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Abstract 
The electron-retarding range of the current-voltage characteristic of a flat 
Langmuir probe perpendicular to a strong magnetic field in a fully ionized 
plasma is analysed allowing for anomalous (Bohm) cross-field transport and 
temperature changes in the collection process. With probe size and ion thermal 
gyroradius comparable, and smaller than the electron mean free path, there is 
an outer quasineutral region with ion viscosity determinant in allowing non-
ambipolar parallel and cross flow. A potential overshoot lying either at the 
base or inside the quasineutral region both makes ions follow Boltzmann's 
law at negative bias and extends the electron-retarding range to probe bias 
e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and 
negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe 
heat conduction cools and heats electrons at and radially away from the probe 
axis, respectively. The potential overshoot with no thermal effects would reduce 
the electron current Ie, making the In Ie versus 4>p graph downwards-concave, 
but cooling further reduces Ie substantially, and may tilt the slope upwards 
past the temperature minimum. The domain of strict validity of our analysis 
is narrow in case of low ion mass (deuterium), breaking down with the ion 
Boltzmann law. 

1. Introduction 

In a strongly magnetized plasma, perturbations by an electron-collecting Langmuir probe reach 
far away, making charge transport essential to the workings of probes as particle sinks. The 
electron current 4 (and the current-voltage probe characteristic) may be affected, however, 
by energy and momentum, as well as particle, transport. A basic point rarely discussed in the 
literature concerns the issue of electron collection as an isothermal process [1,2]. 

The variety of parameters involved in probe collection in the presence of a strong magnetic 
field B allow for quite different regimes. In cold but rarefied, unbounded collisionless space 
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plasmas, probes may be biased highly positive [3], with recent theoretical developments for 
new applications [4,5]. Ionospheric experiments have found particles heated in the plasma 
beyond probe [6,7] or spacecraft [8] sheaths. 

On the other hand, in hotter but denser bounded plasmas where collisional or turbulent 
transport applies, as in some large laboratory facilities [9] or at the edge of toroidal fusion 
machines, probe potential </>P might need to be highly negative to reduce the power flux reaching 
the probe. The floating potential and the ion branch of the C-V characteristic are often made 
use of [10,11], although such measurements involve problematic consideration of both tail of 
the electron distribution function, and ion-current saturation. Note further that the magnetic 
field itself will greatly reduce the power flux in the electron-retarding range of the characteristic 
(0P between floating and plasma potentials). The retarding range serves in determining the 
electron temperature Te, or for general double-probe use, and remains a basic problem in 
magnetized plasmas. 

Bohm's pioneer work on probes in strongly magnetized plasmas was concerned with 
positive bias [12]. Broadly, generic results on the retarding range were first established by 
Sanmartin [13] using classical (collisional) cross-field transport (as against anomalous or 
turbulent transport in [12]): a potential overshoot along the flux tube terminating in the probe, 
ion density paradoxically following the Boltzmann law at 4>p < 0, and the retarding range 
effectively extending up to a positive bias 4>p ^ +(l-2)r e /e. The potential hill result of the 
overshoot, which makes the In Ie - </>P graph concave-downwards, has been experimentally 
detected in weakly ionized [14] and turbulent [15] plasmas, and may affect interpretation 
of data from multiple close probes. Free streaming rather than diffusive motion along the 
field, and hill effects on measurements, were discussed by Cohen [16]. Stangeby introduced 
the potential hill from [13] into a simplified form of Bohm's analysis and got a practical 
description of the retarding range and beyond [17]. We note that the collection process was 
considered isothermal in [13]. 

Recently, a fully consistent analysis of the standard single-probe allowing for thermal 
effects found electron cooling within certain range of probe size and bias [2]. The simplest 
probe model was adopted: a disc of radius R perpendicular to an uniform magnetic field, and 
the complete set of macroscopic equations with classical transport coefficients as given by 
Braginskii [18]. Two points were missing from that work, however. First, cross-field transport 
is often anomalous; second, single probe theory, which requires current density to 'vanish' in 
the far plasma (effectively coming from large chamber walls in a laboratory), may not apply 
because distances to near walls are short [19]. 

Here, we further consider electron cooling and heating processes for the retarding range 
of a probe, ascertaining their generic character and domain of validity, and allowing for 
anomalous cross-field diffusion. Anomalous transport is a deep and unsettled field of work 
but transport in the edge plasma has become crucial to magnetic confinement [20]; Langmuir 
probes are regularly used in toroidal machines, both in the scrape-off layer and inside the 
separatrix, and extensive work has been carried out on the physics of fluctuations, on overall 
modelling of the edge plasma, and in refining probe measurements [21-23]. Note, anyhow, 
that transport to a probe differs from global toroidal transport, where you might reasonably 
use flux-surface averages for simple analyses: averaging over the 'toroidal' length would 
here miss the basic fact that transport processes end at a limiting sheath, which additionally 
acts as a differential-particle sink. In case of fusion plasmas our transport model may be 
called local: we take parallel transport fully classical rather than neoclassical; cross-field 
diffusion of Bohm rather than Kadomtsev's gyro-Bohm type (which essentially replaces 
mean free path by minor plasma radius in classical cross-field diffusion) [24]; and the well-
defined structure of collisional theory [18] as regards off-diagonal terms of a transport matrix 



(bootstrap current, Ware pinch convection...) [25]. There have been early attempts at using 
anomalous transport in electron collection [26]. There naturally remain uncertainties in the 
transport description. 

Only the electron current will be considered. Ignoring the ion current will clearly fail 
around and below the floating potential; this precludes directly applying our analysis for 
double-probe use, say, for a flush-mounted (adjacent double) probe [11,27]. Double-probe 
modelling will be the subject of following work. Our probe would be a protruding (maybe 
reciprocating) probe [28]. The possibility of ionization and other kinetic effects from neutrals, 
or flow in the unperturbed plasma, will be ignored here. Analyses of parallel flow for the ion 
branch of the characteristic has given rise to so-called Mach probes [29,30]. Perpendicular 
flow, whether related to static or fluctuating electric fields, has been analysed recently [10]. 
We note that ionospheric experiments suggest that spacecraft velocity, even though highly 
subsonic as regards electrons, might have a substantial effect on electron collection at highly 
positive bias [7,31,32]. 

For simplicity, we take ion charge Z = 1, and equal unperturbed temperatures, 
Tico = Teco = Too. We assume very large ^e^eoo, where £2e (=eB/me) and re are electron 
gyrofrequency and Braginskii's collision time, respectively; we will write ^e^eoo = ^oo/4oo, 
with electron thermal gyroradius le = ce/Qe, characteristic mean free path A = cere, and 
thermal velocity ce = ^/Te/me. Our analysis involves a bias ratio, e^p/T^ (in the range 
- 3 to +1, say), and three large length ratios, Aoo/Zeoo, R/hoo, and lloo/leoo {=^Jmllme). We 
take R ~ Z100 and A.00M00 about unity or moderately large. No Debye sheath analysis will be 
required. Although no ion transport term will have direct quantitative effect on the results, ion 
viscosity proves relevant in sustaining both parallel and cross-field non-ambipolar quasineutral 
flow, a fact that has produced some confusion in the past [33]. 

The collisional study of [2] is recalled in section 2. Anomalous cross-field transport is 
consistently integrated into a full model for probe collection in section 3. Detailed graphical 
results are presented and discussed in section 4. The domain of validity of the model is 
discussed in section 5. Results are resumed in section 6. 

2. Fully classical transport 

Here, we briefly recall the fully steady, collisional transport case [2]. Taking (i) electron 
velocities well below sonic (to ignore inertia terms) and (ii) electron viscosity effects negligible, 
as conditions to verify below, the electron momentum equations read 

dp, d(b 
0 ^ - - ^ + en^- + Rez, (la) 

dZ OZ 

0 R» eBnver + Re6, (lb) 

0 « —— + en- eBnvee + Rer (Rer negligible), (2) 
dr dr 

Re is the force on electrons due to collisions with ions, the magnetic field lies along the z-axis 
of cylindrical coordinates (3/30 = 0), and the plasma is quasineutral outside a thin sheath 
(«! «a «e = «). Under a third ansatz, (iii) ve — vt « ve, one finds 

trie 9Te 

Rez ss -a0—nvez - fioti——, (3a) 
Te dZ 

me P" 37; 
Re6 « nve6 - ——n — , (3b) 

x, il,x, dr 



with Braginskii constants a0, f}0, fi'{, while Rsr is found to be smaller than dominant terms 
in (2) by a factor l/£22re

2 = il/x1. 
Using nvez and nver from equations (l)-(3) in the electron continuity equation, 

9 1 9 
0, 

dz r dr 

there results a first relation for <f>, n, and Te. Further, with e<f> ~ Te and r 
values for length along z and for velocity components come out to be 
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showing Lz large compared to both R and A, and verifying ansatz (i). As regards ansatz 
(ii), the electron viscous force, involving five viscous coefficients, ^eo-4 (*]ei,2 x £22Te

2 ~ 
r]e3-4 x Qete ~ jjeo ~ nTete), is found to have components Fe!,, Fe

v
e, and Fe

v
r that are indeed 

smaller than Rez, Ree, and eBnvee, respectively, by a factor of order l^/R2. 
The energy equation for electrons now takes the form 

V- nve +1 - g i + ^ e - W i • 6 i 
3me Te -

n 
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z 

with #ez and qer given by Braginskii, 

Te dTe 
Qez 

me dz 
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Note that all terms on the left-hand side of (6) are of order of Re • ve, which ansatz (iii) makes 
much larger than ^ e • v17 whereas Ql is of order of S e - i i e x 3R2/l2 and might be comparable 
to ^ e • ve. Equation (6) provides a second relation among <f>, n, Te and Tt. 

Next, assuming (iv) ion velocities well below sonic too, and using ansatz (iii) to ignore 
any magnetic force component, the ion z- and 9 -momentum equations read 

dpl d(j) 

"97 
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where viscous forces, to order *JmJm~l7 read 
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£2?*i»7ii 
nT, 

0.2 (0.3) for £22r2 = 1 (»1 ) , (10a) 

0.47 (1.2) for £22r2 = 1 (»1 ) ; (10&) 

the last term in (9b) was overlooked in [2], with no effect, however, in estimating vlS. 
Equations (8) and (9) yield vlz and vie, the ion continuity equation 

9 1 9 
— nvlz + - — rnvlr = 0 (11) 
dz r dr 

then giving vir. This allows verifying ansatzen (iii) and (iv), 

Viz vi0 vv R2 lm 

vee ver If y m , 

(126) 
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Finally, the radial flux term of the heat-flux divergence in the ion energy equation is larger 
than gi by a factor (mjms)

112 x l2/3R2, Ql itself being dominant against all other terms in 
the equation, which thus reads 

1 9 / 8TA 
~—rqlr^0 \qv CC — . (13) 
r dr \ dr J 

With rqir = rqir\r=0 = 0, at any z, the resulting equation, dTJdr = 0, yields Tt = Tt(z, 
r -> oo) = T^. The ion r-momentum equation then reads 

9« # „v / 1 9 9ulfl jjl3i;lfl \ 
0 ^ - r o o — - e n — + FJ, F J « — — r j f c , - =-negligible , (14) 

dr dr \ r dr dr rl ) 

with i\r)lzlnTl «a 0.37 (0.5) for U2r2 = 1(^> 1), the viscous force Ffr is smaller than the 
other terms by a factor s/me./mi. Equation (14) gives Inn + ecp/T^ = ln«(z, r -> oo) + 
e<f>(z, r -> oo)/Too = Inn^. Using results 

T, = Tx, (15a) 

( e<P\ n = «O0expl - — I , (156) 

in equations (4) and (6) provides two equations for Te and <f>, which were analysed in [2]. 
Note how quasineutral diffusion comes out non-ambipolar, ion viscosity, along with two 

separate continuity equations, being crucial in this respect. The addition of equations (la) and 
(8a) (z-momentum equation for the ion-electron fluid) shows F^, and thus vlz, being driven by 
z-gradients, which also drive Rez, and thus vez. For R/k not large, (12a) proves vlz/vez small. 
The continuity equations (4) and (11) then yield a radial flux ratio small too, vir/ver ~ vlz/vez. 
Radial gradients drive ve6 in (2), and thus Ree, which drives both ver and F^e(vie), leading to 
Vie/Vee again small in (12a). 



3. Anomalous cross-field transport 

The result for cross-field transport of electrons from equations (lb), (2) and (3b) reads 

(16) 
- 1 

eBnve 
£2e 

9Pe 30 „„ dTs 

en Pi n 
dr dr dr For isothermal electrons and no electric field, equation (16) reads nver = —Ds± x dn/dr, 

with the classical diffusion coefficient Z)e± = cl/Qlte. The replacement of l/£2ere = Ze/A. 
in (16) by a numerical factor e describes Bohm cross-field transport, involving correlated 
fluctuations of density and electric field (and temperature and magnetic-field) that break the 
cylindrical symmetry and drive the averaged momentum equation; the diffusion coefficient 
is then DeB = ecl/Qe. We may now check whether the solution of the previous section is 
consistent with a scale-up in electron cross-field diffusion by the large factor eQete = eA./Ze 

(A./Ze very large, e small or moderately small, Bohm's suggested value being e = -^ [12]). 
Electron momentum and heat cross-field transport should scale up by a factor of the same 

order. Electron viscosity terms, which were of order l^/R2 against dominant terms, remain 
negligible, however. This applies to the force component Rr too, leaving ve6 unchanged in 
(2). With Rez still given by equation (3a), and with r ~ R, equations (la) and (4) show both 
vez and l/Lz greater by the factor ^/skfQ. This yields velocity components 

- , (17a) 
Ce R 

Ce R 

£ - . (17c) 
Ce R 

A s regards equat ion (6) note that qer, in fact the entire left-hand side, is n o w larger by the factor 
eA/Ze, whereas Ql r emains as given, thus becoming of order R2/eHe x 3me/m1 relat ive to 
the left-hand side; we are here assuming that fluctuations are slow (frequencies small against 
l/re ~ £2i x ^/mjm^ x IJk). 

Although ions and electrons have similar Bohm diffusion coefficients (c2/^ ~ c2/Q.&), 
replacing classical cross-field transport with Bohm transport rests on a more stringent condition 
in the case of ions (eQ,1r1 ~ sk/l^ should be large). We shall now assume that IJX is larger 
than e, ion viscosity coefficients thus retaining order of magnitude values as given in section 2, 
allowing us to write r)x\^ ~ (nTJQ,^ x IJX, JJI3 ~ nTJQ,^ Note, anyhow, that ion transport 
terms are only used to check consistency of the solution, not to determine it. Equations (8a), 
(9a) and (11) then yield 

12 (18a) 

(18b) 

(18c) 

Finally, with the radial ion heat-flux keeping its order of magnitude value while <2i remains as 
given, equation (14), leading to Tt = T^, remains valid. All ratios in (17a)-(17c), (18a)—(18c) 
are still small. 



Regarding vl8 we shall just assume now and in section 4 that the ion 9 -momentum equation, 
previously given by (8b), yields vl6 low enough to allow writing the r -momentum equation 
as in (14), leading to the ion Boltzmann law that is basic to our analysis. We shall determine 
conditions for the above result to apply in section 5, where we also discuss effects arising 
when it does not apply, and the general validity of our model. Here, use of (15a) and (15b) 
in equations (4) and (6) again yields two equations determining <f> and Te, with ver and qer 

properly modified in (lb) and (16). 
A model for anomalous transport with the full scope of the classical coUisional description 

is lacking. For definiteness, we shall keep the brackets in (lb) and (16) after replacing 1/ Qete 

by e, and use Braginskii's y{ coefficient. The (moderately) large value y[ ^ 4.664 reflects 
the fact that superthermal electrons carry the heat flux [34], in agreement with suggestions 
that anomalous cross-field thermal diffusivity is large compared with corresponding particle 
diffusivity. As regards fi'{ we shall consider both Braginskii's value ( | ) and value ji'{ = 0 
(no thermoelectric effect). Introducing dimensionless variables, 
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equations (4) and (6) read 
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at f = 0, 

1). (60 

as /l 2
2 + f2 

oo, 

and 

:0 at 2 = 0, f > 1, 
dcp _ dT 

dz dz 

are manifest but boundary conditions for 2 ->- 0, f < 1 require detailed consideration. 
Equations (40 and (60 describe an outer coUisional, quasineutral flow with ions following 
a Boltzmann law. These conditions break down at small enough 2 values, covering an inner 



region where collisionality and the Boltzmann law for ions fail at z ~ local mean free path and 
probe radius (<&LZ), while quasineutrality fails in an embedded sheath at z ~ local Debye 
length. Throughout this overall inner region, where z-gradients are comparatively steep, 
equation (4) yields nvez = const. Using subscript 0 for outer solution values at f < 1, 2 -> 0, 
we find that there is a bias range for which exp[e (</>o - 0p)/ r eo] is large, electrons that come into 
the inner region thus facing a tall energy hill. The probe surface, even though absorbing, acts as 
a perfectly reflecting wall for most of the electron distribution function, which approaches the 
inner region as the slightly distorted Maxwellian of Braginskii's calculations but reaches the 
probe as a (truncated) Maxwell-Boltzmann distribution at values n0, T0. A detailed discussion 
of the inner region is given in [2]. 

We can now determine the constant value of nvez by evaluating it at the probe, to get 

n0veZ0 -n0 exp 
e{(j)0 -(j)P)' 

*e0 

'e0 

27tm, «o Moo exp 
* OO 

(20) 

The total energy flux along z on the left-hand side of equation (6) is similarly conserved, 
yielding 

( | Te0 - e0o) n0vez0 + qezo = (2Te0 - e0p)«oUezO- (21) 

In dimensionless variables, using results for nvez and qez from section 2, these equations read 
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Coupled equations (40 and (60, with boundary conditions (200 and (210, serve to 
determine <f> and f, and finally the current reaching the probe. The full set of equations 
involves just three dimensionless parameters, ecp-p/Too, 3me/ml and R/s/eKJ^ (as against 
R/hoo for fully classical transport, as a result of changing the z-scale from (5a) to (19)), in 
addition to Braginskii's parallel transport coefficients a0,p0, y0, and thermoelectric coefficients 
P'{, y[- Also, equations (40 and (60 differ from the corresponding equations in the classical 

3/2 

case because a constant factor e is replacing 1 / Qete, which varied as n/ Te . (A factor 2 was 
missing from the right-hand side of equation (120 of [2].) 

Numerical solutions were obtained by using full multigrid algorithm (FMG) and full 
aproximation storage algorithm (FAS) techniques. The choices as smoother, restriction opertor 
and prolongation operator were the Gauss-Seidel scheme, full weighting operator and bilinear 
interpolation, respectively. Results are presented for values of R/^/elooleoo up to 90, for which 
the scheme was efficient as regards convergence. Beyond this parameter range convergence 
becomes progressively slower, finally breaking down at high enough R/^/el^l,,^. 

4. Discussion of results 

Figures 1 and 2 show the potential at the base of the outer region averaged over the probe, 
(0o> = f0 0o2r dr/R2. Finding 0O > 0 at negative bias means that the potential overshoots 
its (zero) faraway value [13]. Positive 0o values at 0p < 0 arise from electron cross-flow 
being inhibited by the magnetic field, which makes a parallel electron flux to persist over long 
distances, allowing ion-electron resistivity to keep it low. For non-emissive probes, a low 
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Figure 2. Average base potential for the conditions of case (b) in figure 1, using an isothermal 
approximation with equations (6') and (21') ignored (d); thermoelectric coefficient /?J' = | (e); or 
fully classical transport as in section 2 with R/ /e< 150 (J). 

electron flux requires a low electron density; quasineutrality and the Boltzmann law for ions 
then result in positive 4>o- Figures 1 and 2 show that <f> remains nonmonotonic, validating our 
analysis, until probe bias catches up with </>0 at about e</>p/Too ~ +2. 

The average base potential (</>o> does, indeed, increase with field B and cross-flow 
inhibition in figure 1, in agreement with the argument above. Figure 2 shows that reverting to 
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Figure 4. Radial potential profile at the base of outer region; conditions as in figure 3. 

fully classical transport and its weaker cross-field diffusion, again increases (0o). On the other 
hand, using the thermoelectric value $'[ = § instead of ji'{ = 0 has hardly an effect. As regards 
an isothermal approximation that ignores equations (6') and (21'), figure 2 shows (</>o> keeping 
much higher at very negative (bP. Maximum <j>(z) values are not very different from non-
isothermal cases, however. Note that setting df/dz\o = 0 in (20') makes 3</3/3z|o negative, 
whereas considering both (20') and (21') makes 3</3/3z|o (as well as df/dz\o), negative and 
positive at the highest and lowest bias, respectively. A positive dcp/dz |o makes Max <j>(z) > 4>0: 
thermal effects may set the potential overshoot off the base of the outer region as shown in 
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Figure 6. Average of base electron temperature for the conditions of figure 2. 

figure 3; this occurs at e^/T^ as high as - 2 . Figure 4 presents the radial potential profile at 
the base of the outer region. 

Figures 5 and 6 show the average base temperature <reo>. There is heating and cooling at 
the highest and lowest bias, roughly corresponding to the negative and positive 3 f/dz \ o values 
noted above. The behaviour of electron temperature near the probe is thus basically determined 
by boundary conditions (20') and (21'). Clearly, the temperature minimum is a result of cooling 
necessarily vanishing with the electron current as 4>p becomes negative enough. 

Note that thermoelectric terms {fi'{ = | ) do have a sensible effect on cooling in figure 6. 
Also, cooling does increase with cross-flow inhibition (either greater B in figure 5, or moving 
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Figure 7. Minimum of electron temperature versus probe bias as a function of normalized radius; 
y{ = 4.664, /?j" = §. 
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Figure 8. Electron temperature profile along probe axis in the outer region; conditions as in figure 3. 

to fully classical transport in figure 6). Ultimately, however, the z-scale would become so large 
that the gi term for ion-electron heat exchange in equation (6) would be able to keep Te close 
to the ion temperature 7^. The Te versus 4>p minimum will thus have an extremum at certain 
large R/^/eh^k^ value. Both that value and the extremum itself are greater the greater is the 
mass ratio mjm^ (figure 7). 

Temperature behaviour far from the probe, on the other hand, is weakly dependent on 
probe bias. Figure 8 shows f(r = 0, z); there is faraway cooling for all <f>p. Heat conduction 
is here determinant. In fact, if qe were ignored in equation (6), heating would necessarily 
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Figure 9. Radial profile of electron temperature at the base of outer region; conditions as in figure 3. 

occur. Using (4), equation (6) on the r-axis would yield 

:(T00-Te) + e4 f dz'-
6i (22) 

with <f> positive, equation (22) implies Te > T^. Actually, one can use (4) to verify that, far 
from the probe, terms other than V • qe on the left-hand side of (6) are of higher order compared 
with V • qe. Figure 9 shows f(r, z = 0); here there is faraway heating for all (pp. 

Ignoring the variations of 4>o and Te0 across the probe, equation (20) can be written as 

In 4 
1 Te0 - I n — 
^ 1 oo 

e{(pQ - 4>v) e(pQ 
+ const., (23) 

'eO 

where the electron current 4 decreases both with increasing <f>0 and decreasing Te0. Our 
results show 4 indeed decreasing with reduced cross-flow, in agreement with (23), as either 
B is increased (figure 10) or classical transport is considered (curve (f) in figure 11). At </>P 

negative enough, with <f>0 « 0, Te0 « T^, the slope d(ln 4)/d(e<^p) ^ l/^oo in (23) is just 
the inverse of the unperturbed electron temperature, as in unmagnetized plasmas. At higher 
bias one might expect that cooling would result in the slope increasing with decreasing Te0 

but figures 10 and 11 show otherwise. This fact is now shown to arise from Te0 and 4>o being 
</>P-dependent [2]. 

Taking the derivative of equation (23) with respect to fo yields 

din 4 
deipp 

1 

TeQ 
1 1 + 

'eO # 0 1 <p0 -q 
- + e 
2 Teo 

dre0 

de</>p 
(24) 

In the isothermal model the slope is (1 - 2 dfo/dfo)/ T^; with dfo/dfo positive and increasing 
with 4>p, the slope is less than l/T^ and decreasing with <f>?, resulting in a graph that is concave-
downwards, as seen in curve (d) of figure 11. On the other hand, in non-isothermal cases under 
strong cross-flow inhibition, the graph becomes concave-upwards as seen in curves (b) {fi'{ = 0) 
and (e) (ji'{ = §). This fact relates to the temperature minimum. The last term in (24) is then 
large and changes sign at the minimum, making the graph tilt upwards past it, a feature found 
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Figure 10. Normalized electron current for the conditions of figure 1 (AP = 2JTR2). 

in some experiments and displayed in unmagnetized plasmas with two electron temperatures 
[19,35]. 

To compare our electron 'saturation current' with Bohm's estimate [12] as modified by 
Stangeby [33] one would write 

2£>ez(«oo - «o) 2De±(«oo - «o) 
nvR h nve. 2R 

with nvez = -noce/^/2jr and nver/nvez = JTR2/2JTRlz; here electron fluxes are supposed to 
represent average values. Using Dez = c2

ers/ao and Z)e± = ecl/Qe one finds 

x nvez 
rst 

1+rst rst 
2.7T ^ /£ A(x) 'g 

X 

a0 R 

For the case of figure 11 (R/^/Jk^J^ = 60) we get rSt «a 0.117 and a normalized current, 
rSt/(l + rst) ^ 0.105, close to the value 0.112 at ecp^/Too = 2 in our results without thermal 
effects (curve (d)). Also, currents and hill-potentials for the entire retarding range that result 
from the average analysis of [33] can be shown to be close to corresponding values in curves (d) 
of figures 11 and 2: taking rSt «a 0.117, Stangeby's normalized currents at ecfe/Too = —2 (0) 
would be 0.048 (0.083), compared with d-curve values 0.044 (0.082) in figure 11; hill potentials 
ate^p/Too = - 2 (2) would be e</>0/^ = 0.522 (2.135), compared with d-curve values 0.563 
(2.094) in figure 2. 

Although saturation current and radial averaging, say, are ill defined, the standard average 
analysis in [33] does approximate our no-thermal-effects results. We now note that thermal 
effects do affect collection substantially (and are greater when taking the classical value ji'{ = | 
instead of ji'{ = 0): the current in curve (e) of figure 11 is smaller than current in curve (d) 
by as much as half-an-order of magnitude; the saturation current in curve (e) is about half the 
current in curve (d). As a consequence, thermal effects might explain why standard analyses, 
which have always ignored such effects, usually predict values of current that are sensibly 
greater than measured values [33]. 
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Figure 12. Radial profile of space charge at the base of outer region; conditions as in figure 3. 

Finally, results for <f>(r,z) can be used in Poisson's equation to determine the spatial 
structure of the resulting weak space charge. Using R2/L2 = a0e4oo Aoo <C 1 one finds 

R2 m 
i2 

1 9 _9</> aoe'eoo 9 </> 
- — r—- + 
r dr dr 

1 9 _3<£ 
r 3f 3 r ' XCXJ dz2 r dr dr' 

where XD (-CR) is the Debye length. Note that because of the large discrepancy in z and 
r scales, radial profiles determine charge separation everywhere. Figure 12 shows the space 
charge at z = 0: the double layer, with ion (electron) excess at lower (greater) radius, is directly 
related to radial potential profiles in figure 4, which are downwards (upwards) concave at 
lower (greater) radius; note that consideration of the mostly upwards concave profiles along 
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Figure 13. Space charge profile along the probe axis in outer region; conditions as in figure 3. 

z in figure 3 would have wrongly suggested electron excess at r = 0 [16]. Figure 13 for 
the space charge at f = 0 (where f_1 (d/dr)r dip/dr does not vanish) shows the double layer 
structure peaking before decreasing along the magnetic field. Independently, note that contrary 
to the case of equation (25), all terms in equation (4') and (the left-hand side of) equation (6') 
are comparable. That means that describing transport in our magnetized plasma as a one-
dimensional problem because cross-field diffusion is much weaker than parallel diffusion is 
an often used approximation not more valid than in the case of no magnetic field. 

5. Model validity 

With vie ignored in (17) and (18), ansatzen (i), (iii) and (iv) just require eHe/R
2 and 

^/mjrnl x R2/lf to be small. These conditions determine an allowed range of probe radius, 

« # « / , , (26) 

Actually length disparities in (26) need be just moderately large, model validity involving the 
square of these lengths. The implied inequality in (26), 

7; « 
ni[ 

(27) 

p graph is well satisfied. Note, however, that R/^/ek/le will need be quite large for the In I( 

to exhibit upwards concavity (figure 10). 
Turning to vie, the Boltzmann law for ions will break down in case that velocity is large 

enough. Quasineutral density and azimuthal-field fluctuations sustaining anomalous transport 
might drive the average ion 9 -momentum equation the way they drive the corresponding 
electron equation, scaling up vie along with ver. Since vir/ver was again small in section 3, 
viscosity would still be crucial for ion 0 -momentum balance. Similar to the result F?e «a Re6 «a 
-eBnver arising from equations (lb) and (8b), one would then obtain 

F^ViB) 
~dpe 

dr 

dip 
i — 
dr 

Pin-
97; 
dr 

-eBnve (28) 



and using (9b) arrive at 

Vtf 
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"ifl 

vee 

eX 
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eX 

k 

R 

h' 
R2 

t 

(29a) 

(29b) 

Allowing for all dominant vl8 - terms, equat ion (14) now reads 

v2
0 dn d<h 

min-£ « -^oo— - en^- + F^(vie) + eBnvl6. (14') 
r dr dr 

Compared with the first two terms on the right-hand side, inertia, viscous, and magnetic terms 
are of order v2

e/c
2, (v^/c^ xlJR, and(flfl/c1) x R/k, respectively. For these three terms, and 

for vie/ve0 in (29b), to be negligible, both eX/k and (R/k)2 x eX/k need be small, requiring 

eX B(T) |Te(eV)]3/2 

T ™ ° - 0 8 8 nraa 3 / i/2 « !• (3°) 
k «(1020m^3) A ' 

,— n ; r»(io2om-3)i1/2 A 3 / 4 
V ^ 4 < R<lJ-^- «0.344^ ^ ^ T j m m , (26') 

V sX [B(T)]3/2 [re(eV)]1/4 

where At is the atomic number; we set Coulomb logarithm = 10 and e = -^, and used the 
previous condition eXle/R

2 -c 1 for the lower end of the range in (26'). Since model validity 
again involves the square of lengths in (26'), we wrote these conditions in terms of simple 
inequality signs. Also, since eX/le is supposed to be large, the upper end in (26') is more 
stringent than in (26). The new length range implies the inequality 

(eX/k)2«.J—. (27') 

Conditions (30) and (26') are easier to meet the higher the ion mass. Consider argon ions 
(A, « 40) and take e = ^ , T^ = 5eV, n^ = 5 x 1018 irr3 , B = 0.05 T [9]. We find 

AO0Bs72mm, Z1O0 «a 28.8mm, eXoo/l100 «a 0.156, 

and, using (26'), 

0.7 mm < R < 72.9 mm. 

A typical valid radius would then be 20 mm. As density and magnetic field are increased valid 
probes would be smaller; for 

Tic® — 10^m ^ cincl B — IT [10], wc hnvc XQQ ^ 3.6rnrn, 
Z1O0 ss 1.44 mm, sX^/k^ «a 0.156, 

0.035 mm < R < 3.65 mm. 
Consider now deuterium ions, with values «oo = 1020irr3, B = 0.5 T. Valid temperatures 
should now be smaller to keep eX/k small, and keep the upper-end /?-range from unreasonable 
shrinking in (27'). For T^ = 1 eV we find 

0.0046 mm < R < 1.65 mm. 

We note that thermal (and current 4) effects are more pronounced for higher ion mass (figure 7) 
and lower cross-field diffusion (lower e, with a minimum, classical value, le/X). 

Our model will fully break down with Boltzmann's law in case eX/k or (R/k)2 x eX/k 
is large. On the other hand, if they are just of order unity, results, though quantitatively 
different, will retain the basic qualitative character of figures 1-13. Actually, when a linear 
analysis applies (at the lower values of R/^/eXooleoo, or for bias to left and away from the 



Te0 minimum in figure 5 at all R/^/eh^J^,), results on both Te and 4 in section 4 are 
independent of equation (15b). If this Boltzmann law is not used, equations (4), (6), (20), 
and (21) involve all three quantities, Te, <f>, and n; when linearized, however, they involve just 
f - 1 and <j> + 1 - n/tioo. If the linear form of (15b), w/«oo = 1 — <t>, were now used, one 
would reproduce a direct linear analysis of equations (4'), (6'), (20') and (21'). Thus, in a linear 
regime, one may solve for current and temperature (and the combination e<f> — T^ In n) without 
recourse to the ion Boltzmann law, results being the same as if equation (15b) were used. 

At greater R/^fFk^J^, the linear analysis cannot describe, even if roughly, behaviour 
around the temperature minimum. We can estimate, however, the effects of Boltzmann's law 
breakdown, if weak. We may drop the left-hand side of (14'), which would be a correction of 
higher order, and use (28) to rewrite equation (14') as 

3 In n d(j> 

dr dr 
T^—-1f + (l-j3>) — 

dr dr dr 
(31) 

F'M + nT^e/ttJ2 

F:e(vie) 

with the right-hand side of (31) as a small correction. The first and second ev-terms are positive 
and negative, respectively (with —ver, and thus F^e(vie), positive in (28), vl6 may be proved 
negative if constant in sign in the range 0 < r < oo; then FJ (vl6) comes out positive). Hence, 
ev will change from positive to negative as (R/k)2 is increased. We solve (31) iteratively, set 
f ss 1 in the first term of the bracket, use some average ejv, and take ji'{ = 0, to write 

H, JL « _ [1 + 2el] ^- - el (l - £-) . (33) 
"OO -*(X) \ -*oo / 

Since <f> and 1 - Te/Too are positive, both corrections to Boltzmann's law above have sign 
opposite ev and should have a similar effect. The first correction is equivalent to a change in 
ion temperature from T^ to 7^/(1 + 2e^v); the overall effect should just be equivalent to a 
decrease (increase) in ion temperature at the lower (higher) R2/l2 values. We then note that in 
the fully collisional case, a decrease in Tloo/Teoo reduces the current beyond 4>p = 0, and both 
reduces 4>o and increases Te0 beyond 4>p at the temperature minimum (see figures 4-6 of [2]). 

6. Conclusions 

We have allowed for thermal effects and anomalous (Bohm) cross-field transport in consistently 
studying the electron-retarding range of the C-V characteristic of a probe in a strongly 
magnetized, collisional plasma. Length ordering is, broadly, le <£. eX < R ~ lx < X, where R 
is the probe radius, le, ll7 and X are electron and ion thermal gyroradii and electron mean free 
path, and e is the factor in Bohm's diffusion coefficient (set at ^ by Bohm). In the parametric 
domain of validity of our analysis there is a large outer region where ion density follows the 
Boltzmann law, and ion viscosity is determinant in allowing non-ambipolar quasineutral flow 
along with two separate continuity equations. The domain of validity is smaller than it was 
for classical cross-field transport, and is smaller the smaller is the ion mass. 

The spatial structure of electron temperature Te and potential <f> (and density n) is complex. 
Potential <f> overshoots its faraway value, extending the electron-retarding range to probe bias 
4>P ~ 2Teoo/e; the overshoot lies either at the base or inside the outer region. Radial <f> profiles 
determine a weak space-charge double layer, with ion density excess around the probe axis, 
parallel to the magnetic field. At the base of the outer region there is, roughly, heating and 
cooling at positive and negative bias, with a Te minimum around 4>p ~ -2re(X>/<?; far from 



the probe heat conduction results in cooling and heating at and radially away from the axis, 
whatever the bias 

Reduction of electron current Ie by the magnetic field relates to the potential overshoot, 
which would just make the In Ie versus fa graph downwards-concave if thermal effects 
were ignored Thermal effects further reduce the current, they may also tilt the slope 
upwards past the temperature minimum, with the graph becoming upwards-concave there, a 
feature found in some experiments and displayed in unmagnetized plasmas with two electron 
temperatures Potential overshoot and current reduction are more pronounced the greater cross-
flow inhibition Cooling first increases, then decreases with increasing cross-flow inhibition, 
the re-minimum has an extremum that is greater the greater is the ion mass Valid probe sizes 
decrease as ion mass decreases or density and magnetic field increase 

The greater current reduction found here when thermal effects are considered may explain 
why standard analyses, which have always ignored such effects, usually predict values of 
current that are sensibly greater than measured values [33] Use of our model in probe 
interpretation will require a choice of Bohm's parameter e (to determine a ratio R/s/e'koohco), 
1 e a definite choice of cross-field diffusivity, the transport structure of our model being 
otherwise classical, cross-field mobility (and thermoelectric coefficients) are also determined 
once e is chosen In practice, unrelated cross-field diffusivity and mobility may need, be 
chosen In any case, independently of the detailed transport model, thermal effects such as 
found here will sensibly affect the values of current to the probe 
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