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Abstract: Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been 

presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line 

over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main 

objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different 

characterization of the characteristic azimuthal length and a calculation of the ratio of specific heats based on a 

polytropic exponent. Thanks to these new values, the model predicts two bifurcation points in the behaviour of the 

flow: the inception point of the instability and the surge point. Experimental data from a pure axial compressor are 

used to validate the model showing that the prediction of the flow coefficient at the surge point has an error inferior 

to 5%. For the rotor studied, the paper provides a quantitative and qualitative description of the inception of the 

instability and of the mechanism involved in the instable region of the compressor map. The paper also discusses the 

role of rotor efficiency in the position of the bifurcations and gives a sensitivity analysis of its position. Finally, it 

presents a discussion about how the model can explain the different behaviours exhibited by the same rotor when the 

flow coefficient is reduced.  
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I. INTRODUCTION 
Due to its importance, there is a large number of articles trying to calculate the pressure rise characteristic over 

the entire flow-rate range of a compressor, which, indeed, requires a method for calculating or predicting the stall 

onset. There are methods based on analysing pressure signals from sensors [1-4], based on solving computational 

models [5-7], or based on analytical or engineering models [8-12]. A good review of the types of stall and surge 

behaviour can be found in Ref. [13]. 

In this article the model will be based on a previous work of the author [14] where a different description of the 

mean-line stability was presented based on the idea given in Ref. [11]. This model is based on a set of logical 

inferences that produces an analytical model taking into account the effect of the number of blades, the basic 

geometry, and the operational point. In order to understand this approach, it is useful to think about the azimuthal 

plane in Fig. 1, which represents an axial rotor with constant medium radius, variable area, negligible radial velocity 

component, and inlet and outlet sections with homogeneous and steady properties and velocities. In this context, 

Ref. [14] establishes a set of logical inferences that can be summarized by the following Stability Theorem. When a 

high-performance axial-flow compressor rotor works with steady and homogeneous properties at the inlet and outlet 

stations in a noisy environment, the necessary and sufficient condition for instability is 0<<1, where ξ is defined as: 

 /x esc    (1) 
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Fig.1 Inlet and outlet velocity triangles, spacing and axial chord in the two-dimensional cascade used in the 

model. V1 and V2 are respectively the inlet and outlet absolute velocities and r is the blade velocity. 

 

In this Equation, the numerator is a ratio of characteristic lengths and the denominator is a function that depends 

on the operational point. Refs. [16-18] estimate the coefficient x as the axial solidity of the rotor, whose definition 

is given by Eq. (2). The denominator was obtained by Ref. [14] as a potential that measures the possibility of having 

escaping particles (i.e., reversed flow). Its definition is given by Eq. (3). The ratio of both in Eq. (1) is a parameter  

that measures the possibility of having escaping particles in the inlet section of the rotor. As can be seen in Eq. (3), 

the potential for escaping depends on the blade speed, r, the static outlet enthalpy, h2, the static outlet and inlet 

pressures, P2 and P1, the axial and tangential components of the absolute outlet velocity, Vx2 and V2, and the ratio of 

specific heats, γ. 

 
2

x
x

Zc

r



  (2)  

 

1

1
2 2

2

2

2 1 x

esc

P
h V

P

r V






 
         

 
 (3) 



 4

A posterior study showed that the stability index in Eq. (1) could be improved [15, 16]. The result of that work 

was a new stability index, which is given in Eq. (4). Using this index and the Stability Theorem, i.e., using only 

theoretical arguments, Ref. [16] gave a calculation of the constant-speed line of an axial compressor in the surge 

region of the map. This constant-speed line is drawn in Fig. 2, where it is possible to appreciate the good agreement 

between the experimental points and the theoretical line for all the mass flow rates studied. 
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Fig. 2 Pressure coefficient as a function of the flow coefficient for a pure axial stage. The solid line is the 

theoretical line predicted by Ref. [16] using the Stability Theorem. The squares and triangles are the experimental 

points obtained from Ref [19]. 

 
The portion of the line with a positive slope was calculated thanks to the Stability Theorem. Although the 

agreement is quite good, there are some discrepancies. The removal of which is the main purpose of this article. As 

Fig. 2 shows, the result of the model (solid line) diverges from the experimental points just at point C. Although Ref. 

[16] gives an explanation of point C based on the stability of the stator, the behavior between points B and C is not 

correctly predicted. Thus, in order to reduce such discrepancies, this article tries to discover if the application of the 
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Stability Theorem to the rotor alone can explain the experimental results in that section of the line. To achieve this 

task the article is planned as follows. 

First, a revision of the theory supporting the Stability Theorem and a revision of the basic equations of 

turbomachinery are presented. Then, two variables of the model are fed with an improved approach: one variable is 

the characteristic azimuthal length used to calculate the parameter x in Eq. (4), and the other is the ratio of specific 

heats that will be calculated as a polytropic exponent. The next section uses the same low-Mach-number pure-axial 

rotor used by Ref. [16] for obtaining Fig. 2, whose geometry and experimental test points are given in Refs [19-21], 

to calibrate the basic equations of the stage. These basic equations allow us to predict the pressure rise for the region 

of high flow. Providing this part of the constant-speed line is known, we use the Stability Theorem to predict, 

without any additional adjusting parameter, the rest of the constant-speed line. Section IV predicts the position of a 

first bifurcation (point C in Fig. 2) and Section V performs an analysis of sensitivity. The next section studies the 

influence of the rotor efficiency and shows that efficiency is not the relevant parameter in the post-inception region 

of the constant-speed line. Section VII uses the result of the Stability Theorem to characterize the relevant geometry 

and gives a new calculation of the characteristic azimuthal length and outlet area. With this information, the surge 

point (point B in Fig. 2) is obtained as a second bifurcation with an error level in the flow coefficient less than 5 

percent. With the constant-speed line theoretically calculated between points B and C, Section VII explores the 

prediction of the Stability Theorem for those points that are located in the surge region of the constant-speed line. 

Finally, a discussion based on the Stability Theorem about the post-stall evolution of the rotor and about the 

plausible regimens involved in the flow is given. 

II. BACKGROUND 

Stability Theorem 
The Stability Theorem enunciated in the Introduction is discussed in Refs [14-18]. Reference [18] gives the 

Operational Theorem, which is a different enunciate of the Stability Theorem useful for calculating the post stall 

evolution of the constant-speed line. This Operational Theorem is similar to the Stability-Line hypothesis employed 

by Ref. [16] to calculate the branch in Fig. 2 with a flow coefficient lower than that of point A. This hypothesis can 

be summarized as follows. When, based on the Stability Theorem, the operational point is not stable, i.e. when ξc<1, 

the blades cannot sustain the flow pattern and the outlet air angle becomes very different from the metal angle fixed 
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by the geometry of the blades; this deviation increases until a new stable configuration is reached, which, by 

assuming the premises and the result of the Stability Theorem, is the one that accomplishes ξc=1. 

For the purpose of this article, it is convenient to remind that Ref. [14] obtains Eq. (1) minimizing a ratio of two 

well-defined times. This minimization is carried out over the set of all the available experimental arrangements (for 

a two-dimensional cascade) that can support a given operational point defined by steady and homogeneous inlet and 

outlet profiles (this configuration is called in Ref. [14] a theoretical flow pattern) in a noisy environment. The 

Theorem requires as a premise a noisy environment, i.e., it requires the presence of disturbances without specifying 

the nature (frequency or amplitude) of such disturbances. The required times are the escaping time and the restoring 

time, which, as it is proved in Ref. [14], can be calculated by using a model based on the integral form of the 

conservation equations. The calculation of these times also requires to know two characteristic lengths related to the 

geometry of the rotor, l  and xl . The first characteristic length, l , is the azimuthal length, and the other 

characteristic length is the axial length, xl . In the derivation of the stability index, Ref. [14] concludes that l  must 

be equal or inferior to the spacing of the blades and that xl  must be equal or greater than the axial chord of the 

blades. When, as it was done in Ref. [14], l  is taken equal to the spacing of the blades and xl  is taken equal to the 

axial chord of the blades, the parameter /x xl l   in Eq. (1) is estimated as the axial solidity of the row, whose 

expression is given in Eq. (2). However, the derivation in Ref. [14] allows an additional reduction of the azimuthal 

length that will be used in this paper. 

Looking to Fig. 3, it is possible to see that the row defines a characteristic azimuthal length with a lower value 

than the spacing of the blades. This length is the azimuthal separation between the trailing edge of a blade and the 

leading edge of the next blade. Therefore, taking the characteristic azimuthal length equal to 

2 / sin ml r Z c    , where 2 /r Z  is the spacing of the blades, c  is the chord of the blade, and m  is the 

angle of the blade chord, a new value for the parameter /x xl l   is obtained (note that 2 / /r Z c   is the 

solidity of the row): 
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Fig. 3 Characteristic lengths involved in the definition of a row. 

Table 1 collects the main angles of the rotor blades used in this paper, taken from Ref. [21]. The last column of 

Table 1 presents the value of the characteristic parameter x calculated using the Eq. (5). Since the Eq. (4) 

establishes that the larger the value of x, the larger the stability, it is possible to conclude that the most unstable 

section of the blade is the one placed at the tip. 

 

Section r (mm) -1 (deg.)	 -2 (deg.) -m (deg.)  x (Eq. 5) 

Tip 225.00 57.2 45.6 48.9 0.850 1.554 

Mid 191.25 48.8 29.0 36.2 1.000 1.971 

Hub 157.50 37.4 5.5 17.9 1.214 1.843 

Table 1 Characteristic values at different sections of the blade. 

Basic equations 
For the purpose of this article, it is convenient to use the following dimensionless variables: 
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Fluid Mechanics imposes six relationships between the dimensionless variables defined in Eqs. (6). (For the sake 

of simplicity, choke will not be considered in the model.) The work generated by the change of the angular 

momentum of the flow leads to Eq. (7), the energy equation leads to Eq. (8), the definition of efficiency to Eq. (9), 

the definition of the total pressure ratio leads to Eq. (10), the continuity equation leads to Eq. (11), and finally, the 

blade trailing edge to Eq. (12): 

 2 11 ( )I w v v    (7) 
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The polytropic exponent in Eq. (10) takes into account the irreversibility in the flow. The definition of the 

polytropic exponent, in terms of the dimensionless variables given by (6), is: 
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The stability coefficient given by Eq. (4) is expressed in terms of the proposed dimensionless variables as: 

 

12 2
1 1

2
2 2

2 1 1
2

1
x

u v

u v w

c e


 



          
     (14) 

Given a set of known data {u1, v1, w, R, a, σx, tan 2, γ}, it is possible to obtain the set of unknowns {u2, v2, I, , 

, } by substituting {I, , , } given by Eqs. (7-10) into the Eqs. (11) and (12). When this is done, there are two 

equations E1(u2, v2)=E2(u2, v2)=0 and two unknowns. This set of nonlinear equations can be solved with the iterative 

procedure explained by Ref. [16]. Once the operational point in the map has been completely solved, its stability can 

be determined by using the Stability Theorem above.  

III. EXPERIMENTAL POINTS 
In order to check if the new parameters improve the predictions made by Ref. [16], we will use the same axial 

stage. It consists of a rotor and two cantilevered stators upstream and downstream of the rotor. The basic geometry 

of the rotor is collected in Table 1. The detailed description of the test rig, experimental facility and instrumentation 

for this compressor stage can be found in Refs. [19-21] and its schematic is shown in Fig. 4. The angular speed is 

1800 rpm [21] so that the expected value for w is 0.06704 (calculated at the mid radius, r = 191.25 mm). The ratio 

of areas is a=1 (see Fig. 4).  The experiments reported by Ref. [20] were conducted for two axial gaps between the 

rotor and the front stator: the ratios of the gap to the axial chord length at the rotor tip were 1.203 (square points in 

Fig. 2) and 0.352 (triangle points in Fig. 2). The gap between the rotor and the rear stator was kept to be 1.075 times 

of the axial chord length. This experimental arrangement is interesting to us because the post-stall evolution of the 

two configurations is quite different depending on the gap. Ref. [20] reported the evolution of the pressure 

coefficient (the stage performance comes from the combination of the rotor and the downstream stator), which, is 
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given in Eq. (15) in terms of the dimensionless variables used in this paper. Note that this equation takes into 

account an additional loss of total pressure S, which takes into account the ratio of total pressure in the stator. 

Ref. [21] describes the stage behavior as follows. For the large gap, at the moment of the stall inception, the flow 

rate and the pressure rise coefficient decrease by itself from a point where the flow coefficient is near 0.35 to a point 

where is near 0.32, and the compressor rotor falls into mild stall. When the throttle is closed carefully from the flow 

coefficient 0.32, the flow rate decreases to a point where the flow coefficient is near 0.30, and then, jumps suddenly 

to a point where the flow coefficient is near 0.27 and the compressor falls into deep stall. For the small gap, the stall 

occurs when the flow coefficient reaches the value 0.34, then the flow rate and the pressure-rise coefficient decrease 

by itself and the compressor falls into deep stall directly in a point where the flow coefficient is 0.28. Therefore, the 

surge point, point B in Fig. 2, changes from 0.35 to 0.34 depending on the gap. This represents a variation less than 

3%. In addition, it is possible to see in Fig. 2 that the small-gap configuration does not present stable operational 

points in the interval of flow coefficients between 0.26 and 0.31.  
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Fig. 4 Schematic view of the segment of the compressor. 

 

Adjustment of the basic equations 
 
For adjusting the basic equations of the fluid dynamics without any influence of the unstable region of the 

constant-speed line, only the points in the constant-speed line with a flow coefficient greater than 0.425 are used 
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(see Fig. 5). Four variables of the basic equations are adjusted, the absolute inlet angle of the rotor, the relative outlet 

angle of the rotor, the efficiency of the rotor, and the total pressure drop in the stator. The result of the least square 

procedure is collected in Table 2 for both configurations. As can be seen in the last column of Table 2, the variation 

of the coefficients between both configurations is very small. The rotor efficiency is the parameter that suffers the 

larger change, but still is less than 1%. The other parameters suffer a variation inferior to 0.5%. The result of this 

fitting is shown in Figs. 5 and 6. Note that these values are in agreement with the values reported by Ref. [21] 

because, due to the preceding stator, the absolute flow angle at the rotor inlet has to be near 29.0º (tan1=0.55), and 

the relative flow angle at the rotor exit has to lie in the range from -5.5º at the hub to -45.6º at the tip (tan2 lies in 

the range -0.096 to -1.02). Thus, the angles obtained remain near the metal blade angles but, as expected, are not 

equal because of the deviation. The efficiency of the baseline rotor are reported by Ref. [21], where it is possible to 

see that the efficiency near the maximum flow rate varies between 0.87 and 0.93. Thus, the values in Table 2 are 

considered valid for the purpose of this article. It is quite remarkable than the drop of total pressure obtained for the 

stator 2 does not depend on the size of the gap (see Table 2). 

 

 Large gap Small gap Variation 

1tan  0.4968 (26.4º) 0.4958 (26.4º) -0.20% 

2tan   -0.3789 (-20.8º) -0.3780 (-20.7º) 0.24% 

R  0.8982 0.9052 0.78% 

s  0.9950 0.9949 -0.01% 

Table 2 Angles and efficiencies for flow coefficients larger than 0.425. 
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Fig. 5 Theoretical line obtained using the Eqs. (7) to (12) and the values in Table 2 for the large gap. 
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Fig. 6 Theoretical line obtained using the Eqs. (7) to (12) and the values in Table 2 for the small gap. 

Since the research in Refs. [19-21] aims to develop an advanced highly loaded axial compressor stage with high 

efficiency [21], the premises of the Stability Theorem are fulfilled. Thus, if the Stability-Line Hypothesis is used, the 

stability coefficient given by Eq. (14) can be used to determine the stall inception as well as the averaged post-stall 

evolution. 

The solidity at the tip is  = 0.850 and the angle of the chord is m = -48.9º [21]. Therefore, attending to Eq. (5), 

the characteristic parameter in Eq. (14) is x=1.5544. Note that the characteristic value used by Ref. [16] was based 
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on the axial solidity: x=0.56. Obviously, this change in the parameter will produce a change in the prediction of the 

Stability Theorem. In addition, the value of the exponent in Eq. (10) has been modified with respect to the one used 

in Ref. [16]. Here, we will use a polytropic exponent calculated, for every operational point, with Eq. (13). Finally, 

instead of the averaged values for all the mass flow rates used in Ref. [16], we will use for feeding the basic 

equations of the stage the values written in Table 2. The purpose of this article is to check how these improvements 

affect the position of the critical points over the constant-speed line (see points B and C in Fig. 2). 

IV. PREDICTION OF THE STABILITY THEOREM FOR THE INCEPTION POINT 
 

Using the procedures described by Ref. [16] for solving the Eqs. (7) to (12), we can extrapolate the theoretical 

constant-speed line for values of the flow coefficient lower than 0.425. Then, Eq. (14) allows us to calculate the 

stability coefficient along this theoretical line. The result is represented in Fig. 7 for the large gap configuration 

(geometry and efficiency are fixed by Table 2). In this figure, the dashed line represents those points that exhibit a 

stability coefficient lower than one. Therefore, according to the Stability Theorem, they are unstable points. The 

nearest stable evolution, that the Stability Theorem allows, is the one represented by the continuous line in Fig. 7. 

This supposes a finite change on the slope of the curve just at point C. 
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Fig. 7 Stability coefficient for the rotor tip as a function of the flow coefficient. 
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When the system of Eqs. (7) to (12) produces a value of c less than one, the Stability Theorem suggests that the 

equation c =1 should be added to the system of equations. In this situation there are more equations than unknowns. 

To solve this problem, Ref. [16] suggests that the relative outlet angle 2 must be changed. This change allows the 

relative flow to deflect in order to reach the condition c =1, and Eq. (12) lets calculate the deviation of the flow. 

Fig. 8 shows the value of the tangent of 2 resulting from this calculation. It is possible to see how the value of 2 

remains constant and equal to the value given in Table 2 if the stability coefficient is greater than one, and how the 

angle changes in order to accomplish with the condition c =1. The result is a finite change in the slope of the curve. 

The dashed line represent the values of 2 leading to the unstable behavior predicted in Fig. 7. Note that for low 

values of the flow coefficient, the Stability Theorem predicts a large deviation of the flow. Indeed, the relative angle 

of the stream can reach values as high as -56º, which means a deviation with respect to the guided flow (see Table 2) 

near -30º. This deviation of the flow is a theoretical result of the basic equations (7) to (12) and the Stability 

Theorem that imposes the condition c=1. Section VII will correct this deviation. 
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Fig. 8 Relative flow angle at the rotor exit as a function of the flow coefficient. 

 

Therefore, the point C represents a bifurcation in the operational line at constant rotational speed. The theoretical 

result for the constant-speed line, obtained from the Stability Theorem and the Stability-Line Hypothesis, is the solid 

line in Figs. 9 and 10 for the large and small gap respectively. Point C in both figures is the flow coefficient where 
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the value of c would become less than one. The coefficient flow predicted for the theory at the point where the 

theoretical-flow-pattern breaks down is 0.4151 for the large gap and 0.4156 for the small gap (predicted values for 

point C are given in Table 3). Surprisingly, the point where the theoretical flow pattern becomes unstable (point C) 

is the point where the empirical constant-speed line starts bending. As long as this point is the first one that does not 

accomplish with the condition c =1 we will refer to it as the inception point. 
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Fig. 9 Pressure coefficient for the large gap configuration as a function of the flow coefficient. 
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Fig. 10 Pressure coefficient for the small gap configuration as a function of the flow coefficient. 
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Inception Point 

(Point C) 

LARGE GAP SMALL GAP Variation 

  0.4151 0.4156 0.12% 

pc  0.5091 0.5116 0.49% 

Table 3 Theoretical prediction of the first point where the theoretical flow pattern becomes unstable. 

V. SENSITIVITY ANALYSIS 
It is quite interesting to note, that the position of point C predicted by the theory changes less than 0.5% between 

both configurations and that this variation has the same order of magnitude that the variations in Table 2. In order to 

see the sensitivity of the position of the critical point with the variables that feed the model, a systematical variation 

of a 10% has been conducted for the large gap configuration. The results are shown in Table 4, where it is possible 

to see that the ratio of areas is the parameter that exerts the largest influence on the value of the flow coefficient at 

the inception point. This result will be used in Section VII. It is worth to mention that the influence of the efficiency 

is negligible. 

1tan  2tan   R  S  w 
x  a   Variation 

0.4968 -0.3789 0.8982 0.9950 0.06704 1.5544 1.0 0.4151 0.00% 

0.5465 -0.3789 0.8982 0.9950 0.06704 1.5544 1.0 0.4068 -2.00% 

0.4968 -0.3410 0.8982 0.9950 0.06704 1.5544 1.0 0.4250 2.38% 

0.4968 -0.3789 0.9880 0.9950 0.06704 1.5544 1.0 0.4153 0.05% 

0.4968 -0.3789 0.8982 0.8955 0.06704 1.5544 1.0 0.4151 0.00% 

0.4968 -0.3789 0.8982 0.9950 0.07374 1.5544 1.0 0.4153 0.05% 

0.4968 -0.3789 0.8982 0.9950 0.06704 1.7099 1.0 0.4069 -1.98% 

0.4968 -0.3789 0.8982 0.9950 0.06704 1.5544 1.1 0.3847 -7.32% 

Table 4 Analysis of sensitivity for the flow coefficient at the inception point. 

VI. Influence of the rotor efficiency 
The sensitivity analysis has shown that the position of the inception point does not significantly depend on the 

rotor efficiency. This result surprised us, and hence, we decided to corroborate this idea by looking what values of 

the rotor efficiency would be required in order to predict the experimental behavior between points B and C. For that 
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purpose, the efficiency of the rotor (for those points with a value of the flow coefficient lower than 0.425) was 

adjusted in order to reproduce the experimental constant-speed line also in the post-inception region. To provide that 

the number of empirical points for all the adjusting variables is enough, the range of interest has been divided in five 

regions. These divisions have been made trying to retain a similar number of experimental points for every division. 

Results are in Table 5, where it can be seen that the maximum rotor efficiency is near 98 percent for a flow 

coefficient near 0.347. This value of the efficiency produces a contradiction with the empirical results reported by 

Ref. [26] because the maximum measured efficiency that Ref. [26] reported for the controlled-endwall-flow version 

of this stage is near 93.3 percent at =0.45. Therefore, we conclude that the efficiency is not directly responsible for 

the behavior of the constant-speed line between points B and C. This result will allow us to modify the model 

without changing the values of the efficiency. This will be done in the next section. 

 

Division Flow Coefficient Number of experimental points 
R  S

 from to 

1 0.200 0.280 6 0.9019 0.9950 

2 0.280 0.330 3 0.9543 0.9950 

3 0.330 0.365 3 0.9759 0.9950 

4 0.365 0.390 3 0.9421 0.9950 

5 0.390 0.425 4 0.8985 0.9950 

6 0.425 0.550 Previously used 0.8982 0.9950 

 Table 5 Rotor efficiency that minimizes the error between the theoretical result and the experimental points in 

Fig. 9. 

VII. INFLUENCE OF THE OUTLET DEVIATION ON THE POST-INCEPTION EVOLUTION 
As can be seen in Table 4, the ratio of areas is the parameter that produces the maximum variation of the flow 

coefficient at the inception point. Therefore, it is plausible to think that this parameter has a staple influence on 

determining the behavior of the constant-speed line between points B and C. The outlet relative angle and the 

parameter x also affect the position of this point. Indeed, the relative outlet angle has been used in Section IV to 

“stabilize” the operational line for those flow coefficients with a value lower than the inception one. However, this 
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cannot be the unique parameter changing. This is a direct conclusion of the previous section because the rotor 

efficiencies required for explaining the experimental points (with a and x given constants) are much greater than 

the measured ones, and because, when a and x are fixed, the Stability Theorem requires deviations as large as 30º 

(see Fig. 8). 

When the stability coefficient is equal to one, the escaping particles are just near to disturb the inlet flow. Hence, 

the Stability Theorem allows us to assume that the escaping particles are deflecting the main flow just until the point 

where the configuration becomes stable. Under these conditions, it seems also plausible that the outlet area cannot 

be entirely used by the main flow. In order to check if this hypothesis can explain the shape of the constant-speed 

line, we will introduce the simplest geometrical model that can reproduce this behavior. 

Let us assume that the deflection of the outlet flow is produced by an apparent increment of the blade thickness. 

In the scope of this paper, this increment of thickness is related to the presence of the escaping particles, but it is out 

of the scope of this article to discover how the escaping particles produce that effect. It will be the purpose of future 

works to discover the real mechanism (the deviation could be due to an increment of the boundary layer, due to a 

modification of the separation point, due to the tip-clearance flow…). According to the scheme in Fig. 11, this effect 

can be taken into account (without knowing the detailed mechanism) by introducing an apparent metal angle m
*. 

Thus, we assume that the flow is driven by two angles, the actual stagger m
 and the apparent stagger m

*. Although 

this is a rough simplification of the complex flow that appears due to the interaction of the escaping particles and the 

main flow, it reflects the effect of interest to us. Note that due to geometrical restrictions, the maximum admissible 

angle for -m
* is obtained when the straight line defined by -m

* reaches the trailing edge of the next blade. Let -M
* 

be this maximum angle: 

 * 1 sin
tan

cos
m

M
m

 


 


  (16) 
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m r

V2
*

2
*

m
*

 

Fig. 11 Geometrical model proposed for taking into account the effect of the outlet deflection in the outlet area 

and characteristic azimuthal length. 

 

When the flow is well guided, the metal angle m drives the flow angle 2, and when the flow is bad guided the 

apparent metal angle m
* leads to the flow angle 2

*; hence, it is plausible to assume that, for small changes of the 

deviation, m
*-m=2

*-2 holds. However, the previous relationship cannot be valid for large deviations because 

the angle -m
* cannot be larger than the angle -M

*. The simplest relationship taking into account this limitation is 

the following one: 

 
*

* 2 2
*

2 2
* 1

m m

M m

  
 
 


 






 (17) 

Now, this apparent metal angle can be used for recalculating the characteristic azimuthal length as 

*2 / cos( ) tan( )m ml r Z c       . Therefore, the apparent outlet area a* and the new value of the parameter 

x are: 

 *

*1 cos tan tanm m m

a
a

   


   
 (18) 
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*

cos

1 cos tan
m

x

m m

 


  



 (19) 

Both, the correction in the area and the new value of x, tend to increase the value of c. This is because the 

greater the value of -m
*, the lower the value of both, the outlet area and the characteristic azimuthal length. Hence, 

the new model tends to reduce the deviation required to accomplish with the condition c =1. Taking into account 

this simple model, a new calculation of the constant-speed line can be done. The result is shown in Fig. 12 for the 

large-gap configuration (the result for the small-gap configuration is similar).  
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Fig. 12 Operational line calculated with the geometrical model of Fig. 11. 

 

The solid line in Fig. 12 has been obtained with a constant value of the rotor efficiency and stator pressure drop 

(equal respectively to 0.8982 and 0.9950, that are the values fixed by the non-stall straight part of the constant-speed 

line). It is possible to see how the new line in Fig. 12 follows the tendency that the experimental points exhibit. 

Figure 13 shows the deviation of the flow needed for reaching the condition c=1. The new deviation is significantly 

lower than the previous one (compare Figs. 8 and 13). In this case, the relative angle of the stream reaches a 

maximum value of -31º, which means a deviation respect to the guided flow (see Table 2) near -10º.  

The new geometry of the flow “stabilizes” the operational point over the empirical constant-speed line and 

hence, this result allows us to conclude that this basic model retains the dominant effects related to the behavior of 
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the constant-speed line between points B and C. The next section will show that the position of the surge point, point 

B, is also related to the Stability Theorem. 
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Fig. 13 Corrected flow angle at the rotor exit as a function of the flow coefficient. 

VIII. INFLUENCE OF THE INLET INCIDENCE ON THE DETERMINATION OF THE SECOND 
CRITICAL POINT 

 

In the previous calculations we have assumed that the escaping particles are generated by the tip region of the 

blades because it is the section with a lower value of x. However, it is plausible to think that these escaping 

particles are able to induce new escaping particles in other sections of the blades next to the tip. Thus, the escaping 

particles can become a majoritarian component of the flow if a large section of the blade near the tip exhibits a value 

of c near one. Since the condition c=1 means that the escaping particles have the potential to reach the inlet region, 

it is plausible that the distortions eventually generated by the escaping particles in the outlet region affect 

significantly the inlet region. Since the main flow is calculated with the mid radius, we assume that the escaping 

particles dominate the flow when they are able to disturb the inlet section just in the middle section of the blade. 

(Attending to the values in Table 1, the mid radius has a solidity equal to 1.000 and a stagger equal to -36.2º with a 

value x = 1.971.) To check this idea, Fig. 14 shows the calculated values of c for the tip and the mid radius using 

the constant-speed line calculated in the previous section. Table 6 shows the predicted values of the surge point for 

the large and small gap configurations. 
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Fig. 14 Stability coefficient for the tip and mid sections as a function of the flow coefficient. 

 

Fig. 14 shows that although the mid-section of the blades is more stable than the tip section for high values of the 

flow coefficient, finally the stability coefficient of the mid-section drops below one. This happens for a flow 

coefficient near  = 0.3494 (point B in Fig. 14). Note that the mid section becomes unstable even taking into account 

the deviation of the flow required to maintain the stability of the tip section. Attending to the Stability Theorem, this 

means that the mid-section cannot sustain a theoretical flow pattern for lower values of the flow coefficient. Thus, 

there are escaping particles in the inlet region of the mid-section of the blades and hence, it is plausible to think that 

the inlet area is also reduced. The main consequence of this fact is that Eq. (18) cannot be longer valid, and must be 

substituted again by a*=a=1. When this change is done, the deviation of the flow is given by the solid line in Fig. 15, 

and the constant-speed line by the solid line in Fig. 16. 

 

 LARGE GAP SMALL GAP 

Surge Point 

(Point B) 

Theor. Exp. Variation Theor. Exp. Variation 

  0.3494 0.35 0.17% 0.3498 0.34 2.88% 
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pc  0.5429 0.53 2.43% 0.5102 0.54 5.52% 

Table 6 Theoretical prediction for the first point where the mid section of the blade becomes unstable. 
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Fig. 15 Corrected relative flow angle at the rotor exit as a function of the flow coefficient required for stabilizing 

the mid section. 
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Fig. 16 Pressure coefficient as a function of the mass flow rate. The different branches are the different 

theoretical solutions obtained attending at the value of the stability coefficient at the tip and mid sections (see Table 

7). 

 

The important regions in Fig. 16 have been numerated from I to V according to its order of apparition when the 

flow coefficient is reduced. Fig. 17 shows the different values of the stability coefficient and Table 7 collects the 

main features of every region. For high values of the flow coefficient, both, the tip and the mid sections have a value 

of the stability coefficient greater than one and there is not a significant deviation of the flow. When the flow 

coefficient at point C is reached, the stability coefficient of tip section reaches the value one. At this point a 

bifurcation appears. If the deviation of the flow is not modified, the constant-speed line evolves along the region II. 

However, this part of the line has values of the stability coefficient lower than one, and hence cannot be sustained. If 

a greater deviation of the flow is assumed (in order to keep the stability coefficient at the tip section equal to one), 

the constant-speed line evolves as line III indicates. Note that in this part of the line the reduction of area and 

azimuthal length is enough to keep the stability coefficient of the mid section larger than one. However, when the 

flow coefficient is reduced towards the point B, the stability coefficient at the mid section reaches the value one, and 

hence, any further reduction of the flow coefficient following the line IV produces a stability coefficient of the mid 

section lower than one. This fact avoids following the line IV. At this point, the inlet section is severely perturbed by 

the escaping particles and the inlet area is drastically reduced. To overcome this reduction of the area, the deviation 

of the flow has to increase drastically. This effect produces the drop of the pressure ratio that appears just at the 

point B and that is experimentally observed in Fig. 16. The result is that the constant-speed line evolves following 

line V. However, with the new value of the inlet area the tip section becomes unstable because the sudden increment 

of the deviation is not enough to stabilize this section. Under this condition, the deviation required to stabilize the tip 

section is the one drawn in Fig. 8, that cannot be actually obtained because it requires higher rotor efficiencies than 

the ones allowed by the configuration (see Section VI). In this part, the Stability Theorem is not completely 

conclusive because the stabilization of one section destabilizes the other section (the last grey row of Table 7 

summarizes this fact). 
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REGION Reduction of area c(tip) c(mid) Flow pattern 

I NO (m
* =m ; a=1) >1 >1 Theoretical Flow Pattern. 

II NO (m
* =m ; a=1) <1 >1 Inlet section perturbed by reversed flow at the tip. 

III YES (m
* >m ; a>1) =1 >1 Inlet section slightly perturbed by reversed flow at the 

tip. 

IV YES (m
* >m ; a>1) =1 <1 Inlet section perturbed by reversed flow at the mid. 

V NO (m
* =m ; a=1) <1 =1 Inlet section perturbed by reversed flow at the tip. 

V YES/NO ~1 ~1 Unsteady behavior and/or a mixed behavior between 

the lines IV, V and the solid line in Fig. 7. 

Table 7 Behavior of the stability coefficient at tip and mid sections for every line in Fig. 16. 
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Fig. 17 Stability coefficient for the tip and mid sections as a function of the flow coefficient. The solid lines give 

the evolution of the stability coefficient for the tip and mid sections over the branches I, III and V in Fig. 16. 

 

Finally, in order to check that the solution given by lines I, III and V in Fig. 16 is not incompatible with the 

efficiency, the rotor efficiency has been adjusted anew. The values of the new values of the rotor efficiency are 

collected in Table 8. Although the values of the rotor efficiency do not exactly coincide with the ones reported by 

Ref. [26], they are not incompatible. 
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Division Flow coefficient Number of experimental points 
R  S

 from to 

1 0.200 0.280 6 0.8120 0.9950 

2 0.280 0.330 3 0.8787 0.9950 

3 0.330 0.365 3 0.8981 0.9950 

4 0.365 0.390 3 0.8912 0.9950 

5 0.390 0.425 4 0.8901 0.9950 

6 0.425 0.550 Previously used 0.8982 0.9950 

 Table 8 Rotor efficiency that minimizes the error between the theoretical result and the experimental points. 

IX. DISCUSSION 
 

The second critical point that the Stability Theorem predicts is point B, the surge point, which attending to the 

calculus occurs when the flow coefficient is equal to 0.3494. The experimental value reported by Ref [21] is near 

0.34 or 0.35 depending on the gap, which means an error inferior to 5%. It is a surprise that a geometrical model, 

based on calculating an apparent outlet flow area and a characteristic value x, gives such a good estimation. 

However, we explain this fact attending to two factors: 1) the rotor under study is a low Mach number compressor, 

and 2) the staple ingredients that are required to lead the rotor to the surge inception are included in the Stability 

Theorem. 

The Stability Theorem establishes a change in the behavior of the constant-speed line when the inlet section is 

surpassed by escaping particles without entering in discussing what mechanism is leading to those escaping 

particles. Indeed, one of the premises of the Stability Theorem is the necessity of noises. These noises have to be as 

large as possible to produce the escaping particle when the thermodynamics and the kinematics allow this fact. The 

theory shows that the compressor under study in this work has two points where the escaping particles generated by 

the noises are able to reach the inlet station: the inception point (point C) and the surge point (point B). The response 

of the flow pattern to this disruption of the inlet section consists basically in a loss of guidance of the flow. This 

change in the angle of the flow respect to the metal angle of the blades also modifies the ratio of areas and the 
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characteristic lengths of the blades that the mean flow “sees”. This situation can be considered as a quasi-steady 

configuration as long as the Stability Theorem can be fulfilled with a value of the stability coefficient equal to one. 

This is the expected behavior in the region dominated by lines I and III in Fig. 16. The expected flow patterns in 

those regions can be schematized as Fig. 11 shows. However, when the flow coefficient is reduced below the surge 

point, the mid section of the stage reaches a value of the stability coefficient lower than one. Any attempt for 

stabilizing this section produces a destabilization of the tip section and vice versa. Therefore, the flow pattern over 

the line V in Fig. 16 should be much more complicated. Probably, the mechanism in that area is not quasi-steady. If 

this is the case, there must be a natural fluctuation of the properties of the flow and the observed response should be 

a dynamic phenomenon. In addition, attending to the Stability Theorem, this should happen with independence of 

the kind of disturbances, and hence, this temporal evolution should not be correlated with external characteristic 

times or frequencies. This could explain why it is not easy to identify a stall-inception mechanism based on external 

frequencies. The difficulties associated to the identification of the stall-inception mechanism are well explained by 

Day et al. [24].  

Assuming that the Stability Theorem holds, we can conclude that a temporal and spatial average of the flow 

pattern at the surge point has to exhibit reversed flow near the inlet region of the tip rotor and a significant deviation 

of the flow. Although it is out of the scope of this paper to discover the inner structure of the flow, we imagine this 

flow pattern as the one roughly drawn in Fig. 18. In this figure, the thickness and the length of the blades is 

increased by the reversed flow. The result is that the grey area in that picture is not accessible to the main flow. This 

feature is indirectly supported by the experimental results obtained by Ref. [21] when the gap between the preceding 

stator and the rotor is changed. In the configuration with a large gap there are experimental points in the region near 

a flow rate of 0.32 [21], but those points disappear when the gap is reduced (see experimental points in Figs. 5 and 

6). Here we can explain this experimental fact by stating that the presence of the previous stator interferes with the 

flow pattern required for stabilizing the flow. If the preceding stator does not allow the flow to deflect as it is shown 

by the dashed lines in Fig. 18, the operational point cannot be stabilized. Consequently, due to the unstable character 

of these operational points, the flow pattern will not be a steady and homogeneous one, so that the stability theorem 

cannot be conclusive about the final flow pattern. However, it is conclusive when it states that the flow pattern in 

such situation is not a theoretical flow pattern. In this region Greitzer’s theory [22,23] can be applied to obtain the 
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post-stall evolution of the entire system, because, as Greitzer explains, the behaviour of the system depends on the 

system configuration. 

 
Fig. 18 Schematic of the basic geometry used to explaining the behavior in the post-surge constant-speed line. 

 

 

7. CONCLUSIONS 

A new way to calculate the outlet area and the azimuthal characteristic length of a row of blades has been 

proposed for feeding the calculation of the stability coefficient. An important result is that the characteristic 

azimuthal length affecting the stability of the constant-speed line is less than the spacing of the blades. Indeed, it is 

shown that the stagger angle of the blades must be used to calculate this characteristic length. As a result, the 

Stability Theorem predicts two points where the constant-speed line of an axial rotor bifurcates. The first point is the 

inception point and the second one is the surge point. The inception point is determined by the presence of escaping 

particles in the inlet section at the tip radius of the rotor. The surge point is determined by the presence of escaping 

particles in the inlet section at the mid radius. The ability of the model to capture the observed behavior has been 

assessed against experimental results. In particular, the flow coefficient where the surge occurs has been 

theoretically determined with an error level lower than 5 percent. The procedure has predicted the correct pressure 

ratio of the constant-speed line between the inception and surge points and gives a qualitative description of the 

shape of the constant-speed line once the surge point has been surpassed. In addition, it predicts the abrupt drop of 

the pressure ratio in the surge point and the positive slope of the constant-speed line beyond the surge point. An 
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analysis of sensitivity has shown that the rotor efficiency has little influence on determining the flow coefficients of 

inception and surge points and that the most relevant parameter is the ratio of areas, which is controlled by the 

deviation of the flow. The following additional conclusions were deduced from the study: 

1 The Stability Theorem holds true over the entire constant-speed line, not only for the bifurcation point. This 

allows the adoption of a completely new model for the deviation of the air flow angle and related geometry. 

2 The stability coefficient is correlated with the size of the regions subjected to flow separation. Where the 

stability coefficient is much lower than one, the model requires large flow separation. 

3 Provided that a noisy environment is present, the point at which instability occurs does not depend on the kind 

of the disturbances. This point is set with independence of the mechanism adopted for calculating the evolution of 

the amplitude of the disturbances and hence, with independence of its wavelength or frequency. 
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Notation 
a = ratio of inlet to outlet area =A1/A2 
A = annular area 
c = chord 
cp = pressure coefficient 
E = equation 
h = enthalpy 
I = total to total enthalpy ratio =h02/h01 
l = characteristic length 
P = pressure 
r = radius 
u = absolute axial velocity divided by h01

1/2 
v = absolute tangential velocity divided by h01

1/2 
V = absolute velocity of air 
w = blade speed divided by h01

1/2 
Z = number of blades 
α = absolute flow angle measured from the axial direction 
β = relative (to the rotor) flow angle measured from the axial direction 
 = ratio of inlet to outlet static pressure =P1/P2 
 = dimensionless parameter defined by Eqs. (1) and (5) 
 = flow coefficient (axial velocity/blade speed) 

Φesc = potential for escaping 
γ = ratio of specific heats 
η = adiabatic efficiency 
Π = stagnation pressure ratio 
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θ = static enthalpy ratio = h2/h1 
ρ = density 
σ = solidity (chord/spacing ratio) 
Ω = angular speed of the rotor 
ξ = stability margin coefficient 
ξc = stability coefficient 
Subindexes 
x = axial component 
R = rotor 
S = stator 
θ = azimuthal component 
0 = stagnation conditions 
1 = inlet conditions 
2 = outlet conditions 
 
 

 
All the equations are derived with a constant radius assumption and air is treated as a perfect gas with constant 

specific heats. 
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