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a b s t r a c t 

This paper presents a computer-based method for modelling the blades of horizontal axis turbines using B-spline surfaces. The method uses 

c o m m o n design parameters for the geometry of this type of turbine and produces a final set of B-spline surfaces for the geometry of the 

blades that can be used for the visualisation, calculations and construction of the rotor surface. The method begins with the creation of a 3D 

set of offsets that constitute the rotor blades based on a 2 D definition of the airfoils, which is normally used in the design of different 

stations along the rotor blade. It also uses geometrical param-eters such as the skew and rake or coning distribution. The method stresses 

the fitting of the blade’s leading edge, which has a significant impact on the properties of the rotor and separately models the trailing edge 

of the blades. B-spline curves and surfaces are used in this method because they are widely used in CAD-CAM software products and can be 

easily exported to other programs. 

1. Introduction 

A horizontal axis rotor consists of a number of identical twisted 

blades spaced equally around a hub or boss. The blade shape is 

defined by a series of airfoil sections at specified radius ratios of the 

rotor, and these sections can be circular w h e n they are close to the 

hub so that the blade can be pitched around. The inclination of the 

blades from the rotor plane is given by the rake or coning of the 

sections. 

A typical left-hand rotor is presented in Fig.1, in which the rotor 

plane is the XZ plane and the flow direction is along the Y axis, 

which is also the rotation axis. In this figure, the rotor hub is 

omitted. 

The blade design and its geometrical definition are intrinsically 

related to the selection of a 2D airfoil and its geometrical charac-

teristics considering both their aerodynamic or hydrodynamic 

performance and their stiffness for large rotors. Therefore, the 

geometrical characteristics of the airfoils must be accurately 

modelled in a 3 D definition of the rotor blades. 

The approach presented for defining the geometry of the rotor 

blades is based on a discrete approximation and interpolation of 

a collection of space curves, which are also called cross sections, 

containing a 3D representation of the 2D airfoil points. The manner 

in which these points are obtained and the tolerances associated 
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with the data, influence the presented method for the represen-

tation of the blades. 

A m o n g various mathematical surface representations, B-splines 

and NURBS (non-uniform rational B-splines) have become industry 

standards, and many engineering products such as FEA (Finite 

Element Analysis), CFD (Computational Fluid Dynamics) and 

manufacturing softwares use these types of surfaces to conduct 

their calculations. 

However, modelling the geometry of rotor blades is different 

from modelling other industrial objects; for example, an accurate 

representation of the shape of the airfoils is required, and this 

requires working with a large amount of information because the 

representation of these curves is based on a discrete set of data 

points, usually more than 100 points per airfoil. If standard tech-

niques are used, very complex surfaces with a large number of 

control points are obtained and will likely present poor smoothness 

in the resulting surface obtained from an approximation of the 

interpolation of the data sets. 

These problems are difficult to solve by direct manipulation of 

the control points in the surface or surfaces, although different 

techniques can be used ([1,2]) for convenient shape modifications 

of the surfaces. 

A constraint of the present problem is that the leading edge of 

the blades must be accurately reproduced by the surface because 

most of the aerodynamic characteristics are induced by this region. 

This part of the surface presents high curvature values when 

compared with the rest of the shape of the blades (see Fig. 6 in 

Section 4). A solution for this area is included in the method and is 

presented in detail in Section 3. 
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Fig. 1. Rotor geometry. 

The technique of lofting or skinning over B-spline curves was 

selected from the various numerical methods used for industrial 

surface definitions. This consists of fitting a surface through an 

ordered set of cross-sectional curves ([3,4]), which in this case are 

airfoil curves. Accurate modellingof the 3D points corresponding to 

the airfoils is important to the success of the method. 

A least squares (LS) fitting process ([5]) with an original selec-

tion of the parameterisation based on the Haussdorf metric (the 

minimum of the m a x i m u m Euclidean distances) is described in 

Section 3 and also considers accurate modelling of the leading edge. 

The method also defines a rounded trailing edge of the sections, 

which is normally modelled as a single point, considering its 

constructability. 

The proposed method allows for a reduction in the number of 

control points of the surface without reducing accuracy. Data 

reduction in the surface representation speeds up most of the 

downstream processes, improves the fairing of the resulting 

surface and decreases storage requirements in following design 

stages. 

There are a few references that relate directly to model rotor 

blades. Ref. [6] also used the lofting of airfoils to model rotor blades 

but did not explain h o w to deal with the airfoil data points. Rather, 

it focused on the lofting procedure over profile curves on concentric 

cylinders. The authors did not use tolerances in their work or 

consider the trailing edge. 

Ref. [7] proposed a method that included lofting but interpo-

lated the data points instead of approximating them. They modified 

the data points to produce more points in the leading edge, 

whereas the presented method does not alter the data points. Their 

method was applied for air wings that did not present any twist. 

An interesting reference is [8], which focused on aerodynamic 

airfoil optimisation and used B-spline curves for its definition. The 

examples in that work are compared with real airfoil shapes in 

Fig. 2. Geometry of the airfoil sections. 



Fig. 3. Twisting and bending. 

Section 4. That work began with a given definition of the control 

points of a B-spline that models the 2D airfoil data points and 

optimises the position of the control points until a given tolerance 

is reached. The presented method in this paper does not require an 

initial B-spline for modelling the airfoil points. 

The method outline follows; first, the presented method reads 

the geometric information of the rotor blades, including the posi-

tion, skew, rake and twist distribution and the discrete data defi-

nition of the sections, which the designer has determined after the 

initial design stage. Then, a discrete 3D definition of the airfoils is 

defined, and a curve fitting scheme is applied to the discrete data to 

define the 3D airfoils, resulting in B-spline curves with their 

respective control points. Finally, a lofting surface of the previous 

curves is applied, following the span-wise direction along which 

the airfoil sections are positioned. T w o application examples of 

rotors are used to evaluate the practical usage of the presented 

method. An annex with the notation for this paper and a brief 

discussion of B-spline curves is at the end of this work. 

The objective with this paper is to create a practical method to 

define the surface of turbine blades, according to parameters that 

are related with its performance. This parameters can be selected 

and optimized with the used of a B E M (Blade Element Method) 

theory, and once that a set of surfaces for the blades are defined, 

optimization algorithms can be used for optimization together with 

CFD (Computational Fluid Dynamic) calculations. 

Fig. 4. Effect of weights on the leading edge of MH121 with 13 control points. 

Fig. 5. Effect of weights on the leading edge of NACA 642415 for 13 control points. 

There are several good textbooks and references, see e.g. 

[9e11 ] that show the effect of most of the parameters that the 

presented method uses (that are of c o m m o n use in blade turbine 

design), into the performance of a turbine. It is not the goal of the 

paper to create an optimised design from performance point of 

view, but to enable a parametric definition and a complete 

generation of a turbine rotor, which allows the designer the 

selection of the parameters’ values under performance 

considerations. 

2. Discrete surface definition 

The first step is to create a 3D definition of the airfoils so they 

can be fitted with B-spline curves. Considering the same references 

as in Fig. 1, the base line of each airfoil section is part of a helix 

line,as depicted in Fig. 2b) and c) and Fig. 3 which winds on the 

surface of a cylinder of radius r. The twist angle varies along the 

span of the blade, and the twist is defined as the angle between 

the airfoil base line and the circle of radius r inside the rotor plane 

that corresponds to the section, as shown in Fig. 2c). This circle is 

also the intersection of a cylinder of radius r that contains the airfoil 

with the XZ rotor plane. 

The rake is defined for each section as the distance from the 

airfoil origin O0 to the rotor plane, as depicted in Fig. 2b) and c). The 

rake of each section can be defined as a function of a constant angle 

for the whole blade (rake or coning angle), so the rake of each 

section is a linear function of this angle. 

The skew angle is the angle between O0 and the Z axis, and it 

controls the shape of the blade, as shown in Fig. 2a) and c). This 

angle is obtained based on the generator line that crosses through 

the reference points O0 of the sections, as shown in Fig. 1. It can be 

a straight line or a soft curve according the design characteristics. 

The origin O0 of the airfoils can be placed well within the chord 

midpoint (Fig. 2d), at the point of m a x i m u m thickness or even at 

the leading edge. Therefore, its position affects the value of the 

skew distribution. 

All of the above-mentioned geometric parameters, together 

with the number of blades, diameter and offset tables to define the 

airfoil sections at specified radii, are required to define the geom-

etry of the rotor. These data are used to generate the 3 D coordinates 

of points contained on the surfaces of the blades placed at different 

radius ratios (stations). In this way, the coordinate points of the 

surface of a single blade are obtained. The rest of the blades are 

formed by a homogeneous coordinate transformation of a single 

blade about the axis of rotation. The hub is modelled in its simplest 

form as the frustum of a right circular cone. 



Fig. 6. Curvatures for MH121 and NACA 642415. 

The 3D coordínate: ofany point Qj(x, y, z), as shown in Fig. 2c), 
can be obtained based on their associated 2D coordínate: Qj(x',y') 
following these steps: 

1) The twist angle of each section Tw, is applied, and (̂  is 
obtained: 

p = i/x'2 + y ^ 

0 = at an (y'/ / ) (1) 

Q.̂  = (R'Cos(0 + TWj), R'Sin(0 + Tw¡)) 

2) The point Q^ is rolled over the surface of the cylinder or radius 
r, of the ith section to obtain Q%. This bending sets the are length 
over the cylinder to be equal to the abscissa of (̂ : 

ai 
x'(QA) R'Cos(0 + Tw¡) 

(2) 
Q2 = (rj'Sin(c¡j), R'Sin(0 + Tw¡), rj-Cos^)) 

3) The final step applies the skew (Ski) and rake (Rki) to the bent 

points by adding these magnitudes to the angle i and to the 

a 

Yth coordinate, respectively. These additions maintain the 

points over the surface of the cylinder of radius ri: 

Qj = (ri'Sin(ai + Sl<i), R'Sin(0 + Tw¡) + Rk¡, rj-Cos^ + Ski)) 

(3) 

By repeating this procedure for all points (j = 0, np(i)) of each 
airfoil (i = 0, M ) , a discrete approximation of the blades by a set of 
data points is obtained. The next step is the modelling of these 
discrete curves as B-splines so the final lofting can be obtained. 

3. Deñnition of the airfoil B-splines 

Once the np(i) + 1 discrete data points Q, have been obtained, 
the B-spline ñtting can be conducted. Although the number of 
points np(i) can vary for each airfoil, in this section it is cited as np 
for the sake of clarity. This set of np points is based on 2D points as 
detailed in the previous section. The 2D data can be generated by 
the computer program used for designing the rotor, they can be 
calculated analytically in the case of NACA airfoils, or they can be 
read from a datábase library; therefore, these data are subject to 

measurement errors and noise. These points can be uniformly 
distributed or present a higher density in the leading edge área 
depending on the source of the data. 

A large number of data points do not suggest the use of an 
interpolating B-spline. Instead, an approximating curve is required. 
For each airfoil curve of índex “d”, the B-spline Cd(if) does not pass 
through the data points exactly but passes cióse enough to the 
points to capture their inherent shape. This is the well-known least 
squares (LS) approximation, which is discussed in [5|. 

For this problem, np + 1 data points Qo,. Qnp are approximated 
by a B-spline of the pth degree with N + 1 control points Po, . f\, 
N < np that are unknown and are obtained as the final results of the 
calculations. 

The general LS problem is described by an over-determined set 
of np + 1 equations with N + 1 unknown variables: 

BgW'Po + K¡(tb)'Pi + .-.+ B&W'Pw = Qo 
BgW-Po + B%(fi)-Pi + ...+ B&W-PN = Qi 
M M M M 
Bg(fnp-P ) + B%(fnp)'Pl + --+ B&(fnp) fN = 

(4) 

where B? corresponds to the ith basis function of a pth degree B-
spline that is calculated using de Boor’s algorithm in Eq. (11) 
considering a uniform knot vector, and t, (j = 0, n) represents the 
parameters associated with the data points. Matrix expressions are 
convenient to solve the problem: 

B%(%) B?(W . B&W Po Qo 
B%W B?W . B%W P̂  Qi 
M M M M M M 

BSW %(fnp) . Bjv(fnp PjV Qnp 

= ÍQH [M]^-[M] M = [M]^,[Q J 

;[M],[P] 

(5) 
Weighted ñtting: [M]^-[M]-[w]-[P] = [M]^-[w]-[Q]; 

This system of equations is solved by multiplying both sides of 
Eq. (5) by [M]f, which creates a determined (N + 1) by (N + 1) linear 
system. The standard LS is modiñed using weights because of the 
aspect of the airfoil data points; the leading edge produces a high 
curvature zone (Fig. 6) and a standard LS does not ñt this part of the 
curve with enough aecuracy unless a large number of control points 
are used. These weights affect the points of the leading edge, 
increasing the ñtting aecuracy in this área, which has a major effect 
on the performance of the blade. 

This type of system can be poorly conditioned, especially if 
a large number of control points are used. Aconventional technique 
should not be used to solve this ill-conditioned system. Instead, 
a single-value decomposition of [M]^ [M] and a later back-
substitution process are performed. The solutions of this system 
are the control points of the best B-spline ñtting. 



Approaching this problem with a standard parameterisation 
such as centripetal or chord-length parameterisation is correct but 
does not consider the effect of the distance of the data points to the 
B-spline. In this method, parameterisation based on a mínimum 
distance metric is adopted. The process is iterative and is described 
by the foliowing three steps: 

1 The method begins with a centripetal parameterisation of the 
(& points, and system (5) is solved. This produces a starting 
curve of the iterative process only for the ñrst loop. 

2. For each (&, the mínimum distance to the B-spline is calculated. 
This is accomplished by dividing the B-spline Cd(u) into Bézier 
curves 6,(1%,) 0' = 1, N - p) of the pth degree and computing the 
mínimum distance to the corresponding Bézier piece, which 
leads to a solution to Eq. (6). 

(Qj-b,(u¿))'(by(u¿)) = 0 (6) 

This equation is solved in the local domain of the Bézier curves. 
Because the equation is a polynomial equation, u¿ e [0,1], speciñc 
algorithms for this type of equation can be used. These algorithms 
do not require an initial guess, which would be required if a New-
tonian method were used in the B-spline domain. The current 
method uses a JenkinseTraub 3-stage algorithm [12]. The valid 
solution is a non-complex solution of u¿ e [0,1]. 

Once the solution has been found, the local % for the Bézier 
domain is easily converted into its global valué (:, in the B-spline 
domain. This t, valué is the parameter associated with the point (& 
when solving system (5). 

3. After obtaining the t, (i = 1, np) valúes, the distance 
d, = ((& Cd(t,)) is computed, which is the Euclidean distance 
between Q¡ and the B-spline. This distance is used to verify the 
shape requirements. If the máximum distance d, (i = 1, n) is 
above a given tolerance, steps 2 and 3 are repeated until an 
acceptable máximum distance is obtained. The quality of the 
obtained curve is measured using the tolerance constraint, 
and the shape of the B-spline is amended using parameter­
isation (6). 

If the tolerance is not obtained in fewer than 50 iterations, then 
the number of control points N + 1 has to be increased. An incre-
ment in the degree p in this procedure can also reduce the 
máximum distance. However, increasing the number of control 
points has a more substantial effect, and a higher degree increases 
the complexity and the computation time. 

4. Evaluation of the fitting 

This section presents some cases of the previously described 

fitting by comparing the present method with the examples shown 

in [8,13], which correspond to real airfoil sections. The examples in 

Table 1 present different shapes to give relevant results for real 

airfoils assuming a c o m m o n chord of 1 m . 

The above-mentioned references used a B-spline technique for 

optimisation purposes and controlled the shape of the airfoil by 

moving its control points and optimising aerodynamic properties 

under certain constraints. These authors used the airfoils of 

Table 1 

MH126 (Thick) t/c = 25.1% 

MH121 (Thin & Cambered) t/c = 8.8% 

MH43 (Thin) t/c = 8.5% 

Naca 642415 (Thick & Cambered) t/c =15% 



Table 1 as reference examples, but the manner in which they fit 

the data points was different from that presented in this paper; 

an initial B-spline was required as an initial guess, and the posi-

tions of its control points (only their ordinates according the 

references) were numerically modified until a given tolerance 

was reached. 

The effects of the weights are shown in Figs. 4 and 5, in which 

200 points of the M H 1 2 1 airfoil were fitted to a cubic B-spline with 

just 13 control points. The positions of the control points are plotted 

in the upper part of the figure, and the details of the leading edge 

are also shown. 

A similar figure shows the fitting for the Naca profile, which also 

considered 200 points and 13 control points. In this case, the point 

density in the leading edge was higher than in the previous profile, 

which is positive for the fitting that did not consider weights. 

The weights of Eq. (5) were selected as 3 for the points that 

present a curvature higher than 10% of the highest curvature. 

Curvature plots for the examples of the previous figures are dis-

played in Fig. 6. The aspect of the curvature k distribution is 

c o m m o n for any airfoil; a peak value in the leading edge occurs at 

approximately u ¼ 0.5 when the points are fitted with a B-spline. 

If the high curvature of the leading edge is not considered, then 

the fitting in this area is not as good as in the rest of the curve, 

especially w h e n a low number of control points are used and the 

point density in this area is small. Although the fitting of the leading 

edge is always better when using the proposed weight distribution, 

the fitting in the rest of the curve m a y be slightly worse, as shown 

in Table 2, when comparing the m a x i m u m deviation. This is also 

a function of the distribution of the data points. 

W h e n using the method presented for fitting, the m a x i m u m and 

average distances between the B-spline and the data points can be 

computed. For the tested cases shown in Table 1, the m a x i m u m 

deviation between the data points and the B-spline is presented in 

metres in columns named “Weights” and “No Weights”, and 

compared with the values presented in [8,13] that appear in 

columns 11 CPs w 14 CPs. 

The calculations for 11, 12 and 13 control points correspond to 

[13], and the calculations for 14 control points correspond to [8]. 

The data point distribution is not the same as the one used in the 

Refs. [8,13] because the original data points were not presented in 

the references, but the number of data points was 200 in all of the 

cases. Note that the deviations are of the same order of magnitude 

in all of the cases and that the presented method improves the 

results for thicker profiles (MH126 and Naca). The m a x i m u m 

deviation can be reduced by increasing the number of control 

points. For the examples in Table 1, a tolerance below 0.001 m was 

reached with 21 control points. 

Most wind turbines possess circular sections on their blade root 

near the hub to change the blade pitch. These circular sections are 

not a problem for the presented fitting approach because they can 

be treated as airfoils; the circle is divided into a set of points, their 

Table 2 

Maximum deviations of the examples (metres) for different number of control 

points (CPs). 

Weights No. weights Weights No. weights 

NACA 642415 

13CPs Weights No Weights Weights No Weights 

NACA 642415 

3D coordínate: are obtained according Section 2, and the ñtting is 
applied. A circular section with a 1-m diameter was placed over 
a cylinder with a radius of 5 m and was ñtted using 14 control 
points as depicted in Fig. 7. The m á x i m u m distance of the B-spline 
to the 30 data points was 0.0002 m, and the average distance was 
less than 0.0001 m. 

5. Deñnition of the trailing edge 

W h e n designing a turbine while considering its airfoils, the 
trailing edge of the airfoils is normally considered a single point to 
numerically calcúlate the lift and drag forces. This transforms the 
trailing edge of the sections into a sharp edge when deñning the 3D 
geometry, which is often required in numerical calculations but is 
very fragüe from a constructive perspectiva. 

Airfoils can be trimmed at the trailing edge by reducing the 
chord by approximately 3%e5% or thickened by approximately 1% 
of the m á x i m u m thickness at this área without greatly altering its 
properties because the trailing edge is essentially maintained as 
sharp, so the fluid velocity at this part of the airfoil is high. The 
second method maintains an airfoil’s chord. 

These assumptions for the trailing edge produce two sharp 
edges and a ruled surface that endoses these two lines along the 
blade span. A smooth surface that joins these two edges and 
maintains the chord-length of the sections can be deñned. 

To créate this surface, different curves that the surface will 
contain are needed. These curves (Fig. 8) are part of the trimmed 
airfoils and are constructed as foliows: 

1). Trim the data points according to a desired distance d = 3%e5% 
chord. Po and P3 are the limit points of the data set. 

2). Fit the trimmed data set according to Section 3 and obtain the 
B-spline c¿. 

3). The tangent lines at the end points of the B-spline are %, and (j 
and follow the direction of the ñrst and last leg of the control 
polygon of c¿. Calcúlate d/3 to obtain the points M o and M 3 at 
the intersection of the tangent lines with the line parallel to 
P0P3 that is separated by d/3 from the airfoil end E. Note that 
P0P3 and M 0 M 3 are perpendicular to the chord line. 

4). The point P¡ that is symmetric to Po with respect to Mo, and the 
point P2 that is symmetric to P3 with respect to M 3 are the 
control points of a cubic Bézier curve that passes through Po and 
P3, is tangent at these points to c& and does not overpass the 
chord valué because it is tangent to the line perpendicular to 
the chord line at E. 

The above-mentioned properties of the cubic Bézier curve that 
models the trailing edge come from an application of the Casteljau 
algorithm that defines Bézier curves. The final step of the proposed 
method is to créate B-spline surfaces that contain the airfoils and 
their trailing edges. 

6. Lofting surface of the airfoils 

The last step of the method is the deñnition of B-spline surfaces 
that contain the previously deñned B-splines with one surface for 
the trailing edges and a second surface for the rest of the airfoil 
curves. 

The generalisation from curves to surfaces is not difñcult due to 
the properties of B-splines, and thus, a lofting surface of the station 
pieces can be easily deñned. The transition from spline curves to 
spline surfaces is achieved by turning the control polygon into 
a control net of control points 1/1/%%, % Zg) using the same B-
spline basis for the two parameters u and v, as well as using two 
different lists of knots {u_], Uw+n}, {v-i, VM+m}-



Fig. 7. Fitting of circular sections (root). 

parameterisation. Centripetal parameterisation produces good 
results for the shape of rotor blades. By identifying equal coefñ-
cients for each row in Eq. (9), i = 0,.N, the following linear system 
is obtained: 

M 
Y]iVg.Bj"(vj) = y,,, (d = 0,...,q-l) 
j=o 

To obtain a unique solution for this system, M + 1 = q, where q is 
the number of airfoils that define the blade. The (M + 1) by (N + 1) 
solutions are the control points W¡, of the lofting surface of Eq. (7) 
containing the airfoils. 

7. Examples 

Two different (marine current) turbines are presentad in this 
section. The ñrst example was deñned to construct a scaled 
prototype of the turbine; therefore, its diameter is 0.5 m. The 
airfoils used in the design were based on cambered Eppler856 
proñles with 200 data points and a variable thickness/chord ratio 
along the blade span. The tolerance was 1.10 ^ m, and this valué 
was achieved using cubic B-splines with 19 control points, 
considering the weight ñtting detailed in Section 3. The root 
sections are circles modelled as B-splines with 19 control points as 
explained in the previously mentioned section. The hub was 
modelled as a frustum of cone. 

In this example, the trailing edge was considerad a straight 
segment between the ñrst and the last point of the airfoils because 
a rounded end deñned as in Section 5 could not be constructed for 
the prototype model due to its small size. In propeller/turbine 
models, the ñnishing of the blades’ trailing edge requires manual 
labour. 

The airfoils used for the modelling of Example 1 are shown in 
Fig. 9a). The details of some airfoils are shown in Fig. 9b), which 
shows the distribution of the 19 control points. A lofting surface of 
the B-splines is obtained according to Section 6, and the iso-
parametric curves of the blade surface are shown in Fig. 9c). A 
shaded view of the ñnal blade is shown in Fig. 9d). The blade 
surfaces were used to construct a metal prototype of the rotor 
produced by a CNC machine directly from the surface Information 
generated by applying the present method. 

The lofting process of a set of q B-splines (airfoils) with the same 
degree and list of knots is as follows. Find a B-spline surface S with 
degree n by m and (N + 1) by (M + 1) control points and a list of 
knots {u_i, Uw+n} and {v_i, VM+m} according to Eq. (7) that 
interpolates q different B-splines Cd (d = 0,.,q - 1) of nth degree 
withN+ 1 control points andalistofknots{u_:, Uw+n} with the 
formof Eq. (8). 

JV M_ 
S(u,v) = ^ ] ^iVg,B^(u),Bj"(v) (7) 

i=0j=0 

N 
Cd(u) = ^]t/krB"(u) (d = 0,...,q- 1) (8) 

i = 0 

Note that l/¡d are the control points of the different airfoils ob­
tained in Section 3 and are expressed in matrix form. The valúes of 
N, M and q depend on user preferences regarding the deñnition of 
the blade surface. The interpolation can be written as: 

N / M \ N 

i=o\j=o y i=o 

= c,*(u) ( d = 0 , ...,q-l) (9) 

This group of equations must be solved for a set of valúes of 
parameter v¿ (d = 0,.,q - 1), which is called the choice of the 

Fig. 8. Definition of a rounded trailing edge. 



Fig. 9. Example 1. 

Fig. 10. Example 2. 

The second example, shown in Fig. 10, presents a turbine project 
with a diameter of 17 m designed with Naca airfoils of variable 
thickness chord ratio. The tolerance valué was selected as 1.10 ^ m, 
and this valué was obtained using cubic B-splines of 12 control 
points and considering the weight ñtting detailed in Section 3. In 
this case, the root sections were not circles because the turbine was 
a ñxed-pitch turbine, and a ñllet surface was created in the root 
área to reduce stress and strain near the hub. The blades presented 
a rounded trailing edge modelled according to Section 5, as shown 
in detail in Fig. 10. This Example 2 was used to compute FEA 
calculations before fabrication, directly with the surfaces generated 
by applying the method. 

8. Conclusions 

This paper has presented a practical method for producing 
a B-spline representación of the blades of a horizontal axis 
turbine. The method works with the Information normally used 

in turbine blade design, such as airfoils data points and 

twist, rake and skew distributions, and produces a weighted 

fitting of the 3 D airfoil data points allowing the leading edge, 

which has a major effect on the turbine properties, to be well 

reproduced. 

The weighted least squaresfitting also uses an iterative selection 

of the parameterisation, which allows for a given tolerance, which 

is very useful from a construction perspective. The method 

produced a blade surface with a minimum numberof control points 

that fits the data points below a given allowance. This reduced 

number of control points permits a more simple surface definition, 

which is important in subsequent stages of the design process 

including numerical CFD calculations, FEA calculations or 

construction with CNC machines. 

The weighted fitting was tested for airfoils with different char-

acteristics and compared using various methods from the litera-

ture. It produced good results for the modelling of typical airfoils 

employed in turbine design. 



A B-spline deñnition of the sections’ trailing edge was also 
produced such that the chord can be maintained without trim-
ming or thickening the airfoils used during the initial design 
stage. 

9. Annex 

To introduce the notation for this paper, a brief discussion of B-
spline curves follows. A B-spline curve is formed by several pieces 
of polynomial curves called Bézier pieces, and the entire curve is 
C* (common curvature or second derivatives) at the junctions in 
the case of cubic B-splines. The curve is deñned with a polygon 
called the control polygon and with an interpolation algorithm 
that allows for its construcción by relating the curve to the control 
polygon. The interpolation steps are encoded in a family of 
piecewise polynomial functions Bj*(u) called B-spline functions of 
the nth degree and are calculated with Cox de Boor’s algorithm 
[14]. Cubic B-splines are the most frequently used curves in 
design. 

A B-spline curve, s(u) in Eq. (10), is a linear combination of basis 
functions with m + 1 control points P, as coefñcients. Therefore, 
B-spline curves are parametric, x = X(u), y = Y(u), z = Z(u), and the 
parameter u is normally considerad [0,11. In the plañe, P, = (X,, Y,), 
j = 0, ., m genérate a B-spline s(u) of nth degree: 

m m 

j=0 j=0 

(10) 

where the basis functions are obtained with Cox de Boor’s algo­

rithm in (11): 

BfW = { 1 Uj-i'% 
0 u g [Uj_i, u, 

B?(u) 

"j-i m-i 4 (11) 

The basis function Bj*(u) depends on the knot vector U;, which, in 
this work was chosen to be uniform with a multiplicity equal to the 
order of the curve at its ends, where the order is deñned as the 
degree + 1. In this w a y the B-spline interpolates the ends of its 
control polygon at u = 0 and u = 1 and is tangent at its ends to the 

ñrst and last segment of its control polygon. This last property 
simpliñes the mathematical deñnition of the curves used in the 
method. Note that the derivative s'(u) of a B-spline is a linear 
combination of the derivatives of the basis functions: 

m 

s'(u) = y^-Byxu) = (x(u), y(u)) 

^LX^Byxu), y,'By(u)j (12) 
j=o 

W h e n the number of control points (m + 1) is equal to the order 
of the curve (n + 1), then the B-spline curve is formed from just one 
piece and can be called a Bézier curve of the nth degree. In this 
work, all of the curves are referred to as B-splines for the sake of 
clarity. A variable presented in bold letters indícate: that this 
element is formed from several components, such as points, vectors 
or B-spline curves that have X, Y and Z components. 
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