment and crew movement, atmospheric
drag in low orbits, will produce a réndom distribhtion of the

propellant in the tanks.

For this reason the principal comstraint for the gaging
system in this specific case is the lack of knowledge on the pro
pellant configuration in the tank. Furthermore, the cryogenic
nature of propellants and the hazardous environment surrounding

the spacecraft has to be taken into account.

Another important requirement to be considered is to re-



duce the interference of the propellant gauging system with the

rest of the Shuttle vehicle.

In order to Ffulfill this requirement the selected system

should have:

a) Reasonable weight and size.
b) Low power consumption

¢} TFew tank modifications (holes, structures ...)



II. SELECTION OF A GAUGING SYSTEM



| I1.1 TECHNICAL SPECIFICATIONS

The details of the final configuration of the tanks of
the Shuttle vehicle are not yet known. For this reason, the

fravailable data will be completed with some reasonable assumptions.

pa*ta [

et ——¢

a) Propellants : LOX and LH, (Table II).

b) Size .and shape as given by. ELDO (see fig.1).

¢) Material of the tank wall: Aluminium Alloy (for this
study supposed rigid).

- d4) Inner PVC or PU foam insulation.
e) Tank vented. Pressure range form 17 to 30 p.s.i.a.
f) No provisions for bladder or any positive expulsion

method.

Assumptions

a) Numbepr of measurements is not limited, but these meas

urements may be discrete.
b) Overall response time: less than 5 seconds.
c) Initial ullage volume: 2% of total tank capacity.

d) Range of working temperature for the elements of the

system placed outside the tank: -50°C to +100°C.

&) Power suﬁply_voltage: 24 to 30 V D.C.



f) Accuracy: desirable +2% of full scale,

g) The output of the system should be processed in the

spacecraft.

I1.2 POSSIBLE SYSTEMS TO BE USED FOR GAUGING PROPELLANTS

Several gauging systems have been proposed in the litera-
ture as possible systems to gage propellant tank content in zero.g

conditions.

A list of these methods, including a brief explanation of

their working principles, is shown below.

Propellant FLow Integhation.~ The gauging is performed by meas

uring the propellant consumption by different methods.
!

Capacitance Sysiems.- They are based upon the variation of eleg

trical capacity between conductors placed inside the tank, as

the propellant is being consumed.

Jds0tope Teochnique.- These systems measure the absorption by

the propellant mass, of a nuclear radiation produced by a radi-

active source.

Pressure Response to Volume Perturbations.- Volume perturba-

tions are introduced in the tank and the propellant mass is


lyitQ.QKa.tlon*-

deduced from the measurement of the pressure response.

Thacern Gas.~ This method is based upon the measurement of the

partial density of a tracer gas, previousl& introduced in the

ullage volume.

Cavity Resonator.- The fundamental frequency of resonance of

the tank, considered as a resonant cavity, and being excited
|

by RF. would be measured.

A short discussion of the application of all the above-
mentioned systems to the Shuttle vehicle is included in the

following section,

I1.3 SELECTION OF A SYSTEM

Propellant FLow Integhratlon.- These systems introduce cumulative

errors due to the nature of the measuring method. In addition,
flow rate changes originated by throttling of the rocket engines
would make more difficult to carry out accurate measurements.
Those difficulties might be overcome, but there exists the fun-
damental problem of propellant losses through leakages or venting

which would not be detected.

Taolope Techniquesd.- This system requires a great number of

emitters and a very complicated hardware, if the measurements


He.Aona.tofi
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are to be independent of the propellant configuration inside the
tank. The analysis of the measurement data resulting from this
arrangement would be complex and the required hardware would be
cumbersome. Only a single emitter and the corresponding detec-
tor would be necessary in the case of tanks of aspect ratio of
50 or more. In this type of tank the utilization of isotope

techniques for gauging propellant would be of interest.

Pressunre Response to Volume Penturbations.- These systems have

been treated in the literature under the name of "Gas Law Sys-
tems". It would be possible to employ these techniques if the
volume perturbatiqns required to produce a measurable pressure

response were to be reasonably small.

For the Shuttle case, according to ELDQO data, for a tank
volume of the order of 200 ma,lif a pressure variation of 0.05
kg/cm2 is specified, the perturbation volume required will be
of 0.1 m3. This figure seems to be too high to be employed in

an actual system.

In the case of propellant tanks for satellite propulsion

(volume less than 0.1 m3) this system seems to be attractive.

Trhacer Gas.- The measurement is performed in this system under

the assumption that the mass of a tracer gas in the ullage vol-

ume of the tank is constant.



Tracer gas solution in the propellant, tracer gas losses
through the venting or propellant outlet or tracer gas leakages
make this assumption to be very doubtful. ‘This problem might
be probably overcome if a recalibration is carried out before
each measurement is performed. This would greatly increase the

complexity of the system.

Capacily Sysifem.- There is some experience in capacity gauging

of liquids. NASA awarded a contract in 1967 to study the feasi
bility of such metﬂod for use in spacecraft tanks. One of the
principal conclusions of this work |l | has been that, in order
.to perform a measurement independent of the bropellant shape it
"is required to establish an uniform electrical field inside the
tank. The electrical field would be obtained by giving an ap-
"propriate distribution of potentials to a number of conductors
placed in the inner surface of the tank walls. In some parti-
cular case (spheres, cylinders of high aspect ratio) a limited
number of electrodes would be required in order to produce an
electrical field sufficiently uniform. When the tanks have
another geometrical configurations, the problem requires a fur-

ther analysis.

The placement of electrodes in the inner surface of a
tank, including the insulation between their edges, would pose

some technological problems. If the number of electrodes is



not too large this problem appears to be feasible.

An important study which is required in order to estab-
lish the feasibility of a capacitive gaging.system is the defi-
nition of the method which would be employed for measuring the
electrical capacity existing among the electrodes when consid-
ering the propellant as a dielectric., It is thought that by
using the existing technologies it is possible to devise such
measuring system. However, the great capacity existing among
the electrodes and the tank wall will complicate considerably

the acquisition of an accurate measurement.

It has been concluded that although a capacitive gauging
system would be in principle’ feasible, the need of placing elec
trodes in the inner wall of the tank would make fabrication
complex and cumbersome. For this reason the capacitive gauging
system has been considered as an alternative solution to be
studied in case in which the most promising system,"Cavity Reso

nator System” as indicated below,would not be feasible.

Cavity Resonator Systems.- The idea of gauging propellant in a

tank considering it as a resonant cavity for electromagnetic
modes has been proposed in the past. The principal question on
which the feasibility of the system essentially depends, is

whether or not the frequency of resonance is influenced by the

+
t

propellant configuration.
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This is a difficult problem since its rigorous, theoretical
treatment requires the analysis of the Maxwell equations with very
complicated boundary conditions. In Part II of this report, this

problem is studied and solved.

The electrical properties of the propellants LH, and LOX
(see Table II) are adequate in order to use a gauging technique
of this type. They may be considered as good dielectrics with
extremely high electrical resistivity. On the other hand, the
relative dielectric constants are small enough to reduce the in-
fluence of different configurations for the same amount of propellant
in the output of the system and they are high enough to allow sus-
tantive change of résonant frequency between empty and full tank.
The existence of an inner heat shield will not produce additional
difficulties for the application of this method due to the fact
that generally the heat insulation materials are good dielectrics
and the foam structure increases this property . For all those
reasons the electromagnetic' waves will be attenuated very slowly
inside the tank, the Q@ of the cavity will remain in all conditions

very high and the power required in order to mantain the oscilla-

tions in the cavity will be small.

A rough estimation of the order of the resonant frequency
for the first mode has been done considering the largest LOX and

LH2 tanks when they are empty.




i1,

The first mode for the LH2 tank gives a resonance frequen
cy of:

fLH2 =250 Mc/s.

and for the largest LOX tank

fLOX =330 Mc/s.

Production, coupling and detection of such frequencies
to and from the cavity is well below the present state of the art
of the electronics., In general the technical details of this
method appear to be much less complicated than those of all

other methods.

’

A detailed review of all abovementioned methods can be

found elsewhere |2 }.



ITI. STUpY OF THE CAVITY RESONATOR METHOD
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As it is well known, the purpose of the cavity resonator
method is to infer the propellant content in a tank from the
shift in the frequency of one of the resonant modes of the cavi
ty; unfortunately, this shift should also depend, in general,on
the propellant configuration, and this can not be exactly pre-

dicted because of the weightlessness condition.

Previous theoretical and experimental studies [3| , |u]
!5[ of the configuration dependency have, in our opinion, been
unconvincing. This part of the report includes a theoretical
analysis of this point; we find that, in general, the frequency
gshift does depend on the propellant configuration. Nevertheless,
we also find that, under particular conditions of practical in-
terest, this dependency can be made acceptable so that the meas
urements of the frequency shift will indeed determine the pro-
pellant content. 1In particular, we show that this is the case

of the Shuttle vehicle tanks.

III.1 GENERAL FORMULA FOR THE FREQUENCY SHIFT

The microwave cavity perturbation method, a technique
frequently used in plasma diagnostics, is based on the fact that
the rescnant frequency of a microwave cavity resonator is changed

when a plasma is introduced inside the cavity. This problenm,
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which is mathematically identical to the present one, has been
extensively analyzed in the literature. Below, we resume the

main mathematical steps leading to a general expression for the

frequency shift |e||7] .

Consider a cavity of arbitrary shape and conducting
walls, which in a first case is empty, and in a second case is
filled with a substance of dielectric constant € (in general a
function of space coordinates). Writing Maxwell's equations for

these two cases, we have |8]

- -
VAE; = -jou K, , (1)
> _ R > (

where i=1 for the first case, i= 2 for the second one, and
>

€y = 1,e,=¢ . E

_).
5 and Hi are the fields inside the cavity,which

i
are assumed to have a temporal dependency of the form exp(jwit).
3.
The boundary conditions are that, at the cavity walls, E; must
_>.
be normal, and Hi tangential, to the walls, that is

-+ >
Hin - 0 L] E - 0 L] (3)

From Egs. (2) (i=1, 2) we immediately obtain
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. > _ > > _
jsofv Eul - m2a—ﬁ1. L2dV = fv Eﬁ2 . VAHl By .VAH;IdV =
c ¢

z
c

+ > -> > > - +*
= j' E{lA E2-H2AE1:‘ . dl o+ fv Eii.VAEZ-HQ.vAEl:IdV ()
c
where VC and ZC are the volume and surface of the cavity respec-
tively, and we have used Gauss' theorem to obtain the last equal
ity. Because of the second boundary condition in Eq.(3) the sur

face integral vanishes.

Similarly, from Eqs.(1) (i =1,2) we get

. > > - = <> _ 2>
Cc c

and finally, from Egs.(4) and (5), |6]
-> >
eofvc(e - 1)E, . E,dv

= - . (6)
w > >
2 sojv E, . E,av - uojv Hy . fi,dv

2
o) ¢

Usually the microwave cavity plasma diagnostic tecnique is used

under suéh conditions that e &« 1 so that Wy W and Eq. (6)

1

becomes |6 |
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- 2 - 2
e,/ (e-1)E24V [ Ce-1)EZ,,
UJ2 - w1 VL‘. Vc
o - ) > = - > (7)
wy e,/ E2av - u [ mZav 2] EZav
VC VC VC

where we used the equality

2 z - 2
sofv E24dV = uofv HZdv (8)

c ¢
which can be easily obtained from Eqs.(1) and (2) (i=1).

In the case of interest to us, we have € = e {a constant)

in the region occupied by the propellant liquid, and € = 1 in the
rest of the cavity, since the propellant vapor has a dielectric
constant practically equal to unity. Thus, € is then a discon-
tinuous function; it is possible to show however that, since H2
is still continuous, Eqs. (6) and (7) are valid even for € discon

tinuous.

Equation (6) takes now the form

€y (sL- 1)] ﬁi . Ez av
1 vc

= - — (6a)

-+ Y
eofv E,. B av - uojv Hy . Hyav
c C

where VL" is the volume occupied by the liquid. For ep, 1,
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Eq. (6a) becomes

- . . (7a)

We have further found that Eqs.(6) ard (6a) can be simpli

fied by using the equality

.

i - > _ &
| ﬁin E,dv = —uojv i, .0.dv . (9)

1772
c c

To derive Bq.{9) we wmultiply Eq.{1) (i=12) by ﬁl and integrate

over VC to obtain

. -+ > > > _ >
-3w2uofv Hy . Hpav = [ R .vaBav=[ (E
VAR, av = [ E, . VAT, Qv (10)

where Eq.(3) was used. Multiplying Eq.(2) (i= 1} by ﬁz and

integrating over Vc ve get

. > . -+ >
:mieofv B, Bjav = [ E,.vAHav . (11)

< o]

From Eqs.(10) and (11), Eq.(9) follows immediately.
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Equation (6a) then becomes

B LT, av
Wy, = Wy (1 . wi) IVL 12
-—=) = (e, - 1) . (6b)
“2 vy L j o EEav
v
c

For e; = 1 , we write this equation as

(1)2 - ow w1 IVLEldV
— (1 + -_....) * - (e -1) ————— 5 (7b)
2 w2 b [, E2av
v "1
Cc
this equation should extend the range of validity around ep =1
of Eq. (7a), since (7b) is exact Ffor the limiting cases v, *0
and VL = Vc

Finally it should be pointed out that it the frequency
shift is measured respect to the frequency corresponding to full

tank conditions, we would have

-
12 [ E, . Eav
i e, ~ 1 v,
— - = ] o e (6c)
© e e -
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= 1 - (7¢)

1

where Vv Vc - V. (the volume occupied by the propellant vapor)

L

t ~
and w = 1/2
1 wlleL is obviously the frequency corresponding to a

full tank condition.
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II1.2 FREQUENCY SHIFT FOR 8y CLOSE TO UNITY

Equation (6b) clearly shows that the frequency shift,w,-w,,

does depend on the liquid configuration. To determine that de-

pendency would be a quite difficult task because in the integral

> ->
f Ei' E2dv not only the region of integration VL , but EQ itself,
v

wi&l depend on the particular configuration existent.

A case for which the determination of that dependemcy be-

comes quite simple is the limit e =1, since Eq.(7b) does not

L

A -). [ o - .
involve E2 s and for relatively simple cavity geometries E can

1

be obtained once a resonant mode is selected.

This limiting case has the additional advantage that for
particular resonant modes {perhaps not thle fundamental one), the
_}
integral IV E%dv can be shown to be weakly dependent on the con-
L

On the other hand for e, not too close to

figuration of V L

L

e
unity, E, will certainly depend on the liquid configuration, so

2
that it appears impossible to make IV El' ﬁgdv independent of
L

the configuration, by selecting a particular resonant mode ﬁl'

It is fortunate that for our case e, is not far from unity

L
(Table II), so that Eq.(7b) can be approximately substituted for

Eq.(6b). It is convenient nevertheless to improve upon Eq.(7b)

by carrying out an expansion of E in powers of sL-i, and retaining

2
terms beyond the lowest onme in Eq. (8&b).
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To this end, let us consider the tank empty. By taking

the rotor of Eq.(1) and using Eq.(2) and equation

V.E=0 |, ' (12)
we get
V(V.E) - V2E = -V2E = w2y e B . (13)
The equation
+
V2E + AE = 0 (14)
(where X = wzuoeo)-for an arbitrary cavity, with boundary condi-

tions at the walls

> +

nALE=0 (15)
(n being the normal to the wall) and the auxiliary condition Eq.

(12) is known to have a discrete, numerable spectrum of eigen

_.).
values An and eigen-functions En s such that

> >
VZE + A E =0 , no=1,2, .- 3 (16)
s th —_
2 - t d .
w2 An/uoeo is the frequency of the n resonant mode En

Since Egs.(12), (15) and (16) are homogeneous, En can be

normalized:

[ B2av=1 . (17)
On the other hand we have

!v En . Emdv =0 , nm . (18)
[o]
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To show this we multiply Eq.(16) by Em and integrate over the

volume of the cavity Vc

R .
[ E_ .(v2Eddv + A [ E .E av =
m n n m n

VC VC

> -> > > >
= f V.(E .VE)av - [ VE_ ¢ VE dav + A [ E_.E dV=0. (19)

v v y o
[#] C C

Em °VEn inside the third integral above is the product of the

> > >
vector Em with the tensor VEn 5 VEm : VBn is the tensor product

of VEm and VEB . Similarly we get
-> -+ > > >
[ v.(E_ .vE)Dav - [ VE : VE av + A_[ E_.E dV = 0. (20)
v v v
C c C
The difference between Egs.{(19) and (20) yields
- -+ - > > _ > +> >
(Am-xn)fv E_ . E dV = Iv V.(E .VE_-E .VE )dv : fzdz.(Em.VEn-En.VBm}.
c c ¢

Using Eq.(15) the surface integral becomes

EnN EmN
fzdz E oy - EON R (22)
c

that vanishes because from Eqs. (412) and (15) ,

dE
BBnN « EnN , DN, E (23)
e SN mN
N

where the proporcionality factor depends only on the local geometry

of the wall; 3/3N is the derivative along the normal to the wall


dE.CE.VE-E.VE
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and E_ E are the normal components of En » fm at the wall.

N * "mN

Under very general conditions the orthonormal system of

e
- -
eigen-functions {En} is complete, so that any vector function A

>

satisfying condition A = 0 at the cavity walls and the auxiliary

condition V. X = 0, can be expanded as a series in terms of {En}i

It is evident that when the cavity ig completely full,the

2 1 ¥ = . 3 +T:+_
eigenvalues will be An An/eL 3 obviously El Z En

Let us now consider that the cavity (tank) is partially
filled. The best way to proceed is to assume that the transition
of the dielectric constant e across a vapor-liquid interface is
not discontinuous, but varies continuously through a thin layer

from 1 well inside the vapor to e, well inside the liquid; in the

L

results the case of interest here is recovered by letting the

thickness of that transition layer become vanishingly small.

Then instead of Eq.{12) we will have

or v . . Vline , (12")

so that instead of Eq.(1%#) we will have

> > -+
V2E + V{E.Vlne) # €AE = 0 . (14')
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Equation (15) remains unchanged.

For ¢ + 1, Eqs.(12') and Eqs.{(14') go into (12) and (14),.
For ¢ = 1 the eigenfunctions En* and eigenvalues Aﬁ will be very

3=
close to En and An. Writing

E¥ =F + B . +EF . 4+ (2
n _ “no nl n2 cre %)
A o= + A + A + (25) i
n no nil n? e
h E =% A= A d E d A £ ord £ ol
where E_ = E , A =X , an ni 2D ai 2re of order o

(8 being e-1), Eqs.{24'}), (12') and (15) produce

A d
i

E A A 8B V(E  .98) =
nil nofn1 ¥ niEno * *ho Eno + (Eno' y=0 ,

N N - - (26)

2'+
v En2 * AnoEnQ + AniEni * An2Eno + AnlaEno

e

N

-
2 =
V(Bno. Vé<) = 0

no nl
(and similar equations for i=3, U4, ,..);

no

<1
i
i
$
(23
<l
o
-

(27)



.
nAE . =0 ,1=0;1, 2, ... ° (28)

it is clear that Eni (i=1, 2, ...) does not satisfy Eq.
(12), so that Eni (i =1, 2, ...) can not be expanded in a series
of the eigenfunctions for the empty cavity, {En} . Nevertheless,
since any vector function can be expressed in terms of the gra-

dient of a scalar and a divergence-free vector, we can write

+> > >
Eni = vwi + T . v . r, = 0. (29)
and therefore, from (27) and (26) we have
-
v2w1 = -E_ . Vs
(30)
v2y, = - T Y .ve + L3 | vs2
¥, (V¢1+F1} + 5B -
and
27 4 AR =
v ¢ Anrl + An (6En+vw1) * AnEy ¢ 0
(31)
27 ¥ A (Vo +6T 487 A T +6F 4 A B o=o0
v F2 +Anr2 + A ( ¢2+ 1t ¢1} + A ( JHOE + ¢1} + ann
Equations (30) are to be solved with the boundary condi-
tions

n A Vg =0 (32)

at the walls, or equivalently, wi = gconstant at the walls. Since
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-3
I', satisfies Eq.(12) and is tangent to the walls, it can be ex-

panded in {En} . We thus write

—_ > |
r, = ZGPEP . (33)
P
and then
> -+ >
ZGP(An—AP) EP + An(65n+vwi) + A ,E =0 . {3w)

p

-
Multiplying Eq.(34) by E  and integrating over the entire cavity,

we get

> > > > >
- §E_ . . =
a (A -2 )+ A [ E LE av+ » [ (8E_LE +E vy )av = 0 (35)

,For m=n , we get

=2
Aog o= - A8 Eav (36)
L

where we have used the result

> - =1 1 =
iv B . vy,av = [v V.(E_¥,)av - !v (V.E )¥,dvV =
c Q c

=f\b1Ensd-£EIE¢d‘§=0
b

o = —2DB_ s [ F .% av (37)
- L'y ! *

-3
We can set L =0 , by requiring normalization of Bi to order § |
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that is

2
- + - 9 e > -
1= [ (EHav = é t2av + 2 [ E_. (Vi 420 E YAV = 1 + 2 o

Ve c Ve P

Multiplying the second Eq.(31) by Eg and integrating over

the cavity we get

>2 > > _
Aoz * Aaq8y é Efav + A £ dVE_ .[Eg + svw;] = 0
L c

so that finally

B > >
Moo= A f1-8 [ E2avee? [ Eav -87 2
vy, . VL pP#n (AP/An) -1

{(5 En.Epdv)z
L

- v §3
GLI av E_.V¥ +o( Lil .

A
Substituting back Pz for A/UOSO , we obtain
- -+ - 2
8 - 2 .
" _ L(x fVLEndV) (fVLEP E_dv)
w2 n 62
( p) T ———— |1 + = - o5 -
148,x | 1+ 6LjVLEn av pER (wp/wn) -1
~ 82 av E_.V¢, + 0(83) (38)
L v n 1 L
L
where

2 _—+
v2¢,= -E_.V(8/6.)
and ¢1 is a constant at the walls. This constant can be chosen

to be zero. Then we have

1 § =
4’1 = L7 {; GDV.(-;S—“I: En)dv (ag")

c

where GD is the Green function for Laplace's equation inside the

cavity, with Dirichlet conditions.



270"’

Calling the last bracket in (38) 1+ A, we get*

Vv (w_/wk)? -1 w2
L -4 : n_n 3 S b (39)
%
Vc 6L 6L(wn)

If the last term can be heglected above, V_ can be deduced by

L
measuring mg (the resonant frequency of the selected mode at
the desired time) and using Eq.{(39). It is clear that the error

of the measurement is due to the fact that, in general, A does

not vanish and depends on the (unknown) configuration.

%

* Using the symbols ¢f. BSeo.lilil~1, w n

En = Ei : ﬁg E2'

8 0y, 5 0, Fwy s and

n

i
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I11-3 DISCUSSION OF THE MEASUREMENT ERROR

A) Genenalf Considerations

The analysis of the last section yields Eq.(39) for x .

If one takes the approximation

X [:(wn/w::)z - 1]5;1 (40)

as the value predicted by the analysis, the resulting error is

[ B2 av
2 n
A v,
Ervor (x) = ¥n x| 1 -
¥y 2
(wn) 6L X
2
(f £ .% _av)
vy, P B
5 L 8 z
-5, 3 - -8, [ E_.V¢,av . (41)
p#n (mp/wn) - 1 VL

Error (x)l vanishes, of course, for x =0 and x=1, and will reach

maxima not near to the ends of the range 0 < x < 1 .

In the general specifications of this study a maximum error
in the determination of propellant content, of 2% of full scale,
was established as desirable. It is clear however that such ac-
curacy is really necessary when the tank is far from being full.

To make definite the discussion we shall require below that

'Error {x)| in (41) be less than 0.02 for x < 0.10, and less than

0.05 for x = 0.50.
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For GL sufficiently small the last two terms in Eq.(41) can
be discarded. How small GL has to be in this respect, must be ver
ified in every particular problem; such verification is not great-
ly difficult, however, for tanks with shapes that not differ great
1y from relatively simple geometries, as it will be seen below for
the Shuttle case. Then, the error bounds above indicateqd imply

the following conditions:

-> = .
f 223y < 0.02 ’ {x=0.10)
n
v
X i - ....-..-...I_I__.-._-.
X (42)
< 0.05 s {x=0.50) ,
or equivalently,
> >
[ E2av [ E2av
g r v ©
L c .
0.80 < v v <1.20 , (V. =0.10 v}
c
-3 >
[ E2av [ E*av (43)
n n
VL Vc
cho < VL vc <1u10 (VL::O'SO VC) .

The meaning of these requirements is that the mean valye of B2
n
over the liquid region must be close, within certain bounds, to

the mean value fé over the entire tank. Obviously sych require-
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ments are, in general, the easjer to satisfy, the larger the val
ue of n , since the eigenfunction ﬁn becomes more camplicated (it
has mope nodes) as n inecreases. There are, however, limitations
on the magnitude of n , because the resonant frequencies become
too crowded for n large enough. For every particular problem, a
suitable mode (wn and En) should be selecteq; the way to carry

out this, will be illustrated below, for the Shuttle case.

B) The Shuttle Case

We will first study in detail the case of the small LOX
tank (see Fig.1). The first step of the analysis is to determine
the eigenfrequencies and eigenfunctions, w and En s of the tank,
so that a suitable resonant mode can be selected. In most cases,
the tank shape can be approximated by a relatively simple geometry
so that W and En can be calculated analytically and the general
characteristics of any mode can be approximately determined.(Nev-
ertheless, the present method can also be applied to complicated
tank shapes, by measuring experimentally the characteristics of
the resonant modes). It should be understood that the value of
w used in Eq.(39) should be found experimentally by identifying
‘in practice the mode selected analytically, the real and the the-
oretical modes having very similar characteristics, because, as

it is well known, the eigenfunctions and eigenvalues of Helmholtz's

1
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equation (14), for two cavities that differ little from sach other,

are approximately the same IBl .

The LOX tank considered can be approximated by a cylinder
of R = 2.0 m. radius and L =2:00 m. length. The resonant modes of
a cylindrical cavity are well known |9i . There are two kinds of

modes, TM and TE modes. Their eigenfrequencies and eiéenfunctions

[

are:?
. 2 /2
N
w = i of + mey
1/2 2 2 /
(uoeo) R L
cos od
- TYZ T
™ < E, = Kocos (ME}g, (x4 £ (414)
sen 0¢
. 2 cos o
By = -k = sin(TE)v, |5, (x4 & :
Lix sen ¢
op
\,
1/2
w = B + ,
172 2 2
(uoeo) L
TE < E, =0,
cOs a¢
&* R mTYZy = iy
E, = K'sin (-%MJ uzt\Vl Ja(x&B ﬁ) ’

\ Sen ad
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where Ez and EL are the components of the electric field parallel
and transverse to the cylinder axis; ﬁz is a unit vector along
that axis; V; is the transverse gradient; z,r and ¢ are defined
in Fig.II; K and K' are normalizing constants; Ja is the Bessel
function of the first kind and o order; X,p and x'uB are the B

zero of J (x o) = 0 and J!Gfap)= 0 respectively, and v is an in-

teger number.

Tt is obvious that if the electric field were constant in
space, the first term in Eq.{(41), would vanish. Imn our case,the
mode that best approaches that condition, is a TM mode with
@ =y =0 . To make the experimental identification of such a

' >
mode easier, we choose B = 1 , so that our En will be

- -
E = uZKJO(xoi r/R) . (u6).

We can now discuss quantitatively the error of the measure
ment. Let us, first, assume that the last two terms of Eq.(41)
can be neglected. There are two limit situations in weightless-

nes conditions:

1) When accelerations are small, the liquid-vapor configu-
ration is governed by surface tension effects. The contact angle
of LOX is known to be close to zero (perfectly wetting liquid).

As it is well known, for such liquids, the liquid-vapor interface
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is a constant-curvature surface, concave toward the vapor phase
liOl . It is clear that for this tank, the propellant will adopt
almost always the configuration shown in Fig.III (a), as long as

its volume lies between 16.7% and 66.7% of the total volume,

R 2R
< < -
3T X 1 T (47)
Writing Error (x) = 4, +2, , where 2, is the first term on the

right side of (41}, and Q, is the sum of the other two terms, we

2

will have

v 5,
= - i
2 = [ E2av
¢ VL
v v
=v1~ 2 . f#2av+ [ B2 av
n
c c V1 V2
v
= [ £2 av - —2 (48)
n
v v
2 c

where vy is the volume of that part of the tank below the M-N sec

tion, and V2 is that part of Vi

hemisphere of radius R); the first and third terms in the second line

occupied by the vapor (which is a

of Eq.(48) balance each other, since fn does dot depend on z . In

serting (46) in (47) we get
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2 R ) 5 5
; v £ d¢£rero(xoir/R)/R -7
V2 ’ 2e ?“d¢?rer2(x r/R) L’
o 5 o 01
- “zﬂﬁiigm e 0.424% - 0.333 = 0,09 s (ug)
mR2L

by.numerical integrations, and substitution of the values of Xgq s

R and L.

It is clear that 91 g is independent of the liquid con-
tent for the range given in Eq.(47). When X becomes smaller than
0.167, 91 will de;rease as it is easy to verify [Ehe volume V2 in
(48) becomes smaller than a hemisphere, while it gets closer to
l

‘ 2) When accelerations are dominant, the liquid will adopt a
configuration, of the type shown in Fig.IV, that is, with a plane
liquid-vapor interface. For configuration (a) of this figure @,
vanishes. As the angle between the cylinder axis and the normal
to the interface plane is increased, 91 remains, obviously, zero
until configuration (b) is reached. When that angle increases
further and the tank is 10% filled, it is clear that 91 becomes
positive and reaches a maximum when the liquid adopts the limiting

case (d). If the tank is 50% filled, @, remains always zero. The

1

maximum of @, for x=0.1 is easy to calculate. We have
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R $(r)
i rerg(x01r/R)2£ dé
- - c - =
@, = x = — & 0.1-0.021 = 0.079 , (50)
£ rdr Jg(x01 r/R) £ do

where ¢(r) = cos_i(rc/r) and r_ = 0.69 R [Eee Fig.IV(di].

Let us now consider 92 . This quantity is very easy to com-
pute for configuration (a) of Fig.IV. We first need to explicitly

obtain @, . From Eq.(38') we get

2
¢, () = —eum)" 1} En(?j) . v'GD($,?')dv' (51)
Vi
so that 92 becomes
o o 2
(J Ep.Bndv)
v § > > P -+

f, = -8, I L + L f dvf dv*En(r)En(r'):Vv'en(r,§v),

p#n <“’p/°’n>2 -1 Bwo Vv,V

. ) (52)

As it is well known, Green's function for a cylinder with Dirichlet

conditions is IQI

o o« o0 . - [ T )
GD(;’;') = 8 by z r eic(d-d )sin(l%g} sin(xjfﬁ}

LRZ a=-x B=z1 y=1

§

Ea*‘i(x“B)J . (53)

After long and tedious manipulations, (52) can be written as

7

X 2
3 (kg /R) 3y (g pnh) fl“(_g-é) RyeL)
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- B x2 /R ahs
R, = 8, & (f EnEpde)z 1+ - , (54)
ptn V, (my/L)2-(x,, /R)

-+
where we used the fact that En K qun s 50 that only the TM modes

contribute to the series in the first term of (52); the p-index
represents the pth combination of the o , B and y indices, and

E has been renormalized to have f E 24V = 1.
pz y Pz
¢

For configuration (a) in Fig.1IV,

I !R IQﬂ cos of
EE _dVs{ J (x../R)J (x _.v/R) do {(55)
VLn P2 s © 01 o T oB o sin a¢

so that only the a= 0 , B= 1 values need be considered in (54).

Then we have

R 2 xL 2
- 2ﬁfrero(x01 r/R)£ dz cos(ﬁYz/LE] Xg4P
Q, = §_ £ ° 1-( )
2 L Y=1 R 2 R 2 TYR
2ﬁL£rer0(x01r/R)2w(L/2)£rero(x01r/R) -
_ » =
o X..0D
- sen {(Tyx) _ 01
. 26LY£1 = 1 - (D)

% ,L %2 x(1-x) _ -
-GLX(l-X)l} 0]1' } 3 - {{'x- _x_(_;__}_t_l E.?ix(i—-x)-:l;{ .(586)

in (56) occurs for x = 1/2 ,

1

2

The maximum of |Q
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2, (x=14/2) =~ -0.11, (57)

The reason why IQQI reaches such a relatively large value is that
obviously the configuration of Fig.IV(a) brings in modes that are
z-dependent (y# 0), with o and B the same of the selected mode
(=0, B=1); for such modes the quantity inside the bracket in Eq.
(54) is small (a nearly-resonant effect). On the contrary, for
configuration IV (d), only modes with y = 0 are brought in, so

that there is no such effect and 92 will be much smaller. Config-

urations like IV(b) and IV(e) will present @, values that lie be-

2

tween those extremes; for configuration III(a), R, will be close

2
to the wvalue for IV(a).

In setting Error (x) = g, + 0, in Eq.(41) we neglected
terms 0(5%). Since @, = 0 for Fig.IV(a), and IRQ| can reach up to
0.11, it would be convenient to.calculate the terms 0(6%). in
fact, for such configuration, it is possible to exactly calceculate
w: , and thus find out the importance of the terms O(GE) and beyond.
To this end the equation

2% f %
v Enz + AneEnz = 0

with ¢ = € in the liguid and ¢ = 1 in the vapor, mugt be solved
with boundary conditions Ezz = 0 at r =R, BE%Z/BZ = 0 at_z=90, L,
and the usual conditions for the interface of two dielectrics

satisfied at 2z = xL . After cumbersome transformations, we get
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tan[f(yeL-l) Lx01/§] = e (1—y)/(yeL—1iJ tanhtfl-x)

x (1—y)1/2Lx01/RJ (58)

where y = (mg/wn)z. This equation gives y as a function of x ,

and may be compared with Eq.(40), that is,

y = (1+6Lx)*1 (59)
For x = 0.43 we find from (58) that the error of Eq.(59) is
Error (x) = -0.07, and for x = 0.19, Error (x) = -0.041. It is

clear that retaining terms 0(6%) in Ervror (x) reduces the error.

As it can be seen, the measurement errors,although reason
able, exceed somewhat in some cases the error bounds previously
suggested. It should be noted, however, that the selected mode
is the fundamental one, that is, it has the lowest frequency of
all modes; this makes mode detection extremely simple. It is
¢lear that if one would have chosen a higher mode, the error of

formula (40) would decrease.

Let uys now ¢onsider the larger LH, tank (Fig.1). This tank

2
can be approximated by a cylinder of length L = 20.3 m and radius
R = 2,1 m. The first point to note is that for such large L/R

ratios, the "vresonant" effect previously noticed when discussdng
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the @, term, becomes quite large [%ee Eq.(SSi] . To avoid this,

we Sel§0t the first TE mode, which has a =.1, B =1,y =1. This
mode has a,z“depenéency, so that the ébove gffgct.is much less
important. For suech large L/R ratios this TE mode is the funda-

mental one, as can be seen from Eq.{44).

We first consider the case when accelerations are dominant.

For the configuration of Fig.IiV(a) we have for 9,

xL - L - ""1
f, =x- £ dzsin?(wz/L) f dz sinz(vz/LiJ = (sin 2mx)/27. (60)
)

For the configuration of Fig.IV(d) we have @, = 0 for x = 0.5,

and for % = 0.1

2 2
R ¢(r) J,(x3,2/R) J1(x},r/R)
/ rdr2f { sind + *1173 R cos¢J
P I“c —
=2 R om e
1 Jy (x7,r/R) 2 X, ,J (x] 1v/R) 2
frdr f d¢ [ 11 sin¢} + { 11 2 Ril cos¢}
(o)

(61)

where r., = 0.69R, and ¢(r) = cos_i(rC/r); then

Qi = 0.1 -« 0.022 = 0.078,

1
1
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For configuration IV(a), 92 can be calculated as in the case of
the small LOX tank, but it is as simple to compute exactly
Error(x). Following a mathematical development quite similar to

the one leading to Eq.{58), we obtain

Lx! ey'-1 Lx]
teqy oo L (A - vaqyi/2 14
tan x(eLy 1) % = ( ) ) tan](1~-x)(y*-1) R (62)

2 2
where y' = (wilmn} 1+ (WR/ini)—1sand when y' < 1, the right-

hand side of Eq.(62) should be

1/2

£
- ("ézthJ tan (1-~X)(1-Y')1

-
72 M|
R ]

s e

y'-1

for x = 0.208, Error (x) % 0.067, and for x = 0.30,Error(x)=-0.073.

For the configuration of Fig.Iv(d), 92 is negligible.

For the configuration of Fig.III(a), Error (x) is close to
its value for case Iv{a). It can be verified that the error for

configurations III(b) and (c¢) is smaller.

The analysis for the other two tanks, is identical to the
preceding one. For gll these three tanks, the error can be de-
creased by choosing higher modes, as in the case of the small LOX

tank. |
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I11.4 COMPUTATION OF RESONANT FREQUENCIES, RESPONSE TIME AND

POWER CONSUMPTION

For the tanks consideped in detail in Sec.III.3, Eqs.(u4u4)

and (45) give the frequencies of the selected modes

w (LOX)

i

722 MHz

(63)

i

o (LHy) = 287 myg .

For the computation of the time response of the gaging sys

tem it is necessary to Previously calculate the Q-factors of the

tanks. TFrom Ref.l9|, We have
i L
Q(LoOX) = —/—— L 1
2m S "1 + L/R (%)

where 8 is the skin depth,

5 = C(2ﬂwg)_1

. (65)
and ¢ is the electrical conductivity of the tank walls. We also
have

1 L 2 /R2
QlLH,) = L 1+ 0.3u4 L2/ .
2 b 8 1+ 0,209 L/R + 0.242 TL.3/R? ’ (66)

whete § is again given by (65). uUsing the w-values from Eq.(63)

and an approximate value fop alluminum alloy conductivity

17 -1
o = 3x10"" sec  , we obtain fprom Egs. (64)-(66)
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Q(LOX) = 1.3 x 10% ,

(67)
Q(LH2) ® 1.8 x 10% .,

If the energy U of a resonant mode is stored in a cavity,

it decays at the rate

= L
U = U exp ( 270 ) (68)
where t is time and Uois the energy at t=0 , If there is a
power source P in the cavity, we will have
du = - 3wy + P 5 v = 9 . (69)

at

For constant P , a steady-state will be reached in a time (response

time) of the order of v'i. From Egs.(63) and (67) we get

y

(LOX) = v_i(LOX) i.,14 x 10 ' sec.

T
response

nox 10“4 sec. (70)

-1
reSponse(LH2) =V (LHZ)

From Eq.(68) we find the power necessary to maintain a
given energy in the cavity
P = vU (71)

The energy U can be easily computed in terms of the electric field

inside the cavity |9 | ,
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2w R
o L 2 2 . 2
U(LOX) = —— K £ d¢£ rdr J2(x,,2/R) = 0.85 K

where the electric field is defined in Eq.(#4), and U and K are
given in joules and volts/meter respectively. The value of K is
determined by the sensibility of the receiving antenna (see Sec.
IVe.5); an electric field intensity of 107" V/m. is well within

the sensibility of present antenna technology.

-

For r = 0.6 R , Jo(x01 r/R)} # 1/2 and we find

K(LOX) = 2 x 10™ " y/m
and
U(LOX) = 3.4 x 10”2 joules. (72)
Similarly, we obtain
U{LHQ) = 3 x 10-6 joules . (73)

From Eqs.(70)-(73) we get the power required for the measurements:

P(LOX) =~ 0.3 mW ,
(74)

P(LHQ) = 7 mW .

For the other two tanks not studied in detail in the last section,
the power required would be of the order of the second quantity
in (74). Thus, on the whole, a power of the order of 0.02 W will

be required, intrinsecally, for the realization of the measurement.
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1v. FINAL CONSTIDERATIONS

The cavity resonator gaging system for measurement of pro-
pellant tank content under weightlessness conditions, ig based on
considering the tank as a resonant cavity, selecting an appropri-
ate resonant mode whose frequency is determined on the ground
under empty (or full) conditions, and detecting the new value of
the frequency of that mode under the particular conditions of pro

pellant content and configuration at a desired time.

The esgential elements of this method would be a sweep
cscillator, a coaxial line that connects it to an input probe in
the tank, a receiving antenna, and a detector which by means of
a signal conditioner would allow digital reading of tank content
to be performed inside the spacecraft. A coaxial line appears
appropriate for the resonant frequencies found in the previous

section.

This gaging system satisfies well the general specifica-
tions indicated earlier in this report. Specifically, little mod
ifications of the tank would be needed (just introduction of a
receiving antenna and an input probe), weight and size of compo-
nents are minimal, and the response time and power consumption of

the method are optimal.

The measurement error of the method, calculated in this
report for some Shuttle tanks,is reasonable, although for certain

(o ‘ ‘ i
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propellant configurations exceeds somewhat the bounds suggested
in Sec.II.1. It should be understood however that the calcula-
tions just mentioned were performed,for every tank considered, on
the basis that the selected mode was the fundamental one. As
observed in Sec.llI, the measurement errcor would decrease 1if an
(appropriate) higher mode were selected. The experimental detec-
tion of such modes is= made easier by the fact that the ¢ - factor
of the tanks is quite large (Q= 104), and by the use of electric
field sensors on the tank walls. These sensors would allow deter
mination of mode characteristics. For the particular case of the
Shuttle tanks, these characteristics, as shown in Sec.lIII, would
be that the electric field of tﬁe mode were parallel, or perpendi-
cular, to the main axis of the tank; or were independent of dis-

tance along, or from, that axis, or of azimuthal angle around it.
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CRITICAL ACCELERATION FOR SURFACE TENSION
GOVERNED PROPELLANT CONFIGURATIONS

Bond Number B=f
P =Density
L =Characteristic lenght
d*= Critical acceleration

L2-Jﬁ

q -1

=

g =Specific surface tension

L cm. AT H, cmfsec?| L 0X e,
{ 32.5 9. 14
0 0.325 9.44=10"%
10 3.25<107° | 9L ={07"
{03 3.25+107% | 9144 +107°
{0% 3.25<107" | 9.1k <1078

TABLE |



PHYSICAL PROPERTIES OF THE PROPELLANT

BOILING TEMPERATURE AT ATMOSFERIC PRESSURE T(N.B.P)

DENSITY AT ATMOSFERIC PRESSURE (LIQUID F’HASE)

SURFACE TENSION (IN CONTACT WITH ITS VAPOR)

RELATIVE DIELECTRIC CONSTANT

TABLE II
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