A FEM-BEM coupling procedure through
the Steklov-Poincaré operator

R. Perera®, A. Ruiz’, E. Alarcon®
“Escuela Técnica Superior de Ingenieros
Industriales de Madrid, Spain

bEscuela Técnica Superior de Ingenieros de
Minas de Madrid, Spain

ABSTRACT

Many advantages can be got in combining finite and boundary elements.
It is the case, for example, of unbounded field problems where boundary
elements can provide the appropriate conditions to represent the infinite
domain while finite elements are suitable for more complex properties
in the near domain.

However, in spite of it, other disadvantages can appear. It would
be, for instance, the loss of symmetry in the finite elements stiffness
matrix, when the combination is made.

On the other hand, in our days, with the strong irruption of the
parallel proccessing the techniques of decomposition of domains are
getting the interest of numerous scientists, With their application it is
possible to separate the resolution of a problem into several
subproblems. That would be beneficial in the combinations BEM-FEM
as the loss of symmetry would be avoided and every technique would be

applicated separately.

Evidently, for the correct application of these techniques it is
necessary to establish the suitable transmission conditions in the interface
between BEM domain and FEM domain.

In this paper, one parallel method is presented which is based in the
interface operator of Steklov Poincaré.
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INTRODUCTION

As it is well known, there are many types of complicated boundary and
initial value engineering problems which can be soived applying the
Finite Element Method (FEM). However, important difficulties can
occur when attempting to solve an example which extends over an
infinite domain.

On the other hand the Boundary Element Method (BEM) has been
successful in treating problems extending over an infinite domain.
However, in other type of situations, such as material non-linearities it
is not so suitable.

With a convenient combination of both methods (BEM-FEM)
numerous advantages can appear. For instance, in many unbounded
problems the boundary elements can provide the suitable conditions to
represent the infinite domain while the finite elements are more
appropriate in the zones closer to load concentration where non linear
behavior could be expected.

That is the typical situation of fluid-structure or soil-structure
interaction. The structure must be analyzed carefully for design and then
it is interesting to get a detailed information over all the domain. On the
other hand, the rest is only interesting, in general, on its interface; its -
extension and homogeneity recommend the use of boundary elements,

Two techniques have been used mainly to do this combination

[1]: .

(i) Treatment of the discretized region with boundary elements as
a finite superelement and combination with the FEM.

(ii) Treatment of the FEM region as anequivaleat boundary element
and combination with the BEM region.

The first technique is very interesting as it allows to solve the
problem like one of the finite elements with the inconvenient of the loss
of symmetry of the stiffness matrix.

Also important in recent years, due to the irruption of the parallel
processing in the computation, is the development of numerical
algorithms oriented to this type of resolution. The domain decomposition
method for the numerical solution of differential boundary-value-
problems is a demonstration of this evolution. This method is based on
the partition of the computational domain { into subdomains of reduced
size. Then the original differential problem is reformulated upon each
subdomain, yielding a family of almost independent subproblems of
Iower computational complexity.

Obviously, from the physical point of view, consistency of the
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subdomain problem with the original cne is ensured by enforcing suitable
transmission of information between adjacent subregions using proper
interface operators. The problem will be solved separately in several
independent subproblems iteratively uatil the convergence.

Reorientating the domain decomposition method to the BEM-
FEM coupling problem, numerous advantages can be obtained. It would
allow, for instance, to caiculate the FEM region and the BEM region

separately omitting disadvantages such as the loss of symmetry of the
stiffness matrix resulting of the coupling.

INTERFACE CONDITIONS

The BEM-FEM coupling will always be, at first, possible by the
application of the proper interface conditions between BEM region and
FEM region.

Figure 1. Division of 1 into two subdomains

We consider a domain € like the one represented in figure (1)
divided in two subregions {; and , separated by the interface I'; . The
first of them Q, discretized according to the FEM and thg, second O,
according to the BEM. Designating as uy, ps tl}e p?tent!al and .ﬂux
respectively over the interface T, for _thg, region i (i=1,2 in a
bidimensional problem) the interface restrictions will cor_respond to the
potential continuity (i) and the flux equal and opposite across the
interface:

)] Compatibility:' u' =y’ "
(ii) Equilibrium: P =ps

The consideration of the compatibility wgdiﬁon (Equatic!n' 1))
to solve a parallel problem is immediate by assuming the same Dirichlet
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condition A in the interface between both subdomains remaining the rest
of boundary conditions invariable:

Lui =f in ﬂi
‘uf=A in T,

where L is a partial differential operator and f is a given datum.

To introduce the eciuilibrium condition (Equation 1(ii)) in the
interface we will use the Steklov-Poincaré operator (also called Schur
complement after the discretization).

According to it, supposing a region such as 1, discretized with
the FEM, the consideration of variables separately in Q, and in the
interface T, drives to the resolution of an equations system:

Kizp Kiar) (W (b1p] 3
¢ il T (3)
Kizp Ky3p) U3 b,
or, posing the problem in the interface I'y:
[K,3pKis Kiirk 30 U =by oI5 plinby (4)
where
51=K33?‘K1§9K3FK13P (5)

is the Schur complement [7] referred to the subdomain {,, which as it can
be observed in equation (4) represents the nodal loads in the interface I';
for a Laplace problem with homogenous Dirichlet conditions in the
external boundary.

Considerating a Laplace problem, of equation (4) is obtained that:

b, p=5,u3 +Ki3pKi1pby (6)

represents the nodal loads for the interface I'y belonging to the éubregion
Q. '

Posing the problem in the BEM subregion (), considered like an
equivalent finite element [1], a similar expression to FEM is obtained:
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(Kzzc Kao) (%)  (bs
Ks2c Késc) (u_;"] ) [b_,,c} 7
where Ky,° < >K,,° .
Writing the problem in the interface I’y will remain:
[KBBc KBZG'K 20’930] K.‘!’.’C'Ki;zlobzc (8)
where
S=Kaac~Kroc2cKss (9)
is the Schur complement for the region Q, and like in the FEM
by =8,uf +K,, Koach, . (10)

Tepresents the nodal loads for the interface I, belongmg to the subregion
{}, in a Laplace problem.

.Cons.i.dering ‘equations (6) and (10}, the equilibrium condition
(equation 1(ii)) can be expressed as the resolution of the problem

S,u3-B, +S,u?-B,=0 (11)

where

Blg_KlgP‘K;} 1P (12)
-1
By ==Ky, K300,

which is equivalent to solve separately two Neumann problems in the
interface I';.

As in the limit u,! = u,' is verified, equation (11) could
be solved by an iterative refinement procedure [4] where the solution
is obtained according to the expression:

uyt=u,"+pd®? (13)
being p a relaxation parameter and d* the correction to be added to uy®
which is determined by

dn=a-ira (14)

where
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e (15)
. 2
and the residual
rn___ (51‘51113:‘);'(32"52!132) (16)

In this way, if equation (13) is expressed for a Laplace problem
with homogenous Dirichlet conditions in the external boundary, will be
obtained:

u§"’1=u;‘-—fll (u+S;ts,ut +ul+8;1s,uf) (17)

where

s;ts,ul=u?

(18)
Syis,uf=u;

As the same condition p; = p,® + p,’> has been considered over the
interface between both subdomains, equation (17) will be:

u§"1=u3”--% (u3+u3) (19)

The resolution procedure of equation (13) is similar to the
preconditioned gradient algorithm with preconditioner [5]

M=(S7t+55) /4 (20)
used when both subregions are discretized with the FEM.
DOMAIN DECOMPOSITION ALGORITHM
According to the treatment given to the transmission conditions in the
interface, both compatibility and equilibrium, a parallel iterative
procedure is obtained for the resolution of problems with BEM-FEM
coupling. It would be as follows:
- Given an initial value u;=u,? in the interface I';
- Calculation of the unknown solution u*** separately in the BEM

domain and in the FEM domain corresponding with the following
Dirichlet problem (enforcement of the compatibility conditions):
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Luf*sf in Q,
n*1/2= n

uy u; in T (21)
uf*?=u  in  aaMoq,

- Calculation of the unknown value u® for each subdomain by the

resolution of the Neumann problem (enforcement of the equilibrium
conditions):

Lu in= 0 in Q 1
ui=0 in  4QMGQ,
duf 1, Ouft?  gupi/?

—_—= +

a2 "am ) ir D

(22)

- Reinitialization gf the value u, in the interface by the iterative
refinement algorithm of equation (19) using the values calculated in
equation (22):

u*t=u"-p (u"+u") (23)

and iteration until the convergence.
NUMERICAL EXPERIMENTS

Let us use the algorithm described in the last section to solve a Poisson
boundary-vaiue problem:

-au=f 1in Q
u=g in 3Q (24)

We will denote by D.O.F. the total number of degrees of
freedom (i.e. of numerical unknowns) of the numerical scheme which is
being used and by NIT the minimum number of iterations needed to
reduce the initial error by a factor ¢

25
ledTlcelell (25)

where e denotes error at step k and |. | denotes the maximum norm at
the gridpoints lying on the subdomain interface.

Moreover, we will use the average reduction factor per iteration
(E.R.F.) [8] defined by:

E.R.F.=(led / le% )%/ (26)



628 Boundary Elements

Figure 2(a) and (b). Meshes used in example 1.

In the first example (Fig.2), f and g in equation (24) will be taken
to get an exact solution corresponding to the function:

u=4xy (27)

The subdivision corresponding to Fig. 2a has been taken in such way
that:

(Q, = 20
Q, = 16
D.0.F. { 2 (28)
T, =3
Total= 31

and the one corresponding to Fig. 2b:



Boundary Elements 629

[ 0, =63
Q.= 40
D=7

Total= 94

D.O.F. { (29)

We use linear elements over the region BEM and cuadrilateral finite
elements of 4 nodes over the region FEM, both on uniform meshes.

Choosing a random initial value u;” in the interface I'; and taking
e = 107, the results for the two different geometrical situations depicted
in Fig. 2a and 2b are reported in Table 1.

Table 1. Results for example 1

It is observed that the number of iterations necessary to reduce
the initial error by a factor e is independent of the number of degrees of
freedom, being the E.R.F. very similar.

FLUX EVOLUTION IN THE INTERFACE FLUX EVOLUTION IN THE INTERFACE

FLUX FLUX

pgu— /—
L Va

1 2 ' 4 1 2 3 4
ITRRATIONS ITERATIONS

—~—BEMa) ~FEMs) S TOTALW) %~ DEMb} -S-PEMb) - TOTALD)

Figure 3(a) and (b). Evolution of the flux in the interface for example 1.
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An evolution of the flux of a point on the interface can be
observed in Fig.3a and 3b (corresponding with the mesh of Fig.2a and
2b respectively). There is a representation of the flux in a point
belonging to BEM region and FEM region and the total value. The
evolution is practically the same in both discretizations and the total flux
reaches the zero value very quickly.

Now, we will consider a second example corresponding to a
harmonic function: '

u=x>-3xy? (30)

applied to the resolution of equation (24) in the domain represented in
Fig.4 for which two different discretizations are solved.

Like in example 1, we will have for the subdivision of Fig. 4a:

,

Q.=1
D.O.F.{ % 2 (31)
I,=3

- |Total=28

and for the subdivision of Fig. 4b:

[ Q,= 65
2.= 24
D.O.F.{ ° (32)

Total= 80

We use linear elements in the region BEM and cuadrilateral finite
elements of 8 nodes in the region FEM, both on uniform meshes.

Q.

Q,
-

Figure 4. Domain used in example 2,
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Figure 4(a) and (b). Meshes used in example 2.

Taking ¢ = 10? and a random initial value over the interface, the
- results are reported in Table 2.

Table 2. Results for example 2.

Like in the first example, the same conclusions are obtained. It is
observed that the number of iterations to reduce the initial error by a
factor is independent of the degrees of freedom. As it is logical when we
consider a harmonic function the E.R.F. is superior to the one in the

first example.

FLUX EVOLUTION IN THE INTERFACE FLUX EVOLUTION IN THE INTERFACE

FLUX ‘ rLux

4 3. 4 L] s
ITERATIONS ITERATIONS

<H=-BEMD -S-PFEMM TOWLNW

——BEMa) ~FFEMa) - TOWmLa)

Figure 5. Evolution of the flux in the interface for example 2.
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A representation of the flux in a point on the interface can be
observed in Fig. 5 where the same conclusions as in Fig. 3 can be
obtained.

CONCLUSIONS

With the numerical tests it is possible to affirm that the algorithm is
valid to solve elliptic problems with a quick convergence in different
subdomains separately. It makes possible the parallel implementation of
problems BEM-FEM coupling avoiding some disadvantages implicit in
the coupling.

Moreover, the numerical tests assure that the convergence is
independent of the mesh step and the initial value u,’ in the interface.
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