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Universitat Politècnica de Catalunya

Statistics and Op. Res. Dept.
Edifici C5, Campus Nord
08034 Barcelona, Spain

francisco.lopez.ramos@upc.edu

Abstract: In this paper some mathematical programming models are exposed in order to set the number of services
on a specified system of bus lines, which are intended to assist high demand levels which may arise because of
the disruption of Rapid Transit services or during the celebration of massive events. By means of this model two
types of basic magnitudes can be determined, basically: a) the number of bus units assigned to each line and b)
the number of services that should be assigned to those units. In these models, passenger flow assignment to lines
can be considered of the system optimum type, in the sense that the assignment of units and of services is carried
out minimizing a linear combination of operation costs and total travel time of users. The models consider delays
experienced by buses as a consequence of the get in/out of the passengers, queueing at stations and the delays that
passengers experience waiting at the stations. For the case of a congested strategy based user optimal passenger
assignment model with strict capacities on the bus lines, the use of the method of successive averages is shown.

Key–Words: public transportation modeling, congestion, mathematical programming

1 Introduction

Setting properly the required services to attend trans-
portation demand taking into account available re-
sources in urban public transportation networks is a
key aspect in order to keep their good performance
as well as to ensure users confidence in public trans-
portation as a valid alternative.

Models for the overall design of transit networks
or simply for some management aspects of public
transport lines which take into account demand in the
design process, have an intrinsic relationship with pas-
senger transit assignment models. Such assignment
models can be classified in a first approach by two cri-
terions: a) static or dynamic and b) frequency based
or time table based. Within the classical passenger
transit assignment models under the concept of strat-
egy, the classical work in [12] must be cited. This
initial model is unable to take into account congestion
in public transportation systems. It has not been until
very recently, that these strategy-based models have
been able to reflect how effective frequencies may be
altered by congestion ([5], [1], [8]). Frequency setting
models have been formulated using transit assignment
schemas based on strategies and time table based. Us-
ing a strategy based assignment model under a static
approach, the works in [6] and in [10] must be taken
into account. For the case of lines under strict time
table, assignment models that must be cited are those

implemented in the commercial package EMME and
others very recently developed such as those in [7] and
in [11]. In this paper two service setting models in [3]
and in [4] are described which are able to reflect the
effects of congestion under a static approach for pub-
lic transportation lines intended for emergency situa-
tions or for supporting special events. In these two
models the underlying passenger assignment schema
is a non-strategy based user optimum and a congested
shortest route choice, respectively. Also the formula-
tion in variational inequalities in [2] for the congested
transit assignment model in [5] is briefly described
and some numerical results are presented for a vari-
ant of the model with sharp capacity constraints.

2 Notation and network model
In this section a unified notation is presented for all the
models under discussion. The transit network is rep-
resented by means of a directed graph G = (N,A),
where N is the set of nodes and A is the set of
links. The number of trips from i to d will be de-
noted by gd

i . By C ⊂ N it will be denoted the
subset of nodes representing centroids or trip attrac-
tion/generation points. By W = { (i, d) ∈ C ×
C | gd

i > 0 } it is denoted the set of active origin-
destination pairs ω = (i, d) on the network. The
set of destinations in the network shall be denoted by
D = { d ∈ C | ∃(i, d) ∈ W } and the set of origin
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nodes for a fixed destination d ∈ D shall be denoted
by O(d) = { i ∈ C | (i, d) ∈ W }. For a node i ∈ N ,
the set of emerging links will be denoted by E(i) and
the set of incoming links by I(i). The representation
of transit lines will be in form of an expanded net-
work, as in [12] (see figure 1 below).
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Figure 1: The transit expanded network as-
sumed in the model.

By vd
a it will be denoted the flow at link a ∈ A

with destination d ∈ D. Then the following notation
will be used for the various types of vector flows and
origin-destination volumes:

• vd
i = (..., vd

a, ...; a ∈ E(i)) ∈ IR|E(i)|
+ , i ∈ N ,

d ∈ D is the vector of flows with destination d at
emerging links of node i.

• vd
i =

∑
a∈E(i) vd

a is the total inflow through node
i ∈ N with destination d ∈ D.

• vd = (..., vd
i , ...; i ∈ N) ∈ IR|A|+ , d ∈ D. v =

(..., vd, ...; d ∈ D) ∈ IR|A| |D|+ .

• v =
∑

d∈D vd ∈ IR|A|+ . Vector of total flows on
links and va =

∑
d∈D vd

a, a ∈ A.

• gd = (..., gd
i , ...; i ∈ O(d)) ∈ IR|O(d)|

+ , d ∈ D.
g = (..., gd, ...; d ∈ D) ∈ IR|W |

+ .

The feasibility set for the congested transit equi-
librium problem can be formulated as V =

⊗
d∈D Vd,

being each set Vd defined as:

Vd ∆=



vd∈ IR|A|+

∣∣∣∣∣∣
∑

a∈E(i)

vd
a −

∑

a∈I(i)

vd
a = gd

i ,

∑

a∈I(d)

vd
a =

∑

i∈O(d)

gd
i , vd

a = 0, i∈Nd,∀a∈E(d)





(1)

The polyhedron of total link flows v is V = { v ∈
IR|A|+ | v =

∑
d∈Dvd, vd ∈ Vd }. Because of

the finite capacity of vehicles, boarding of passen-
gers may not happen at the first arriving vehicle seen
by the passenger. Mean waiting times for a board-
ing, or inverse of effective frequencies, shall be de-
noted by σa(·) = 1/fa(·). Travel times on links
are given by functions ta(v), a ∈ A which are fi-
nite on V . The subset of nodes for which emerging
links exist with a finite efff on V will be denoted by
N̂ = { i ∈ N | ∃a ∈ E(i), fa(·) < +∞ }. The sets
N̂d = N̂ \ {d}, d ∈ D and Â = { a ∈ A | ∃i ∈
N̂ , a ∈ Ê(i) } will be also used. For nodes i ∈ N ,
the subset of emerging links with finite effective fre-
quency will be denoted by Ê(i). Line segments as
well as pedestrian, transfer and non transit facilities
shall be represented by links a ∈ A with either con-
stant or flow dependent travel time functions ta(·) and
infinite frequencies, fa = +∞. This apply also for
links a ∈ I(i) , i ∈ N̂ , representing alighting at stops.

3 Frequency setting models

3.1 A user equilibrium based service setting
model

The first model by Codina and Marı́n [3], model [SUE]
below, is oriented to set the number of services when
passengers have a behavior characterized by two facts:
a) no recommendation or regulation is made on the
assignment from passengers to lines b) at each stop
they choose a transit line accordingly to a route from
their origin to their destination that they consider as
optimal. The design model can be stated as a bilevel
programming in which the lower level is an asymmet-
ric traffic assignment problem. Asymmetries in costs
come from the fact that passenger delays at stations
waiting for a bus line to arrive depend not only on pas-
senger’s flow arriving at the station to board on that
line but also on the unit’s occupancy of that line arriv-
ing at the station. The upper level objective function
is composed by two terms. The first one evaluates the
operational costs of assigning units to a line plus the
operational costs of bus services. The second cost is
proportional to the total time spent by all passengers.
The coefficient θ can be considered as the social cost
of time.

In the formulation of model [SUE] below, S∗(z)
is the solution set of an asymmetric traffic model that
can be stated as a variational inequality (V.I.): Find
v∗ ∈ V so that T (v, z)>(v − v∗) ≥ 0, ∀ v ∈ V .
This V.I., which makes up the lower level problem, is
parametrized by the number of services z` assigned at
each bus line ` ∈ L. The number of services plays



the role of a parameter for the links in the expanded
network modeling passenger flows on line `.

[SUE:]

Min
n, z, v

∑

`∈L

(ς`n` + γ`z`) + θ v>T (v, z)

s.t. v ∈ S∗(z)

A0-1
∑

`∈L n` ≤ p, n` ≥ 0, n` ∈ Z, ` ∈ L

A0-2 H`n` ≥ z`C`(v, z), ` ∈ L

A0-3 0 ≤ z` ≤ λ`f̂H, λ` ∈ {0, 1}, ` ∈ L

A0-4 z` ≥ λ` H

hmax
, z` ∈ Z, ` ∈ L

(2)

Model [SUE] was solved by means of the simu-
lated annealing algorithm on the expanded transit net-
work of figure 3 and with a passenger’s demand given
in table 1. Figure 2 shows the evolution of the ob-
jective function for 2000 iterations of S.A. algorithm
with low temperature. Execution time on a HP laptop
with 2Gb took 1̃h15min for 2000 iterations problems.
In the computational experiences, the V.I., once the
number of services were set, was solved using a diag-
onalization algorithm using a maximum of 500 itera-
tions for each run of the diagonalization algorithm. A
technique for reducing the number of iterations of this
algorithm was used resulting in 25% savings in CPU
time. As it can be seen from the figure, good objective
function values for model SUE above were reached at
a much earlier iteration than the 2000-th one. Runs
with high temperature provided much worse compu-
tational results requiring almost all the 2000 iterations
in order to reach very similar objective function val-
ues.

Figure 2: Evolution of objective function in
model SUE using the simulated annealing
algorithm.

3.2 A non-linear congested shortest path
based service setting model

For the case of special services set in order to alleviate
disruptions, it is difficult to impose to the passengers
of a given o-d pair a splitting amongst several routes as
a policy oriented to follow a system-optimum behav-
ior. Instead it is easier to recommend a single route
to be followed by all passengers of a given o-d pair.
The recommended route should be optimal and should
take into account congestion effects. Because of con-
gestion, non-linearities appear and the model is sim-
ilar to a non-linear shortest path choice problem and
the objective function of the design model might min-
imize total costs. For this case, model [SS] below was
developed by Codina et al. in [4].

[SS:]

Min
n, z, v
τ, λ

∑

`∈L

(ς`n` + γ`z`) + θ
∑

a∈A

vaTa(v, z)+

+ θ
∑

`∈L

∑

b∈Π`

ζa(`,b)(v, z)

s.t. constraints A0 as in model [SUE]

B0-1 v ∈ V

R0-1
∑

a∈Ê(i)

τω
a ≤ 1, τω

a ∈ {0, 1},




a ∈ Ê(i)
i∈N
ω∈W

R0-2 vω
a ≤ Mτω

a , a ∈ A \AG, ω ∈ W

Qb0
∑

`∈Lb
z` ≤ Ẑb(v, z), b ∈ N̂G

a = a(`, b), b ∈ Π`, ` ∈ L :

Qp0-1 va + vx(a) ≤ cz`

Qp0-2
∑

`∈Lb

ζa(v, z) ≤ H

ηb
N̂

pax
b

(3)

It consists of the minimization of total costs, as in
previous model [SUE], but being these expressed con-
veniently in order to handle bulk service type queue-
ing models for passengers at stations. The first term
includes operational costs for setting and operation of
services and the second plus the third one are in to-
tal the total travel time. The third term is made up by
functions ζ for modeling queueing time of passengers
at stations, whereas the second term includes times
at links of the expanded network excluding queueing
of passengers at stations. Routing considerations ap-
pear reflected in constraints R0-1, R0-2 of the for-
mulation, where binary decision variables τω

a indicate
which of the boarding links in the expanded network,



outgoing from a station, must be chosen by passen-
gers with origin-destination pair ω. The model also
includes constraints (Qb0) in order to reflect the ca-
pacity of a station in terms of maximum number of in-
coming buses per hour that the facility is able to admit
taking into account the spillback of buses queueing
for boarding/alighting operations and also, the max-
imum number of passengers that can be standing at
a station, queueing for boarding (constraint Qp0-2).
Constraints Qp0-1 impose a limitation in the board-
ing flow va at a boarding link a in a station b accord-
ingly to the number of services z` of line ` to which
the link belongs, the bus capacity c and the average
number of passengers vx(a) on buses of line line ` ar-
riving at station b.

Model [SS] is of the nonlinear mixed integer type
and several optimization techniques are currently on
essay in order to solve it. Function ζ has been deter-
mined using simulations with bulk-service queues and
a convex piecewise approximation has been devel-
oped, resulting into an approximate model. A heuris-
tic technique for obtaining suboptimal solutions has
been developed showing very a good computational
performance. It consists of freezing values of non-
linear functions appearing in model [SS] based on
flows v and number of services z at previous iteration.
In this way a mixed integer linear programming prob-
lem appears at each iteration which can be solved effi-
ciently using CPLEX for medium size networks. This
linear integer problem preserves the network struc-
ture avoiding non-linearities and shall be referred to
as model [SSlin].

Heuristic algorithm for Model SS

0. (a) Calculate initial values for the number of
services and an initial value for P̄

(0
a at a

station. Evaluate approximate line cycle
lengths C̄

(0
` for each line and also initial

bus service times, κ
(0
b initial values for bus

waiting times at stations w
0,(0
qb , b ∈ NG, so

that an initial value for the maximum num-
ber of services allowable at a station, Z̄

(0
b

can be evaluated using function Z̃b(·, ·), i.e.
Z̄

(0
b = Z̃b(κ

(0
b , w

0,(0
qb ). Also, determine ini-

tial link travel times T̄
(0
a accordingly.

(b) Solve model [SSlin] for parameters
(T̄ (0, Z̄(0, P̄ (0, C̄(0) so that flows and
number of services (v(1, z(1) are obtained.
Set ν = 0

At iteration ν + 1:
(when considered convenient superscript + is
used to denote ν + 1 and superscript - is used

to denote ν)

1. Calculate new packet service times κ
(ν+1
b , wait-

ing times of buses at stations, w0,(ν+1
qb , and maxi-

mum number of services entering at each station
Z̄

(ν+1
b using an MSA step αν = 1/(ν + 2):

b ∈ NG :

κ+
b = κ−b + αν

(
κb(v+, z+)− κ−b

)
,

w0,+
qb = w0,−

qb + αν

(
w0

qb(v
+, z+)− w0,−

qb

)

Z̄+
b = Z̄−b + αν

(
Z̃b(κ+

b , w0,+
qb )− Z̄

(ν
b

)
(4)

Evaluate new line cycles C
(ν+1
` =

C`(v(ν+1, z(ν+1), ` ∈ L, waiting time
per passenger and per service at stations
P̄

(ν+1
a = Pa(z(ν+1) and link travel times T̄ (ν+1

as follows:

T̄+
a = t0a + w1

b + κb,`(v+, z+) + w0,+
q,b′ ,

if a = (j`(b), j′`(b
′)), ` ∈ L, b, b′ ∈ Π`

T̄+
a = Ta(v+, z+) otherwise

(5)

2. Solve approximate mixed linear integer model
SSlin for parameters T̄ (ν+1, Z̄(ν+1, P̄ (ν+1,
C̄ν+1 and obtain flows v(ν+2 and number of ser-
vices z(ν+2. Let ν ← ν + 1 and return to 1.

The algorithm stops when, at a predetermined
number r of consecutive iterations, the number of ser-
vices assigned to bus lines do not change (zν+1 =
... = zν+r) and also, during these r iterations,
flows v and total delays ζ have little fluctuation
(‖vν+s+1 − vν+s‖2 ≤ εv and ‖ζν+s+1 − ζν+s‖2 ≤
εζ , s = 1, 2, ..., r − 1).

4 Congested transit assignment
models

Strategy based transit assignment models used in
modeling passenger flows in regular lines of urban
public transportation do not reflect congestion effects
until very recently. Because of that frequency setting
or service setting models which take into account con-
gestion when passengers follow strategies have not yet
been developed. A classical uncongested model is that
of Spiess [12], which can be formulated as a linear
program. Based on the results of Cominetti and Cor-
rea in [5], Cepeda et al. in [1] prove that their strategy



based congested network equilibrium transit notion is
equivalent to the minimization of the following non-
convex, nondifferentiable gap function G̃CCF(v)

G̃CCF(v) =
∑

d∈D

[ ∑

a∈A

vd
ata(v)+

+
∑

i∈Nd

Max
a ∈ E(i)

{
vd
a

fa(v)

}
−

−
∑

i∈Nd

gd
i τ̃d

i (v)




(6)

over the feasible set of destination flow vec-
tors V, i.e. solutions of the congested tran-
sit equilibrium model are also global minima of
the problem Min v∈V G̃CCF(v). Let now consider
the polytope S =

⊗
d∈D

⊗
i∈N̂d

Sd
i and Sd

i ={
α ∈ <|Ê(i)|

+ | ∑
a∈Ê(i) αa = 1

}
associated to node

i ∈ N̂ . In [2] it is proved that solving this problem
is equivalent to the following variational inequality
(VI):

(VI)

Find (v, ζ) ∈ V × S so that:

0 ∈ Td(v, ζd) + NVd(vd), d ∈ D

0 ∈ −xd
i (v) + NSd

i
(ζd

i ), d ∈ D, i ∈ N̂d

(7)

where in (7), NVd(·) and NSd
i
(·) denote the nor-

mal cones on sets Vd and Sd
i respectively at a

point (·). ζd
i = ( ..., ζd

a , ... ; a ∈ Ê(i) ), i ∈
N̂d, d ∈ D and Td(v, ζd) are defined as Td(v, ζd) =
(...,Ψd

a(v, ζd
a), ...; a ∈ A) and functions Ψd

a are de-
fined as Ψd

a(v, ζd
a) = ta(v) + σa(v)ζd

a , if a ∈ Ê(i)
and Ψd

a(v, ζd
a) = ta(v) if a ∈ E(i) \ Ê(i)

In [2] previous results are also extended to the
case of sharp capacity constraints on bus lines ei-
ther explicitly or implicitly imposed by effective fre-
quency functions σa(v) and the MSA (method of suc-
cessive averages) specialized for the congested strat-
egy based transit assignment problem in [1] can be
easily adapted for this case. Next subsection shows
some computational results for this case.

4.1 Some computational results for the ca-
pacitated transit assignment problem

The transit network for this example is made up of
eight transit lines and its expanded transit network is
shown in figure 3. Effective frequency functions for
boarding links are of the type fa(v) = 0.2(1− ρ2

a(v))

and ρa(v) = va/(c − vm(a)). Capacity c at boarding
links is 9600 passengers for a period of 3 hours. Link
travel times are given in [2]. Boarding links (i, j) are
those whose i-node is either 1, 2, 3 or 4. Demands in
passengers for a 3 hours period are shown in table 1
below. This matrix has been uniformly augmented by
a factor τ in order to conduct computational experi-
ments

1 2 3 4 Total pax/min
1 0 2011 22097 368 24476 135.98
2 170 0 3066 230 3466 19.25
3 4386 150 0 170 4706 26.14
3 2504 150 2438 0 5092 28.28

Total 7060 2311 27601 768 37740 −
pax/min 39.22 12.84 153.34 4.26 − −

Table 1: O-D Trip table for a period of 180
minutes. Last row and column are average
arrival and departure rates of passengers at
bus stops.

 1  2  3  4 

Figure 3: Expanded network model for the example.

For this test network, the MSA algorithm in [1]
with implicit capacity constraints behaves well for
τ = 1.0, 1.2. For τ = 1.3, iterates violating ca-
pacity constraints appear during the run of the algo-
rithm, although it finally converges to the solution.
For τ = 1.6, 2.0 and larger values, it shows unsta-
ble behaviour because capacity infeasible iterates ap-
pear too often. Results comparing algorithm in [1]
(implicit capacity constraints) and the algorithm us-
ing explicit capacity constraints are shown in table 2.
Also the self-regulated MSA step in [9] has been used
for this example with τ = 2 for the MSA algorithm in
[1] and for the algorithm using explicit capacities.



τ #iter lowest ǧA ǧB lowest ǧB

1.6 1000 − 8.85E-04 8.36E-05
1.6 4000 0.011 − −
1.6 50000 − 2.43E-04 −
2.0 4000 0.008 0.0233 1.95E-05
2.0 50000 1.95E-03 8.30E-04 7.68E-04

2.0 50000(∗) 1.25E-03 2.15E-05 1.91E-05

Table 2: Comparison between algorithm
with (B) and without (A) explicit capacity
constraints. ǧ = relative gap. (*) use of
self-regulated MSA step in [9].

5 Conclusions

Service setting models for public transportation lines
in congested situations have been presented under two
different passenger transit assignment approaches.
The first model assumes that passengers make a
choice accordingly to a user equilibrium principle fol-
lowing no recommendation but without assuming pos-
sible strategies. The second model assumes that pas-
sengers follow a recommendation based on a short-
est congested route. Both models have been formu-
lated as nonlinear mixed integer programming prob-
lems. The first one by means of simulated anneal-
ing and the second one by means of an ad hoc devel-
oped heuristic. Also, the congested transit assignment
model based on strategies developed in [5] and its for-
mulation in V.I. in [2] has been briefly introduced.
Computational results using an MSA algorithm have
been presented on a small test network with strict ca-
pacities.
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