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Abstract. FBGs are excellent strain sensors, because of its low size and multiplexing capability. 
Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. 
Nevertheless, they only afford strain measurements at local points, so unless the damage affects the 
strain readings in a distinguishable manner, damage will go undetected. This paper show the 
experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after 
small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even 
for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to 
reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie. 

Introduction 

Structural Health Monitoring (SHM) aims for automatic procedures for the assessment of the load 
conditions and damage occurrence in structures, to ensure proper performances during service life. 
When fully implemented, it will allow a change of paradigm, from scheduled maintenance to on-
condition maintenance, with significant savings. The basic characteristic of SHM that distinguish it 
from conventional Non Destructive Evaluation (NDE) is that sensors are permanently attached to 
the structure. Therefore, sensors must be working for the whole operational life of the structure 
without requiring operator intervention. A useful system usually requires a large number of sensors 
distributed throughout the structure. The large amount of data produced must be automatically 
processed. Warning signals need to be filtered to the user when there is a structural overload, 
initiation of damage, or to produce reports on the fatigue accumulated by the structure. 

For thin shells and similar aircraft structures. Lamb waves produced and detected by a PZTs 
network is the commonest approach. Comparatively few articles are using FBGs, due to the local 
nature of the sensor, because it only detects strains at its position. Unless there is a coincidence of 
the sensor location and damage initiation point, the local crack would produce a quite small change 
into the general strain field, and may go undetected. Only by comparing the strains readings at 
several positions (technique called differential strains) some information may be obtained, but the 
procedure is very manual. PCA offers a more robust approach to handle the strain signals. 

Fiber optic sensors 

Concerning fiber optic sensors, the Bragg gratings are the mostly used today because of its high 
performances and comparative advantages compared to other strain measurement techniques. Some 
of this advantages are: high sensitivity, small size that allow to embed it into composite materials, 
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low weight, less signal degradation (immunity to electromagnetic interference and radio frequency), 
low power consumption, non-flammable, user friendly, moderate cost, high operating temperatures, 
high fatigue resistance. 

The Bragg gratings are regions in the optical fiber where the core has a periodic variation of its 
refractive index with a period A. Such modulation is induced in a special type of optical fiber 
(photosensitive) by exposing the core to light from an ultraviolet laser. The laser interacts with a 
diffraction grating (phase mask) of determined wavelength (period), placed between the laser and 
the optical fiber. In this way, a Bragg grating with a given period and a length ranging between 1 
and 20 mm is 'written' on the fiber optics. 

When light goes through a FBG, either from a white light source or from a tunable laser, the FBG 
behaves as a narrow filter, reflecting back only a specific wavelength, 2 n A, where n is the average 
refractive index of the O.F., and A the formerly said spacing period. By varying A, several FBGs 
can easily been engraved and interrogated at the same optical fiber. 

The Bragg gratings can be used as strain and temperature sensors. To be employed as strain sensors, 
the FBGs must be bonded or embedded into the material where the strain measurement is sought. 
Thus, the FBG will deform with the substrate to which it has been bonded. As a result of the strain, 
the modulation period A will change, as well as the refractive index, and consequently, the reflected 
wavelength. Similar effects happen with temperature, the strain readings needs to be compensated 
from thermal drifting, as with electrical strain gages. 

Principal component analysis 

The measurements performed in SHM techniques normally use different sensors, measuring 
continuous dynamic signals as a function of time. Therefore, it is necessary to perform a treatment 
of experimental data prior to application of the PCA technique. In its first instance it is necessary to 
discretize the signals in order to obtain a manageable data set. A X matrix with all data information 
from measuring several variables at a number of time instants (one experiment) can be arranged as 
follows: 
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This matrix contains information from n experimental trials x m variables or sensors. 

If more than one experiment is done, at the end, a tridimensional matrix {X^j^ ) with all the obtained 

information can be arranged as follows: / experiments x K samples per experiment x J sensors 
(see Figure 1). Each frontal slice represents all measurements of one sensor for the whole 
experiment. This matrix must be unfolded for perform a PCA study. [1] 

There are several ways to unfold 3D data arrays in the literature; each one allows studying a 
different kind of variability by means of the principal component analysis. According to Nomikos 
and MacGregor [2], the most used way to unfolding 3D data arrays is the called 'D type unfolding'. 



The main reason is unfolding in this way the whole batch is consider as an object and it is possible 
to compare batches between them. i.e. baseline for healthy structure with subsequent states of the 
structure during operation [2], [3]. The methodology for 'D type unfolding' is illustrated in Figure 
1. 
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Figure 1. Type D' unfolding model. 

Physical variables present in most experiments do not have the same magnitudes and scales. It is 
necessary to treat the initial experimental data before any statistical analysis takes part. In the 
literature there are a variety of techniques to rescale experimental data. For unfolded matrices 
several scaling techniques has been studied. Among the most used techniques are the Continuous 
Scaling (CS), Variable Scaling (VS), Group Scaling (GS), Auto Scaling (AS), etc. However, the 
most common method used for unfolded matrices is the Group Scaling. The main reason is Group 
Scaling considers the interaction between different sensors and process them altogether. All the 
methods are rescaling each of the variables so that they have a mean of zero magnitude and a same 
variance or variance equal to one (depends on technique). [l]-[7]. 

Once the matrix X^j^ is unfolded into a new matrix X, centered and scaled, a PCA study is 

performed based on the covariance matrix which quantifies the degree of linearity between all 
possible pairs of variables. Then, is possible to order the eigenvectors associated to the covariance 
matrix in descending order (according to their associated eigenvalues), this way, only a few 
principal eigenvectors can be selected; these represent the more important system dynamics. As 
result, an important dimension reduction can be obtained. 

The covariance matrix is given by: 
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The main diagonal terms of the covariance matrix are the variance and the off diagonal terms 
represent the covariance between pairs of variables: 
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Once the covariance matrix is obtained, the data matrix X can be transformed using a linear 
transformation in order to achieve the minimal redundancy. 



T = XP (5) 

This linear transformation must be such that the new data matrix T is diagonal, i.e. 

n-l 
P^X^XP = P^C^P (6) 

The transformation matrix is selected for having their eigenvectors by columns, i.e. 

P = {PiP2---P]---Pm) (7) 

Since eigenvectors are ordered according to the amount of information, the dimensionality of the 
data matrix X can be reduced if only a certain number of r principal components are chosen. 

Pr = iPiP2---Pr) (8) 

The T matrix (called 'score matrix') has uncorrected row vectors and its column vectors are the 
projection of the original data over the direction of the 7 th principal component. This column 
vectors are called 'scores'. 

A baseline must be constructed using data for the healthy structure. This means to calculate matrix 
P^ for the healthy structure. Later, results for an unknown structure condition (X) should be 
projected into the baseline model. The methodology is outlined in the Figure 2. 

r 

11 ' 
Sensor 1 Sensor 2 

Sensorxt ime 

Sensorj SensorJ 

t 

11 ' 
Sensor 1 Sensor 2 

Sensor X time 

Sensorj SensorJ 

Healthy structure Actual structure I 

^ ^ 

X 

i 
PCA 

i 
E 

/ '^odePN 

X 

i 
Proyection 

(PCAl 

i i 
T' Q 

- ^ 

Figure 2: Scheme of PCA model for structural damage identification. 

T = XP., (9) 

From this projection, is possible to calculate different damage indices and detection thresholds [6]. 

There are statistical tools that used along with PCA, allow detection of anomalous behavior in 
systems. The two most common tools are the Q index (or Squared Prediction Error index) and the 

T^ index (or D index). The index Q indicates how well each sample fits the PCA model. It is a 
measure of the difference between a sample and its projection in the main components retained by 
the PCA model. [8], [5], [9]. 



The T^ index is a measurement of the variation of each sample in the PCA model. It is based on 
analysis of the score matrix {T) which allows to study the variability of the projected data in the 
new principal components space. [10]. 

Q index is given by: 

a ^r^r xXI-PP')xJ (10) 

Where, x. is the projection into the residual subspace. 

And the T^ index is given by: 
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Experimental set-up 

To validate the methodology, a 1.5 meters wing section fully made in composite materials, 
belonging to an unmanned air vehicle, was used. Two fiber optics were bonded at the intrados and 
two at the extrados, each one having 8 FBGs. In total, 32 FBGs were used. The wing was fixed to a 
testing bench by mean of screws in the same way is fixed to the fuselage on the aircraft. Once the 
wing was fixed, the testing phase begun. The first step consisted in the model building (baseline) for 
the healthy structure. Each experiment consisted in loading the structure in bending mode, 
progressive loading from zero load to a specific load. After waiting 10 seconds for the load 
stabilization, the load was removed progressive. The sampling rate was 10 Hz. 4 different loads 
were used in bending mode. Each load case and the zero load case were repeated 10 times for the 
baseline model building and 10 times more for model validation. That is, additional data for the 
healthy structure were taken in order to validate the baseline model. Figure 3 illustrate the used 
wing section. The zero load cases were useful in order to verify that no residual stresses appeared 
after damages promoting. 

A Micron Optics Si 425 interrogator was used for data acquisition. This equipment has a tunable 
laser and can interrogate up to 512 optic sensors in four channels at same time at maximum 
sampling rate of 250 Hz with a resolution less than 0.2 pm. 

Figure 3. Scheme of wing section used. 



After building the model for the healthy structure, two kinds of accumulative artificial damages 
were induced in the locations schemed in Figure 4. The first damage case consisted in a longitudinal 
skin cutting of 1 cm. The second damage case consisted in increase the size of the first crack to 3 
cm. The third damage case consisted in a transversal skin cutting of 1 cm without cutting the spar 
cap. From the fourth to the seventh cases, the transversal crack was increased 1 cm each time and 
the spar cap was also cut superficially. Again, for each damage case, the zero load and the four 
different load cases were used and each experiment was performed 10 times. In total, 400 
experiments were performed, each one consisting in the signal of 32 sensors in more than 400 
instants of time. 
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Figure 4. Sensors and induced damages locations. 

From the signal of each sensor, the initial zero load region and the stable load region (zone 1 and 2 
respectively in Figure 5) were isolated and preprocessed in order to remove outliers. The Ferguson 
test was used (kurtosis coefficient given by equation (12)) (ASTM E178 1972). 
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Where s represents the standard deviation, x represents the arithmetic average and n represents 
the number of samples. 

To apply the test proposed by Ferguson, the b^ value must be computed and if the value exceed the 
desired significance level, the observation farthest from the mean is rejected and same procedure is 
repeated until no more values are judged to be outliers. 

After removing the outliers, the average of zone 1 in Figure 5 was taken as reference (initial 
wavelength) and the average of zone 2 in same figure, was taken as final wavelength for strain 
calculation. In this way, since the experiments were performed in room with controlled temperature 
and each one takes no more than 45 seconds, thermal effects can be neglected. No wavelength 
shifting between zone 1 and zone 3 (Figure 5) means no thermal effects and no residual stresses 
appears during the experiments. 
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Figure 5. Example of load spectrum and interest zones. 

The strains for each experiment were calculated using the equation (13). 

(\-pJAs + (\ + OAT (13) 

Where Ag is the Bragg wavelength, p^ is the photo elastic coefficient of the fiber optics and s is 

the thermo optic coefficient for the fiber optics. 

For the same kind of fiber optics used in this work, Garcia obtained the experimental constants 
given in equations (14) and (15) [11]. 

As = {803.9±5.6)^{AA)^k^ = (0.7991 ±0.0055)//£' 
nm 

(14) 

K Ar = (101.9 + 1.2)—{AA)^k^ = (6.334±0.074)x 10"'iC" 
nm 

(15) 

Where k^ = \-p^ and kj, = 1 + <̂  

Before proceeding to PC A, the data was unfolded using the methodology schematized in Figure 1, 
centered and scaled using Group Scaling (GS). By mean of Group Scaling each data is scaled using 
the mean of all measurements of a sensor at the same instant of time and the standard deviation of 
all measurements of a sensor as follows: [1], [12]. 

Xijk (16) 

Where x̂ ^ is the kth sample of the 7 th sensor in the /'th experiment, jUj^. is the mean of all kth 

samples of the 7 th sensor, jUj is the mean of all measurements of the 7 th sensor, GJ is the 

standard deviation of all measurements of the 7 th sensor and Xyk is the scaled sample. The 

coeficients jUj^., jUj and GJ are given by: 
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Finally the PCA was performed for the healthy structure and the different damage cases were 
projected onto the model. In this study was selected a number of 20 principal components to build 
the model. 

Analysis of the results 

At figure 6, a few of the raw strain data are plotted, for the undamaged and a damage case, and for a 
load condition. Differences in strain values are very small, and both cases can hardly been 
distinguished. 

For all the damage cases the scores 1 against scores 2 were plotted. The damage indices Q and T^ 
were calculated and plotted for each case and one versus the other were also plotted. 

In order to verify the baseline model, data for healthy case was projected into the PCA model (for 
all the load cases). These additional data were no taken into account to build the PCA model. In this 
way it was possible to compare between real damage cases and healthy case, when the data was 
projected into the model. 
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Figure 6. Raw strain data for the undamaged and a damaged case (2 cm length) 



Figure 7 shows the projection into the first principal component against the projection into the 
second principal component. Trying to represent more than two principal components in single plot 
is more complex and getting valuable information from this can be difficult. 

Looking at Figure 7, it is possible to distinguish between four different segregated groups of data. 
These data groups corresponding to each of the various loading conditions studied. Inside each 
segregated group is possible to distinguish tendencies for different damage cases. If it is desired to 
get more precise information is necessary to study each of these planes containing the different 
principal component projections. As Westerhuis shown, the sum of the variances of the two first 
principal components, exceed 80% of the original data variance [3]. 
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Figure 7. Projections into the first two principal components for all cases. 

In Figure 7 is evident a separation between the baseline and different damage cases and a very good 
fit between the baseline and the undamaged case. 

Due to the apparition of non linear effects during some load cases, the differences between baseline 
and damage cases are not the same for the four load cases studied. In the third data group (from the 
left to the right in Figure 7) for example, the data corresponding to the most severe damage case is 
closer to other data than in the other three load cases. 

At figure 8 both damage index are represented, for a load condition. The Q index distinguish the 
undamaged case from the others, and for case 6, when damage affects not only the skin but also the 
main spar, the damage identification is neat. 
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Figure 8. Damage indexes for all damage cases. 

Conclusions 

A PCA model is built using the signals recorded by strain FBGs sensors during the experiments 
with the undamaged structure. PCA modelling essentially consists of calculating the matrix P. 
During the subsequent step, the experiments are performed using the structure in the different 
possible states (undamaged and 6 damages). These signals are projected on the PCA model, thus 
obtaining a selected number of the first principal components (scores-T). In addition, the ^-statistic 
and 7^-statistic are calculated. The approach has been experimentally analyzed showing good 
results in classifying different states of the structure: healthy structure and six different damages. 

Acknowledgement 

The authors would like to thank the support from the "Ministerio de Ciencia e Innovacion" in Spain 
through the coordinated project DPI2011-28033-C03-02 

References 

[1] Kourti, T, and John MacGregor. Process analysis, monitoring and diagnosis, using multivariate 
projection methods. Chemometrics and intelligent laboratory systems, (1995) 3-21. 

[2] Nomikos, Paul, and Jhon F. MacGregor. Monitoring batch Processes Using Multiway Principal 
Component Analysis. AIChE Journal, (1994) 1361-1375. 

[3] Westerhuis, Johan A, Theodora Kourti, and Jhon F MacGregor. Comparing alternative 
approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 
(1999)397-413. 

[4] Gurden, S, J Westerhuis, R Bro, and A Smilde. A comparision of multiway regression and 
scaling methods. Chemometrics and Intellingent Laboratory Systems. 59 (2001) 121-136. 

[5] Villez, K, K Steppe, and D De Pauw. Use of unfold PCA for on-line plant stress monitoring and 
sensor failure detection. Biosystems Engineering, (2009) 23-34. 



[6] Mujica, L, D Tibaduiza, and J Rodellar. Data driven multiactuator piezoelectric system for 
structural damage localization. Fifth world conference on structural control and monitoring (2010). 

[7] Wold, S, N Kettaneh, H Friden, and A Holmberg. Modelling and diagnostics of batch processes 
and analogous kinetic experiments. Chemometrics and intelligent laboratory systems. (1998) 331-
340. 

[8] Jackson, E, and G Mudholkar. Control procedures for residual associates with PCA. 
Technometrics, (1979) 341-349. 

[9] Burgos, D.A, L Mujica, A Giiemes, and J Rodellar. Active piezoelectric system using PCA. 
Fifth European Workshop on Structural Health Monitoring. (2010) 164-169. 

[10] Mujica, L.E., J. Rodellar, A. Fernandez, and A. Guemes. Q-statistic and T2-statistic PCA-
based measures for damage assessment in structures. Structural Health Monitoring.(2010) 1-15. 

[11] Garcia, Carlos E. Caracterizacion de coeficientes de Expansion termica. Informe Tecnico, 
(2010). 

[12] Sierra, J, and A Guemes. Deteccion de dario en materiales compuestos mediante fibra optica. 
Actas del IX congreso nacional de materiales compuestos. Girona: AEMAC, 2011. 


