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Abstract 
A novel methodology for damage detection and location in structures is proposed. The 
methodology is based on strain measurements and consists in the development of strain field 
pattern recognition techniques. The aforementioned are based on PC A (principal component 
analysis) and damage indices (T^ and Q). We propose the use of fiber Bragg gratings (FBGs) 
as strain sensors. 

1. Introduction 

In many engineering fields, the integrity and reliabihty 
of structures are extremely important aspects. These are 
controlled by adequate knowledge of existing damage. 
Typically, achievement of the level of knowledge necessary 
to characterize the structural integrity involves the use of 
nondestructive testing (NDT) techniques. These are often 
expensive and time consuming. 

Nowadays, many industries look to increase the 
reliability of their structures by using leading edge techniques 
to monitor them and, in some cases, detect incipient damage 
that could trigger catastrophic failure. Unfortunately, as 
the complexity of the structures, components and systems 
increases, the risk of damage and failure also increases. At the 
same time, the detection of such failure and defects becomes 
more difficult. 

In recent years, the aerospace industry has made a great 
deal of effort to integrate sensors within structures and to 
develop algorithms to determine the structural integrity in real 
time. The philosophy is called 'structural health monitoring' 
and these structures are called 'smart structures'. These new 
types of structures integrate materials, sensors, actuators and 
algorithms to detect, quantify and locate damage within 
themselves. 

Structural health monitoring (SHM) is the identification 
of four characteristics that are related to the physical state of 
an engineering component (or system) as it operates. Such 
identification will not affect the integrity of the structure. 

First, the operational and environmental loads that interact 
with the component or system, second, load induced damage, 
third, damage growing as the component or system operates 
and fourth, the performance of the component or system as 
it accumulates damage during service are monitored. When 
these SHM systems are fully developed, they will reduce the 
time and costs associated with maintenance by eliminating 
unnecessary inspections and replacements (Balageas et al 
2006, Adams 2007). 

The basic characteristic of SHM that differentiates it from 
conventional nondestructive evaluation (NDE) is that sensors 
are permanently attached to the structure, working, therefore, 
for the whole operational hfe of the structure without 
requiring operator intervention. A useful system usually 
requires a large number of sensors distributed throughout 
the structure. The large amount of data produced must be 
automatically processed. Warning signals need to be filtered to 
the user when there is structural overload, damage detection, 
or to produce reports on the fatigue accumulated by the 
structure. 

SHM systems currently use modem experimental 
techniques that allow very precise measurement of different 
types of structural response to external loads. The result of 
the measurements can be subsequently analyzed by numerical 
and statistical techniques to identify the onset of damage. 
Generally, current SHM systems consist of sensors, data 
acquisition and preprocessing blocks of data (software), data 
communication systems and post-processing blocks of data 
(Holnicki-Szulc 2008). 
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The first works on damage detection used identifica
tion techniques based on physical systems, for example, 
determination of the stiffness matrix or modal parameters. 
These approaches deal with deterministic models where 
all parameters are considered as measurable and different 
uncertainties are not represented for the model directly. 
This causes difficulty in assessing how rehable the damage 
estimates are (Li et al 2012). 

A more recent technique estimates the occurrence of 
damage based on experimental data. These models take 
experimental measurements for 'training' or learning and 
assessment of the current state of a component or structure. 
These methods are a very robust way to indicate the presence 
of damage. 

Structural health monitoring includes two lines of 
action that are independent in their procedures, but 
complementary in their apphcation: load monitoring or 
continuous measurement of strains, and damage monitoring 
or autonomous systems to detect irregularities or flaws in the 
structure. 

There are several physical principles associated with the 
structure that can be studied as damage initiates and grows. 
In this work, there is particular interest the global stiffness 
and the strain field. Any defect will change the strain field 
of the structural element and its global stiffness slightly. 
These changes can be experimentally detected. Correlation 
between them and the occurrence, location, and quantification 
of damage is a very complex problem which is much less well 
resolved that monitoring loads (Fritzen and Kraemer 2009). 

Many techniques are promising in damage detection. 
Each technique uses a particular physical principle. In general 
the techniques can be classified as follows(Ostachowicz 
2011): 

• vibration based methods, 

• guided wave based methods, 

• optical fiber based methods, 

• acoustic emission based methods, 

• differential pressure based methods, 

• electromagnetic field based methods. 

The construction of aircraft and space structures 
requires increasingly sophisticated designs and materials. 
This increases the complexity of physical/mathematical 
models that can accurately describe the relationships between 
actions and responses in the structures. This leads to the 
need to explore and develop signal processing techniques that 
do not require explicit use of physical/mathematical models 
while being efficient and robust against uncertainties. This is 
the basis for the methodology of pattern recognition. 

An additional problem is that normally SHM systems use 
tens of sensors measuring different variables for long periods 
of time. This creates an overload of data and usually many of 
these data should be discarded. There is both correlatable and 
redundant information in the measurements. A data treatment 
process is necessary to allow the elimination of noise or 
irrelevant data and the study of the different correlations. 

The main objective of this work is to develop and 
experimentally vahdate SHM tools that allow detection and 
location of defects in aerospace and civil structures based the 
approach on strain measurements and using strain field pattern 
recognition techniques. We propose the use of Bragg gratings 
for strain measurements, dimensional reduction tools and 
multivariate analysis like the study of principal component 
analysis (PCA) (JoUiffe 2002). The potential of this technique 
is that it does not require the use of models which, given 
the complexity of the structures, materials and environmental 
uncertainties, are difficult to apply accurately. 

An innovative way to incorporate PCA in operational 
variable conditions (like variable loads) is developed for this 
particular application. This innovative adaptation of PCA to 
strain field pattern recognition includes the development of 
damage indices and detection thresholds. 

2. SHM in practice 

In general, no matter which SHM techniques are used, the 
steps are the same: (1) operational evaluation, (2) data acquisi
tion, (3) standardization, cleaning, selection and condensation 
of information (preprocessing), (4) implementation of a 
model for discrimination of information and (5) situational 
assessment and decision making (Mujica et al 2010a, 2010b, 
Lopez and Sarigul-Klijn 2010). 

There are many preprocessing techniques that can 
treat data acquisition errors, noise, transformation and 
compression. Many signal processing techniques include 
Fourier analysis for stationary time-invariant problems and 
time-varying methods such as wave methods (wavelets), 
time-frequency methods and time series analysis. The 
main methods for time-frequency analysis are short time 
Fourier transform (STFT), Wigner-Ville distribution (WVD), 
Choi-Williams distribution (CWD), among others. The main 
difference between the different time-frequency methods is 
the treatment of uncertainty (Lopez and Sarigul-Klijn 2010, 
Baseville et al 2007, Li et al 2012). 

Wave techniques serve as tools for time-varying analysis 
and are useful for decomposition, compression and selection 
of features. Some of the best known wave methods include 
continuous, discrete and multiple resolution methods (Reda 
et al 2006). 

Time series techniques use statistical tools to develop 
mathematical models that describe one or more measured 
stochastic signals and analyze observed and future behavior 
(Worden and Farrar 2007). 

After data preprocessing, many techniques are used for 
discrimination of information whose general purpose is to 
find information and highhght hidden patterns in data. In this 
way, it is possible to manage the information for optimization 
purposes, decision support and control processes, among 
others (Staszewski 2004). 

There are different techniques of multivariate statistical 
process control that reduce the dimensionality of sample 
populations. Dimensional reduction is a way of transforming 
the vectors X e R" into new vectors X e R'", where m < n 
(Westerhuis et al 1999). 
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Figure 1. A fiber Bragg grating (FBG) and schemes of its operating principle. (1) The intensity spectrum of a broadband source launched 
into the fiber. (2) Spectra reflected back by three fiber Bragg gratings. (3) The transmissive spectrum after passing the three Bragg gratings. 

The strength of the different techniques used for 
dimension reduction is that they are able to transform highly 
correlated, redundant or noisy data to a statistical model 
whose elements provide an overview of hidden phenomena 
and correlations that determine the behavior of the system 
(Westerhuis et al 1999, Lopez and Sarigul-Klijn 2010, Mujica 
et al 2006, 2008). 

Some of the techniques currently available include, for 
example, Markov models, linear regressions, ROM (reduced 
order modeling), SVD (singular value decomposition), PCA 
(principal component analysis), also called Karhunen-Loeve 
expansion, multiway PCA (MPCA), also called Tucker 
1, PARAFAC, Tucker 3, PLS (partial least square), etc 
(Westerhuis et al 1999). 

The best known technique for extracting information, 
dimensional reduction and characteristic identification is the 
PCA. For this reason, it is perhaps the most widely used 
technique at present. The ultimate goal of the technique is to 
discern which data represent the most important dynamics of a 
particular system and which are redundant or are simply noise. 
This goal is achieved by determining a new space that allows 
re-expression the data based on the original data covariance 
structure (Mujica et al 2010a, 2010b). 

Finally, situational assessment and decision making are 
carried out. In the particular case of SHM this consists 
in determining the structural health and the assessment 
of damage. The situational assessment (and classification) 
is the most important and most significant task in SHM 
development. 

Many classification techniques have been proposed in 
SHM. Among the most important features are similar metrics, 
decision tree induction, Bayesian classification, neural 
networks, genetic algorithms, fuzzy classifiers, and more. 
However, at present, the most studied and best performing 
method is still statistical analysis (Lopez and Sarigul-Klijn 
2010, Kerschen and Golinval 2004, Nair and Kiremidjian 
2006, Worden and Dulieu-Barton 2004, Staszewski 1997, 

Fugate et al 2001, Sohn et al 2000, Worden and Manson 
2000). 

3. Fiber optic sensors 

Concerning fiber optic sensors, fiber Bragg gratings (FBGs) 
are the most widely available commercial systems today be
cause of their high performance and comparative advantages 
compared to other strain measurement techniques. Some of 
these advantages are high sensitivity, small size that allows 
them to be embedded directly into composite materials, low 
weight, less signal degradation (immunity to electromagnetic 
interference and radio frequency), low power consumption, 
non-flammable, user friendly, moderate cost, high operating 
temperatures and high fatigue resistance. 

FBGs are regions in an optical fiber where the core has a 
periodic variation of its diffraction index with a period lambda 
(A). This modulation is induced in a special type of optical 
fiber (photosensitive) by exposing the core to hght from an 
ultraviolet laser. The laser interacts with a diffraction grating 
(phase mask) of a determined wavelength (period) between 
the laser and the optical fiber. In this way, a Bragg grating with 
a given period and a length ranging between 1 and 20 mm is 
'written' on the fiber optics. 

When light passes through an FBG, either from a white 
light source or from a tunable laser, the FBG behaves as 
a band elimination filter, as shown in figure 1. In each 
region where the refractive index increases locally, part 
of the incident light is reflected. These increments are 
caused by the periodic modulation induced in the fiber. 
Since these regions are equally spaced, the wavelengths 
correspond to integer multiples of the modulation length, 
will experience constructive interference and will be reflected. 
This phenomenon does not occur for other wavelengths. 

Bragg gratings can be used as strain and temperature 
sensors, among others. To be employed as strain sensors, 
the FBGs must be adhered to or embedded in the material 
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Figure 2. The 'type D' unfolding model. 

in which the strain measurement is desired. Thus, the FBG 
will deform integrally with the substrate to which it has been 
bonded. As a result of deformation, the modulation period A 
will vary. The Bragg length will vary as well. Similarly, the 
effective diffractive index varies with temperature so that the 
Bragg wavelength is also sensitive to changes in temperature. 

4. Principal component analysis 

The measurements performed in SHM techniques normally 
use different sensors, measuring continuous dynamic signals 
as a function of time. Therefore, it is necessary to perform a 
treatment of the experimental data prior to apphcation of the 
PCA technique. In the first instance it is necessary to discretize 
the signals in order to obtain a manageable data set. An X 
matrix with all data information from the measurement of 
several variables (m) for a number of experimental trials («) 
can be arranged as follows: 

X 

XI1 X12 

^i\ X,2 

Xfii Xfi2 

VI V2 • • 

• • Xlj 

• • Xij 

• • Xnj 

Vj ••• 

• • • ^Im 

• • • ^im 

• • • ^nm 

Vm ) • (1) 

Each row vector (x;) represents the measurements from 
all sensors for a specific time instant or experimental trial, 
each column vector (vj) represents the measurements from 
one sensor (variable) for the whole set of experiment trials. 

If each variable is a sensor that measures dynamic 
signals, all the gathered information can be arranged as 
a tridimensional matrix (/ experiments xK samples x / 
sensors); see figure 2. Each frontal slice represents all 
measurements from one sensor for the whole experiment. This 
matrix must be unfolded to perform a PCA study (Kouti and 
MacGregor 1995). 

There are several ways to unfold 3D data arrays in 
the literature; each one allows the study of a different kind 
of variabihty by means of principal component analysis. 
According to Nomikos and MacGregor, the most used way 
to unfold 3D data arrays is the so-called 'D type unfolding'. 
The main reason is that by unfolding in this way the whole 

experiment is considered as an object and it is possible 
to compare between experiments, i.e. the baseline for a 
healthy structure with subsequent states of the structure during 
operation (Nomikos and MacGregor 1994, Westerhuis et al 
1999). The methodology for 'D type unfolding' is illustrated 
in figure 2. 

The physical variables present in most experiments do not 
have the same magnitudes and scales. It is necessary to treat 
the initial experimental data before any statistical analysis can 
take place. In the literature, there are a variety of techniques 
to rescale experimental data. For unfolded matrices, several 
scaling techniques have been studied. Among the most used 
techniques are continuous scaling (CS), variable scaling (VS), 
group scaling (GS), autoscaling (AS), etc. However, the 
most common method used for unfolded matrices is group 
scaling. The main reason is that group scaling considers 
the interaction between different sensors and processes them 
together. In general, all the methods are techniques that consist 
of rescaling each of the variables so that they have a mean 
of zero magnitude and the same variance or a variance equal 
to one (depending on the technique) (Westerhuis et al 1999, 
Kouti and MacGregor 1995, Gurden et al 2001, Villez et al 
2009, Mujica et al 2010a, 2010b, Nomikos and MacGregor 
1994, Wold et al 1998). 

Once the matrix Xjj) has been unfolded into a new matrix 
X, centered and scaled, a PCA study is performed based on 
the covariance matrix which quantifies the degree of linearity 
between all possible pairs of variables (in the remainder of 
the paper the bar notation over the X means that the data have 
been scaled). Then, it is possible to order the eigenvectors 
associated with the covariance matrix in descending order 
(according to their associated eigenvalues); in this way, only 
a few principal eigenvectors can be selected; these represent 
the more important system dynamics. As result, an important 
dimensional reduction can be obtained. 

The covariance matrix is given by 

Cv 
1 

1 
-X^X. (2) 

The main diagonal terms of the covariance matrix 
represent the variances; therefore, the off-diagonal terms 
represent the covariances between pairs of variables. 

1 _ _ 1 " _ 
U; Vj = > X~' 

1=1 

(3) 
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Once the covariance matrix has been obtained, the data 
matrix X can be transformed using a linear transformation in 
order to achieve the minimal redundancy. 

T = XP. (5) 

This linear transformation must be such that the new data 
matrix T is diagonal, i.e.. 

CT 
1 

P^X^XP = P^C^P. (6) 
n- 1 

The transformation matrix is selected to have the 
eigenvectors by columns, i.e.. 

P = iP\P2---P]---Pm)- (7) 

Since eigenvectors are ordered according to the amount 
of information, the dimensionality of the data matrix X can be 
reduced if only a certain number r of principal components is 
chosen. 

Pr = (P1P2 ••• Pr)- (8) 

The T matrix (called the 'score matrix') has uncorrelated 
row vectors and its column vectors are the projections of the 
original data over the direction of thej'th principal component. 
These column vectors are called 'scores'. 

A baseline must be constructed using data for the healthy 
structure. This means that the matrix Pr must be calculated for 
the healthy structure. Later, results for an unknown structure 
condition {X) should be projected into the baseline model. 

XPy. (9) 

The methodology is outlined in figure 3. 
From this projection, it is possible to calculate different 

damage indices and detection thresholds (Mujica et al 2010a, 
2010b). 

There are statistical metrics that, used along with PCA, 
allow detection of anomalous behavior in systems. These 
quantitative indices are intended to consider whether the 
results of different experiments or studies are homogeneous 
or not, provide information about the magnitude of the 
effect of the relationships studied together with a confidence 
interval and statistical significance and whether there is 
heterogeneity between different experiments or studies, and 
identify variables or characteristics that may affect the results. 
The two most common tools are the Q index (or squared 
prediction error index) and the T^ index (or D index). The 
index Q indicates how well each sample fits the PCA model. 
It is a measure of the difference between a sample and its 
projection in the main components retained by the PCA model 
(Jackson and Mudholkar 1979, Villez et al 2009, Burgos 
efa/2010). 

The r^ index is a measurement of the variation of each 
sample in the PCA model. It is based on analysis of the 
score matrix {T) which allows study of the variability of the 
projected data in the new principal component space (Mujica 
ef a/2010a, 2010b). 

The Q index is given by 

Qr=Xr^, =Xr{I-PP'^)xJ, 

where x; is the projection into the residual subspace. 
The r^ index is given by 

(10) 

E _SIJ 

; = 1 •' 

tl x,PP'^xJ 

A A 
(11) 

5. Experimental setup 

To validate the methodology, a 1.5 m wing section fully 
made in composite materials, belonging to an unmanned 
air vehicle, was used. Two fiber optics were bonded at the 
intrados and two at the extrados, each one having eight FBGs. 
In total, 32 FBGs were used. In addition, an optical fiber 
for distributed sensing was bonded along with optical fibers 
(FBGs) located at the leading edge in order to validate the 
strain measurements made with the FBGs. The wing was 
fixed to a testing bench by mean of screws in the same way 
as it is fixed to the fuselage on the aircraft. Once the wing 
was fixed, the testing phase began. The first step consisted in 
gathering the responses using the healthy structure to build the 
baseline PCA model. Each experiment consisted in loading 
the structure in the bending mode, with progressive loading 
from zero load to a specific load. After waiting 10 s for 
load stabihzation, the load was removed progressively. The 
sampling rate was 10 Hz. Four different loads were used in the 
bending mode (3.25, 4.75, 6.25 and 7.25 kg), plus zero load. 
Each load case and the zero load case were repeated ten times 
to build the baseline model and ten times more for model 
validation. That is, additional data for the healthy structure 
were taken in order to vahdate the baseline model. Figure 4 
illustrates the wing section used. The zero load cases were 
useful in order to verify that no residual stresses appeared after 
damage promotion. 



Figure 4. Top: scheme of the wing section used. Bottom: 
experimental setup. 

A Micron Optics Si 425 interrogator was used for data 
acquisition. This equipment has a tunable laser and can 
interrogate up to 512 optic sensors in four channels at the same 
time at a maximum sampling rate of 250 Hz with a resolution 
of less than 0.2 pm. A Luna OBR 4400 (optical backscatter 
reflectometer) was used for distributed sensing. 

After building the model for the healthy structure, two 
kinds of accumulative artificial damage were induced in the 
locations shown in figure 5. The first damage case consisted 
of a longitudinal skin cutting of 1 cm. The second damage 
case consisted of increase of the size of the first crack to 3 cm. 
The third damage case consisted of a transverse skin cutting 
of 1 cm without cutting the spar cap. From the fourth to the 
seventh cases, the transverse crack was increased by 1 cm 
each time and the spar cap was also superficially cut. Again, 
for each damage case, the zero load and the four different 
load cases were used and each experiment was performed 
ten times. In total, 400 experiments were performed, each 
one consisting of the signal of 32 sensors for more than 400 
instants of time. 

From the signal from each sensor, the initial zero load 
region and the stable load region (zones 1 and 2 respectively 
in figure 6) were isolated and preprocessed in order to remove 
outliers. The Ferguson test was used (kurtosis coefficient 
given by equation (12)) (ASTM E178 1972), 

bi 
njyi^.ix.-xf nj:U(Xr-xf 

(„_1)2^ [ELife-^)']'' 
(12) 

where s represents the standard deviation, x represents the 
arithmetic average and n represents the number of samples. 

To apply the test proposed by Ferguson, the b2 value must 
be computed, and if the value exceeds the desired significance 
level, the observation farthest from the mean is rejected and 
the same procedure is repeated until no more values are judged 
to be outliers. In this experiment a significance level of 5% 
was selected. 

After removing the outliers, the average of zone 1 in 
figure 6 was taken as reference (initial wavelength) and the 
average of zone 2 in the same figure, was taken as the 
final wavelength for strain calculation. In this way, since the 
experiments were performed in a room with a controlled 
temperature and each one took no more than 45 s, thermal 
effects could be neglected. No wavelength shifting between 
zones 1 and 3 (figure 6) meant that no thermal effects and no 
residual stresses appeared during the experiments. 

The strains for each experiment were calculated using 

AXB 
( l - p „ ) A e + (l + f)Ar, (13) 

where X^ is the Bragg wavelength, pa is the photoelastic 
coefficient of the fiber optics and e is the thermo-optic 
coefficient for the fiber optics. 

For the same kind of fiber optics as used in this work, 
Garcia obtained the following experimental constants (Garcia 
2010): 

Ae 

AT: 

(803.9 ± 5.6) — (AX) -
nm 

(0.7991 ±0.0055)/xe-\ 
K 

(101.9 ± 1.2) — (AX) -
nm 

kr 

(6.334 ± 0.074) x 10"^ K " \ 

(14) 

(15) 

where kg = I - Pa and kr = 1 + f • 
Before proceeding to the application of PCA, the data 

were unfolded using the methodology schematized in figure 2, 
centered and scaled using group scaling (GS). By means of 
group scaling each datum is scaled using the mean of all 
measurements of a sensor at the same instant of time and the 
standard deviation of all measurements of a sensor as follows 
(Kouti and MacGregor 1995, Sierra and Giiemes 2011): 

Xijk 
•^ijk l^jk 

(16) 

where Xyi is the ^th sample of the jth sensor in the /th 
experiment, jXjk is the mean of all ̂ th samples of the jth sensor, 
jXj is the mean of all measurements of the jth sensor, GJ is the 
standard deviation of all measurements of the jth sensor and 
Xijk is the scaled sample. 

jXjk, jji-j and Gj are given by 

t^jk 

I K 1 

\\ ^^ ,=1 fc=i 

1 ' ^ 
IK 

(17) 

(18) 

(19) 
i=l k=l 
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Figure 6. An example of the load spectrum and interest zones. 

It should be remembered that / represents the experi
ments, K represents the samples and / represents the sensors. 

Finally, PCA was performed for the healthy structure and 
the different damage cases were projected onto the model. In 
this study, 20 principal components were selected to build the 
model. 

6. Analysis of the results 

In order to verify the baseline model, data for the healthy case 
were projected into the PCA model (for all the load cases). 
The additional data were not taken into account to build the 
PCA model. In this way, it was possible to compare between 
real damage cases and the healthy case, projecting the data 
into the model. 

The projections in three planes (the X-Y plane, the 
Y-Z plane and the X-Z plane) of the first three principal 
components are depicted in figure 7. In the X-Y plane, 
the projection into the first principal component versus the 
projection into the second principal component is presented. 
In the Y-Z plane, the projection into the second principal 
component versus the projection into the third principal 
component is presented, and in the X-Z plane, the projection 
into the first principal component versus the projection into 
the third principal component is presented. It is more complex 

Figure 7. Projections into the first three principal components for 
all cases. 

to try to represent more than three principal components in a 
single plot and it can be difficult to get valuable information 
from this. 

Looking at figure 7, it is possible to distinguish between 
four different segregated groups of data in each of the three 
planes. These data groups correspond to each of the various 
loading conditions studied. Inside each segregated group it 
is possible to distinguish tendencies for the different damage 
cases. If it is desired to obtain more precise information it 
is necessary to study each of these planes containing the 
different principal component projections. As Westerhuis et al 
showed, the sum of the variances of the two first principal 
components exceeds 80% of the original data variance for 
most cases (Westerhuis et al 1999). In this particular case, the 
two first principal components explain more than 95% of the 
variance. 

As explained before, the first two principal components 
have the largest amount of representative information about 
the system variance. Figure 8 shows a detailed view of 
the projection into the first principal component versus the 
projection into the second principal component. Beside this. 
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Figure 9. The T^ index, (a) Detail of zone 'A'. 
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two zoomed views are presented. The first zoom zone (marked 
with an 'A' in figure 8) corresponds to the lower load case 
and includes all the damage cases except the most severe one 
(represented by stars in the plot), for which the separation 
from the baseline is clear. The second zoom zone (marked 
with a 'B' in figure 8) corresponds to the upper load case and, 
like in zoom 'A', includes all damage cases, except the most 
severe one. 

In both zoomed views, a separation between the baseline 
and the different damage cases and a very good fit between 
the baseline and the undamaged case are evident. 

Due to the appearance of nonlinear effects in the wing, 
under some load cases, the differences between the baseline 
and damage cases are not the same for the four studied load 
cases. In the third data group (at the left of zone 'B') for 
example, the data corresponding to the most severe damage 
case are closer to the other data than in the other three load 
cases. 

Even though it is possible to see differences between the 
projections of the data associated with the load cases studied, 
it is necessary to integrate the results using quantitative indices 
that allow the results to be expressed in the same metric. 

Figure 9 shows the T^ index for all the different 
experiments, for all the load cases. Besides this, a zoomed 
area is presented below the figure (corresponding to the area 
marked with an 'A'). The zoomed area shows the load case for 
which, apparently, the indices for different damage cases are 
closer. However, looking closely, it is possible to appreciate 
that the baseline is the smallest one. All the indices associated 
with the damage are distant from the baseline and the indices 
associated with the undamaged case fit very well with the 
baseline. 

Similarly, figure 10 shows the Q index for all the 
experiments and all the load cases. A zoomed area is also 
presented below the figure, showing a detailed view of the 
same area as in figure 9. As in the previous analysis, in 
this region, corresponding to the third load case, all the data 
look very close to each other. However, on looking closely 
(excluding the data corresponding to the most severe damage 
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Figure 10. The Q index, (a) Detail of zone 'A'. 

case, for which there is an obvious separation from the 
baseline) it is possible to appreciate a separation between 
the indices for the different damage cases and the baseline. 
Besides, the indices associated with the undamaged case fit 
the baseline very well. 

Comparing figures 9 and 10 it is possible to see a clearer 
tendency in figure 10. All the damage cases can be clearly 
distinguished when are compared with the baseline. However, 
due to the nonlinear behavior of the wing section tested and 
the fact that several damage cases are mixed with several 
load cases all in one 'figure', it is very difficult to distinguish 
between the damage types in this figure. 

In general, the Q index is usually smaller than the T^ 
index and any small change in the system characteristics can 
be observed. Because the Q index explains how well a sample 
fits the PCA model, and is more sensitive than the T^ index, 
the information obtained from this index can be considered 
more important in many cases. However, as it is a quahtative 
technique, one should beware of the inferences made. 

Finally, in order to get more 'resolution' and obtain more 
accuracy in the diagnosis (or classification) of damage, a plot 
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Figure 11. The T^ index versus the Q index for the lowest 
case, (a) Detail of zone 'A'. 
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Figure 12. The T^ index versus the Q index for the highest load 
case, (a) Detail of zone 'A'. 

of the T^ index versus the Q index for the lowest load case 
is presented in figure 11. From this figure, it is very easy to 
see that the indices for the most severe damage case are away 
from the baseline. On the other hand, all the other damage 
cases look closer to the baseline, but this is due to the scale 
effect. On obtaining a closer view of the other damage cases 
by means of a zoomed view (presented below the figure and 
corresponding to the zone marked with 'A') it is possible to 
observe very clearly the independent groups associated with 
each damage case. In this particular case, there exists an 
overlapping between the third and fifth damage cases. Again, 
this is a consequence of the nonlinearities induced by the 
damage on the wing during the tests and the high strain levels 
achieved during some tests. 

The Q index is an error measurement. Because 
'everything' is projected into a model (baseline), variations 
in the original data are more evident in the 'error' than in the 
projections. 

In the same way, in figure 12, the T^ index versus Q 
index plot for the highest load case is presented. For this load 
case, the indices associated with the most severe damage case 
are also far away from the baseline. Again, zooming the area 
marked with 'A', it is possible to observe a separation between 
different damage cases and the baseline. 

7. Conclusions 

A PCA baseline model was built using the signals recorded by 
strain FBGs sensors during experiments with an undamaged 
structure. PCA modeling essentially consists of calculating 
the matrix P. During subsequent steps, experiments were 
performed using the structure in the different possible states 
(undamaged and six different damage cases). These signals 
were projected onto the PCA model, thus obtaining a selected 
number of first principal components (T scores). In addition, 
the Q index and T^ index were calculated. The approach 
has been experimentally analyzed showing good results in 
classifying different states of the structure: healthy structure 
and six different damage cases. The detection of damage 

in complex structures using strain field pattern recognition 
by means of PCA and damage indices was possible. In 
general terms, it is possible to conclude that small defects 
slightly affect the global stiffness of the structure and those 
changes can be detected by mean of the proposed technique. 
Several experiments were carried out and analyzed using 
qualitative methods based on the T scores, T^ index and Q 
index. In all cases it was possible to see deviations between 
the baseline and the data associated with the different damage 
cases. However, the Q index shown be more sensitive in 
this particular study. It is necessary to develop strategies that 
allow a common conclusion to be reached from all the indices 
studied and, maybe, other indices available in the literature. 
Besides, it is necessary to develop thresholds that allow the 
severity of the damage to be classified quantitatively. The 
FBGs showed a very good sensitivity and were able to detect 
small strain changes in the structure under the same load 
conditions when small damages were induced. SHM models 
based on experimental data represent a robust methodology 
for damage detection. However, the use of these models in 
very complex structures has some limitations when the results 
are interpreted due the appearance of nonlinearities and other 
effects. In this work, several load condition were used in 
order to evidence the sensitivity of the technique. Due to the 
nonlinearities that appear under some load conditions with 
some induced damage, not only in the studied structure but 
also in other kinds of structures, it would be useful to conduct 
studies involving variable load conditions. Considering that 
each unfolding and scaling method studies a different kind 
of variabihty, new unfolding and scaling methods must be 
developed in order to avoid the need to study the results for 
the different load cases separately. 
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