
264 

DYNAMIC STIFFNESSES OF FOUNDATIONS 

E. AlarcÓn, J. DornÍnguez, and F. del Cano 

E.T.S. Ingenieros Industriales. 
Universidad Politecnica. Madrid. SPAIN 

ABSTRACT. A general theory that describes the B.I.E.M. in 
steady-state elastodynamics is developed. A comprehensive 
forrnulation for homogeneous and heterogeneous media is presented 
and also sorne results in practical cases as well as a general 
review of several other possibilities. 

l. The problem 

A problem which has traditionally fascinated soil-dynamic 
researchers has been the foundation design of vibrating machinery. 
Several methods based either on the WINKLER idea (BARKAN -1962, 
SAVINO - 1955, etc.) or in assumption of a elastic homogeneous, 
isotropic halfspace (REISSNER- 1936, QUINLAN - 1953, SUNG 
1953 ) have been developed. 

Using that experience sorne authors have extended the 
usefulness of those results to earthquake engineering problems. 

The starting point was a paper published by REISSNER in 
1936, in which, trying to establish a theoretical basis for the 
DEGBO (Deutschen Forschungsgesellschaff fur Bodenmechanic) 
experimental research, he used the LAMB'S (1904) problem 
solution (half space underharmonic load to obtain the soil 
response to an oscillating load applied through a rigid circular 
plate). 

The solution method was the integration of LAMB results in 
the circular area, which means a uniform contact pressure. 

REISSNER results were very different from experimental ones 
mainly because of a sign error (SHECKTER 1948) in the algebra 
and also because the uniform distribution does not produce the 
equ~lity of displacements required by the plate rigidity. 
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In the "Fifty-sixth Annual Meeting of the American Society 
for Testing Materials (July 1953)," P.M. QUINLAN and T.Y. SUNG 
presented two papers in which they repeated the analysis for 
"several" cases. The first was a static rigid plate distribution, 
the second a uniform one and the third a parabolic one more 
similar to a flexible plate case. 

As can be seen al1 results were obtained through a 
simplification of the initial boundary problem. 

For the rigid disk it is a mixed problem in which the 
displacement shape is known in the part under it and the tract
ions are nil in the rest of the half space boundary. 

REISSNER and SUNG solved a different problem when they 
assumed a prescribed traction distribution under the plate. This 
leads as we said, to a series of displacements incompatible with 
the hypothesis of rigid plate and, consequently, the results 
must be used with great care. 

In several reports, especially in the 1971-73 ones, VELETSOS 
and coworkers gave an interesting new approach and also useful 
numerical results. For instancé, the case of rocking and 
horizontal displacement was treated (VELETSOS-WEI (1971)) with 
the following hypothesis: 

a) during the horizontal imposed displacement there are no normal 
stresses in the half space boundary, in spite of the existence 
of vertical displacements. 

b) in the rocking case there are no tangential stresses in the 
surface of the half space, in spite of the existence of 
horizontal displacements. 

These hypotheses allow the computation of the horizontal 
case independently of the rocking one, but on the other hand, 
they produce no rígid displacements of the plate. Nevertheless 
through the use of a weighted reciprocíty relation, this approach 
produced very accurate results. 

The viscoelastic case (MEEK - VELETSOS (1973)) was also 
studied after a polynomial representation of previous elastic 
resu1ts. 

By the way it is worth noting that the method presented by 
DAS GUPTA - SACKMANN (1977) using a correspondence principle for 
discretized set of values appears to be more promising. 

The importance of the embedment of the footing was also 
recognized very ear1y (RICHART 1960) and a large amount of work 
has been done by NOVAK and coworkers (1972, 1973 •.. ). The 
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fundamental idea is to admit that the soil ·around the footing 
is built by a series of elemental layers which react independ
ently of the half space over which they are resting. The 
agreement with experimental results is, of course, not very 
good. 

After these pioneering works a considerable amount of 
research has been done in recent years to determine the 
dynamic stiffness of foundations of various shapes (GAZETAS -
ROESSET, 1976, WONG- LUCO, 1976, ELSABEE- MORRAY, 1977, 
KAUSSEL, ROESSET- CHRISTIAN, 1976 •.. ). 

An interesting comparison between two and three dimens
ional solutions including the influence of embedment has been 
published recently (JAKUB, 1977). 

All these results are currently applied to the cases in 
which the base of the structure behaves as a single rigid 
footing (base slab in nuclear reactor buildings, high-rise 
buildings on mat foundation, etc.). In order to permit analysis 
of other structures where this idealization is unreasonable, 
CHOPRA- coworkers (1969, 1974, 1975, 1976, etc.) have obtained 
results using a different approach. 

The half space is treated as a substructure and the dynamic 
(frequency-dependent) stiffness matrix is of order equal to the 
numbe~ of connecting degrees of freedom on the structure
foundation interface. 

In this way the i. term of the matrix is defined as fhe 
force in the i mode whén a harmonic unit displacement e 1 w is 
applied in the j mode, with other d.o.f. being kept fixed. 

In the case of the pure plane horizontally homogeneous 
half space one needs the results only for two boundary problems: 
the vertical displacement and the horizontal one. An approp
riate translation will provide the results for all the degrees 
of freedom. The displacement between the activated node and 
the neighbouring ones is assumed according to the isoparametric 
representation to be used in the subsequertt F.E. anal~sis of 
the above ground structure. 

. Instead of solving this mixed problem directly CHOPRA 
et al. prescribed zero displacements also outside the structure
foundation interface, and after a standard condensation, they 
get the correct dynamic foundation stiffness matrix. 

2. The numerical procedure 

The elastodynamic equations are a classic in mathematical 
physics and severa! procedures have been devised in order to 
solve them. 
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In general, a weak formulation through a set of functions 

l~i]n i.e., a projective method, is the most popular numerical 
approach. 

Taking a member !k of the family, the equilibrium 
equations can be put as 

- r o: .. • r .d0.==1· x .. '!'~ .d Q 
) 0. IJ ,J 1 S"l 1 1 

(2. 1) 

where a .. is the stress tensor and X the vector of body forces. 
1J 

Integrating the left hand side of (2.1) and 
as a displacement vector it is possible to write 

J s ~.a ==J. '!'~. T~ +)' X .• '!'k 
st ¡ j ¡ j . a st 1 1 st 1 

where 

If the "star" stresses are defined through 

a*== At:*.o + 2.G.e:* 
i j jj i j i j 

a relation, reciprocal of (2.2) would be 

. . k 
cons1der1ng ! 

(2. 2) 

(2.3) 

j~ Eifa~j = J~~i. ~ + J~ >\.u¡ (2.4) 

But the same equations (2.3) show that. the left hand side 
of (2.2) and (2.4) are the same, so 

f '!'k. T. + f X .• '!' ~ = J u .. T~ +( X~. u . ( 2 • 5) 
ar2i 1 n 11 an1 1Jr21 1 

(2.2) are the starting point for the F.E.M. while (2.5) is the 
correspondtng one for the B.I.E.M. Notice that for (2.4) to 
be valid ~ need to be a classical solution of the field 
equations, (2.5) is, in vectorial form 

j dí2!.·I -jdr2 ~.1* = ~<~) -JQ p º-.!_k (2.6) 

In arder to eliminate the time dependency CRUSE & RIZZO 
proposed to work in the frequency domain. The problem is then 
reduced to a quasi-static one with the following fundamental 
solution 

\) 

'!'. = u ... e. 
1 IJ J 

T. T .. e. 
1 1 J J 

(2. 7) 

u h.o __ -X.r .. r .J 
IJ , 1 ,J ij 
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w is the chosen frequency and r is the distance between the 
point of load application and observation and K is the modified 
Bessel function of zero arder and second kind. 

0 

In ref 1 the 3-D fundamental solution is also presented. 
Under these conditions eq. (2.6) reduces to 

~ € D (2. 1 O) 

! being the point of load application. In order to manage values 
of X only the boundary is necessary to take a limit process after 
which 

~€ D (2. 11) 

and e is a numerical matrix which reflects the geometrical pro
pertTes of the boundary round X. If, for instance, the boundary 
is smooth ~ = !l where I is the identity matrix. 

The numerical procedure known as Boundary Integral Equa
tion method (B.I.E.M.) produces a set of linear equations by 
discretizing the boundary with n points and writing n set 
equations of the forro assuming as family r~kJ the set of funda
mental solutions o(X) where X are the chosen n points at the 
boundary. - -

As round every p·oint X. we have 6 unknowns (in the case of 
plane conditions) i.e.: th;

1
two components u,v of diplacements and 
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h . [ ]b, la d f t e four components of tract1on _a, T La, Tj befare an a ter 
the point, it is necessary to assume an evolution of u and T 
between "nodes" and to establish 4n boundary conditions in arder 
to obtain a compatible system of equations. 

In B.I.E.M. one usually takes a family of locally based 
functions whose superposition represents the tractions and the 
disp lacements 

i 
u= E ~ ·f (2. 12) 

Ti *¡ T= E -·~ 

of course ~} and ~*i need not be the same, but it is usual to 
. *" put ~J = ~ 1 . The locally based character is useful in the sense 

that-uL añd T1 have physical meaning, but this does not help in the 
bandedness of the resultant matrix because the weighting family 
IIJ'k 1 is defined everywhere and the final matrix is full. 

n 
This is perhaps the most important drawback of B.I.E.M. in 

face of F.E.M. Its main advantage is of course, the reduction 
of the dimension by one. 

A "linear element discretization~, for instance, is 

T 

where 

í . ] [ ~ l 1 

N1 N2 : O O 

:. 

r~--~···f··~:-~2 

[: l= [·:·]·:?+~·:·] 
N =-~(11-1) 

N~=-~(11+1) 

dSe = ~Le d11 

-1_s11s_1 

u, e 

u2 

(2. 13) 

v, 
v2 

x, e 

x2 

v, 
y2 

(2. 14) 

n being dimensionless length and e representing element. 
Writing (2. 11) now 

2c;_ r~ Lj~~Li~~ -~~ ~ ~ ~~~~ ~ ~: . ~~-~ ~~~'. ~~~~~~l. 
t ;j ~ T21df; 1~T21d( 1~1T22d( k}22d( 

!J .. ., "'":1 11 -

j 
u

J 
"j" 
-~hl. 

J 
vj .. •;•. 
v]+1 
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N l t:'J1U 1d :¡ N2U11d :1 ~1U12d :( ~2U1,2d 
= E L ~J •• : ••••• ~~L ..... -~~- ...... :~ ...... . 

j=1 j 

kl~d l N U d 
~lb' 2 21 • ;¡ 

Finally a system of equations 

A.u=B.T -- - -
(2n x2n)(2n x 1) (2n x4n)(4n x 1) 

~ 
. -~~~ 
··~·· 

J 

. -~~~ 
(2. 15) 

is prepared to receive the boundary conditions. After they are 
imposed we have to solve 

K. X = f (2. 17) -- -
(2n x 2n)(2n x 1) (2n x 1) 

where X collects the unknowns and f the data, both weighted by 
the appropriate element from A & B~ More details can be seen 
elsewhere (ref 2). 

In the heterogeneous case the approach is also very simple. 

Assume, for instance, a matrix D with boundary r and proper
ties E and v, and two inclusions (D,f,E,v), (D,f,E,~) 

.. ~.,._ -r -<--~::;;;~-;--:;:(,_~·· The field equations are estab-
f ~- --~: lished in ordered fashion. 

_4~f· _ }.::: ·.' ·. ·.:·-..:t.,. . As su~ resp~ct~ ve ?iscretiza-
/.<';.'l"' ... .17 . ':~;¡-_._-.· ... · ... ¡s·; ti.ons.wi.th N, n,_n, li.I~ear elements . 

. .f·~ _.;.~·<''~-:~ -~: :t~ _:. iA ... · .. _}} Equati.on (2. 16) 1.n reg1.on D can be 
H.~ t.' .. &>···:_ ::·.j·· ·:-~:} written in a partitioned form. 

~.~S;~;0~~::,:>
1 

[A, ']• A1 [g~ [s, 
( 2n x 2n )(2n x 1) (2n x 4n )(4n x 1) 

t t t t t t 
and similarly for D and D 

- -2 - -2 
A

2
.u =B

2
.T 

(2n x 2ñ)(2n·x 1 ) (2n x 4ñ)(4ñ x n 
- -3 - -3 
A

3
.u =B

3
.T 

(2~ X 2n1(2=r; X 1) (2;;' X 4n)(4n X 1) 

conditions of compatibility and equilibrium are 

-l --2 
u =u =u 
==1 -2 
u =u =u 

( 2. 18) 

(2. 19) 



-1 -2 -
T ::-:-T =T 

12 =-?=:r 
grouping (2. 18) and (2. 19) using (2.20) produces 

n = N+n+ñ 
t 

= 

1J f~l ~1 t] l~] 2n r~ Al 81 
2ñ t o A2 = -~ 
2ñ ~o O· o 

2N 2ñ 2R 4n 
t 

which for a NEUMANN problem can be written 

2N 2n 4n 2~ 4~ 

[~ -:- :~. -\-:;:{~- tJ 
Imposing conditions on T and T, for instance 
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(2.21:) 

in the case of smooth boundaries one can solve a system of 
2N+4(;+~) equations with the same amount of unknowns i.e.: !;h~ 
2N component displacements of the outer boundary and the 4(n+ñ) 
displacements and tractions at the interior boundaries. 

The generalization to other boundary conditions or number 
of inclusions is straightforward. Also interesting ís the case 
in which the regions are connected in series, because then the 
matrix of the left hand side in eq. (2.22) takes a banded form. 

This has been used in cases with a very narrow domain even 
with homogeneous properties. 
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EXAMPLES 

In arder to see the behaviour of the method we started 
analyzing the response with several elements outside the rigid 
foundation. 

Plate No. 1 records the relatíve results for a surface 
foundation and plate No. 2 for embedded one. In abscissa we 
have the number of last element and in ordinates the relative 
values of factors (taking as reference the finer mesh). 

The Oscillating shape of results reflects the modelling 
of waves. It is seen that for the surface case the results 

wíthout díscretizing the exterior boundary are good enough and 
that for embedded foundations we need at least six elements. 

Plates 3 and 4 represent the results puttíng in ordinates 
the actual value of stiffness. 

In this case we use a complex G in arder to investigate the 
possibility of including material damping. Nevertheless the 
amount is small so the results can be compared with the previous 
ones, (as Jakub's). 

Looking at this picture, the possibility of truncating the 
discretization not far from the footing is clear. 

In plates No. 5 the results are compared with the analytical 
ones of KARASUDHI, Y~ER & LEE. 

Notice the remarkable accuracy obtained without discretizing 
the exterior boundary. 

Plate No. 6 shows the same kind of results for an embedded 
foundation studied with only twenty-eight constant elements. 

Plate No. 7 shows the graph of surface displacements for a di
mensionless frequency a0 = wb/c

8 
= 0.5 where w is the excitation 

frequency, b the width of the plate and c 8 the celerity of S 
waves. 

Finally plate No. 8 suggests sorne of the possible applica
tions of the method. 
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SURFACE FOUNDATION STRIP FOOTING 
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