
SOME FRAMEWORK IDEAS FOR SOFTWARE ENGINEERING EDUCATION

F . Sdzz Ifa.aa.¿

Escuela Técnica Superior de
Ingenieros de Telecomunicación

Madrid, Spain

ABSTRACT

This paper presents various ideas aimed at improving
the conceptual framework for Software Engineering Education.
They are centered on gradually seeing Software Engineering
through a 3-p (problem-process-product), a 4-p (people
(producars)-problem^process-product) and a 5-p (people
(producers)-"problem-process-product-people (users) diagram.
These diagrams include concepts such as the rate of change
of a problem, the relational complexity of a problem, triphase
processes with dominant phases, degrees of software evolution,
levels of complexity (with the recognition of disorganized
complexity), among others.

I , THE AXIOM OF I N S T A B I L I T Y OF THE

UNIVERSE OF DISCOURSE

It is difficult, if not impossible,

to find something that is not changing

in computer technology: circuits,

architectures, languages, methods,

fields of application... The "central

object" itself of this brand of

engineering, software, represents such

a diverse reality (many objects) that

the fact that it has only one name

gives rise to considerable confugion.

This issue, among others, was taken up

by Pox [l] and, at this point, I would

like to underline that it is more of a .

pragmatic issue than an academic one.

Thus, Software Engineering Education

moves in an unstable, undefined world.

This axiom governs and limits the

validity of all educational proposals

in the area of Software Engineering and,

therefore, all the ideas presented in

this paper.

I I , A 3 - P APPROACH I N SOFTWARE

ENGINEERING

To start with, Software Engineering

moves inside of a trilogy of categories:

the problem, the process and the product

(software). The inseparability of these

three categories is a basic concept, a

framework idea, and can be graphically

presented by employing Morin's

denotative system [2] (see Figure 1).

As you can see, this inseparability is

directed and dynamic.

PROBLEM fr. PROCESS »- PROOUCT

Figure 1. 3-p Diagram

In other words, the isolated

handling of each of these categories is

erroneous. The degree óf error would be

a function of the specific circumstance

of the ontogenetic circuit, which is

present in the diagram shown below.

Although it may sound complicated, this

is how it is.

As is the case with all education,

Software Engineering Education operates

in practice with simplifications, but

nothing would justify its concealment

of fundamental relationships. The

diagram in Fig. 2 is a simplified

enlargement of the diagram in Fig. 1.

In this enlarged version we find the

essential part of relationships between

a problem posed, the software that

automates its solution and the process
that leads to the development of this
solution.

. A n a l y s i s o f t h e n a t u r e o f t h e
p r o b l e m (i n f o r m a t i o n a l m o d e l i n g)

A n a l y s i s o f t h e n a t u r e o f s o f t w a r e
• (D e t e r m i n i n g t h e b a s i c c h a r a c t e r i s _
t i c s o f t h e p r o d u c t)

1
O v e r a l l d e s i g n o f t h e p r o c e s s

S o f t w a r e c o n s t r u c t i o n
(d e v e l o p m e n t p r o c e s s)

— S o f t w a r e a n a l y s i s (p r o d u c t o f t h e
p r o c e s s)

Figure 2. Simplified enlargement of the
diagram in J?igure 1.

All complex problems are solved by
an ordered set of mental processes. In
Software Engineering, the set must also
be cost effective. Here we will call
this set a 'process1. The diagram in
Figure 1 is developed on a recurrent
top down basis, this is to say that it
is valid and always the same for each
one of the temporal phases, which are
defined by substituting 'problem' and
•product' for the input and output of
each subprocess.

R e s u l t i n g R a n k o n P e r f o r m a n c e (1

At the first resolution level, an
overall design of the development
process must be carried out, at the end
of which we will obtain a product called
software. We know that this product will
display many characteristics that are
dependent on the criteria that guided
its development process. An old and
simple experiment (Weinberg, 19 74) [3]
continues to be illustrative of the
concept we wish to express. (See Figure
3). In general terms, it is important
to previously mark off some parameters
for the final product in order to give
shape wherever possible to some general
technical and organizational areas of
this development process.

I I I . A FIRST APPROXIMATION AT DETERMINING

THE MORPHOLOGY OF THE SOFTWARE

ENGINEERING PROCESS,

In the previous section, we
established, among other functions, that
the process depends on the problem and
the product. This shows that the
techniques chosen in the process and the
temporal distribution of the effort will
adopt a thousand forms in practice.

Nevertheless, a standard concept,
the software life cycle, and a number of

B e s t)
T e a m o b j e c t i v e : E f f o r t t o N u m b e r o f M e m o r y P r o g r a m O u t p u t
T o o p t i m i z e c o m p l e t e S t a t e m e n t s R e q u i r e d c l a r i t y c l a r i t y

E f f o r t t o
c o m p l e t e 1 4 4 5 3
N u m b e r o f
s t a t e m e n t s 2 - 3 1 2 3 5
M e m o r y r e q u i r e d 5 2 1 4 4
P r o g r a m c l a r i t y 4 3 3 2 2
O u t p u t c l a r i t y 2 - 3 5 5 1 1

Figure 3. Experiment by Weinberg-Schulman, 1974 cited in [3].

associated estimation techniques, which,
appear to be independent of the problem
and product, have become widespread.
This is the way the concept is often
times erroneously interpreted and
applied.

In order to simplify its management,
let us accept that it is desirable to
divide the process into temporal phases.
By paying attention to two "character-
istics" of the problem -its expected
rate of change and its relational
complexity-, it is possible to get a
first qualitative idea about the
emphasis that will have to be given to
specific dominant phases.

In Software Engineering, the
difficulty involved in clearly
stablishing a system, a model or the
general areas of a solution is an
attribute of the problem (its
complexity) and, in part, an attribute
of the designer. The interrelationship
of both attributes generates another
essential characteristic of the problem,
which I call the relational complexity
of the problem. In my opinion, it is
difficult to quantify this character-
istic, but this difficulty does not
make it less real.

This characteristic initially
impregnates the process with a diverse
degree of fuzziness, which fluctuates
between merely repetitive and routine
activities (minimal fuzziness) and the
most profound and creative intellectual
activity (maximum fuzziness) .

Moreover, problems pose a greater
or lesser demand (capacity) for change
in their solution (product) over time.
Although we can express it this way, we
are well aware that the cause behind
the changes is not only the problem in
and of itself, but all the conditions
of this problem, the formulation of
this problem, the formulation of the
solution, the implementation of the
solution (product), the human or

artificial environment in which the
product will be used, etc., [4], in
other words, the problem and its
circumstances. I call this an essential
characteristic of the problem, and I
think that we should establish its order
of magnitude in the first loop of the
diagram in Figure 2. Outside of this
context, this is a subject that deserves
to be worked on theoretically.

These two characteristics produce
some very educational general ideas when
they are put in contact with a theoric
distribution of the software life cycle
in three large phases: system definition,
implementation and maintenance. This is
what Lehman [4] called them, and this
is what I independently called them at
a seminar I spoke at in the same year [5]

The first characteristic basically
affects the first of these large, phases,
and the second characteristic the last
one. The process must be designed as a
whole, and its morphology is determined
gb LnitJLo by the degree of importance
of these two characteristics. We are
going to develop this next.

It has been fully demonstrated that
the definition phase is capital with
respect to the results of the overall
process. It requires a greater effort
in problem solving, analysis and
decision-making, in general. It handles
techniques and languages that have
barely been formalized or that have a
very narrow range of application. The
difficulty of the tasks implied, more
so than the resources involved,
determine its temporal distribution.

This last aspect could be illustra-
ted in a special albeit graphical way.
In a project having a manpower curve
that fits the Rayleigh software life

r T —at^
cycle curve [6], (y'=2 kate ;
a = l/2t k = total accumulative
manpower utilized by the end of project;
t^ = development time), the shape
parameter governing time to peak, a, is

related to the idea-generation rate,
in other words, to what in this case X
call relational complexity, The greater
the relational complexity, the smaller
the value of a (the longer the project)
and, therefore, the definition phase
will gain importance. Reverse reasoning
says that if complexity is minimal, the
definition phase will become minimal or
disappear.

The software maintenance phase, and
even its own existence, depends on the
need for change generated by the
problem. Obviously, one of the aspects
to underline is that, in spite of the
unfortunate name of maintenance, the
general meaning of this phase is that
of adaptation and evolution, in order
to adjust the product to changes in the
problem or to improve efficiency. The
life idea is here, and it can be easily
transmitted through a representation
using a basic cybernetic diagram.

This simple shape (Figure 4)
contains basic aspects that distinguish
the results from Approaches A and B.
Approach B deals with the matter as a
dynamic system, in which the problem is
something that changes with time. And
this shows the natural evolutionary
tendency of software, for the process
continually feeds on the discrepancies
between the software solution and the
real needs of the problem (the ®
represents a comparator). Based on

Approach B, the basic purpose of the
process is to remove these discrepancies
on a recurrent basis. In other words,
the process is designed and optimized
as a whole in order to achieve this
aforementioned purpose. The 'process'
block in Approach B in Figure 4 already
"contains" the maintenance activity.
Nevertheless, in practice Software
Engineering presents a large number of
cases in which software life cycles are
addressed with the spirit and techniques
of Approach A [7].

Using a very elemental, binary,
logical (and we hope didactic) table,
in Figure 5 we have summarized the
dominant phases in the initial design
of the process, according to the
existence (=1) or non-existence (=0) of
the characteristics of the 'rate of
change' and the 'relational complexity'
of the problem- (You should note that
the life cycle only exists in the
combinations of columns 2 and 4.

CHARACTERISTICS OF THE PROBLEM
l (RATE OF CHANGE,RELATIONAL COMPLEXITY)

(OVERALL DESIGN) \
0 0 10 01 I I

FIRST PHASE - - X X

SECOND PHASE X X X X

THIRO PHASE - X - X

Figure 5,

Figure 4. A cybernetic representation
of the 3-p diagram.

General triphase morphology
of the process, according to
the rate of change and the
relational complexity of the
problem.

Now that we have carried out this
first approximation, enabling us to
point out areas of attention, a study of
the product's characteristics will be
necessary to determine a deeper technical
analysis into the detailed planning of
the process.

IV . A 4 -P APPROACH: THE DEGREE OF

EVOLUTION OF SOFTWARE ENGINEERING,

A LANGUAGE LEVEL ISSUE,

Sections 2 and 3 dealt with general
ideas applicable to a software object,
throughout its genesis and life. These
ideas apply to ontogenetic processes.

Now if we think about the objects-
software set, which over time has
solved a specific kind of problem, we
enter into an area of philogenetics.
From a philogenetic point of- view, the
individual parameter which best
measures the evolutionary degree of
the engineering employed is (are) the
language level(s).

We have characterized software
engineering with a 3-p approach. The
technological evolution of this 3-p
diagram must inevitably refer to the
power of the tools that people use to
give material shape to the 3-p approach.
These people include the analyst, the
programmer, the project manager, the
operator, the documentalist, etc. In
order to carry out their respective
jobs, each one of these people executes
a series of mental operations, whose
complexity depends on the level of
language defined for the job at hand.
(This subject was generically
evaluated by Halstead in [8] and other
publications).

Programming languages, data
definition and manipulation languages,
specification languages, job control
languages, software support tools,
programming environments, hardware and
software architectures... directly or
indirectly all this is language.

Language is measured better in
relation to man than in relation to
machines. And the closer it is to man,
as it concerns the fueling of the
tasks implied in the 3-p diagram, the
further evolutionary progress advances
in the area of software technology and

engineering. The "4-p = people-problem-
process-product" diagram means that in
order to solve a problem by means of a
software object (product), a temporal
process unfolds in which various people
participate, coordinating the use of
different languages as tools.

It is said that language is the
house in which man lives. Language
(artificial) is the house in which
software lives.

We can assume that, in general
terras, in Software Engineering the set
of languages employed is a central
theme. The real set of languages
constitutes a skeleton on which, in
each case, the four ps form the flesh.

V, 5 - P APPROACH AND COMPLEXITY LEVELS

In section 3 we talked about the
relational complexity of the problem,
which is an aspect that was tied solely
to the definition activity, in the
first phase of the process.

In general, complexity may be a
factor present throughout the entire
Software Engineering diagram.

Algorithmic complexity and
software complexity, among other, have
been studied. Software complexity has
received considerable attention due to
the economic impact of software on the
total cost of computer use. Among the
experts who have addressed this subject,
probably Halstead [8] and McCabe [9]
are the best known. Sáez Vacas [10] has
broaden this subject, by proposing a
hierarchy with three levels of
complexity.

In the first level, we would
situate the software complexity which,
in real terms, is applied to an isolated
object -usually a program- of a set that
we call software.

Above this element we find a group
of interconnected elements. Examples:
an operating system or a data base

management system are program groups.
The group is a system and it requires
a systems approach. The emerging
complexity is a systemic complexity.
And, once all of this is fit into a
4-p diagram, the systemic complexity
characteristic becomes more pronounced,
due to the set of languages employed
and the set of people employing
them. This is the second level of
complexity.

In the third level, more complex-
ity surfaces due to the possible
involvement of another new set of
people, the product users. The
discordance between the people of the
first set (who we will call the
producers) and between the languages
gives rise to a disruptive agent,
disorder, which grows with the complex
ity of the system. Actually, disorder
is another inseparable aspect of
complexity, it is the disorganized
face of complexity, which is prompted
by unreliability, unresponsiveness,
excessive costs and time periods, etc.
Product users add wood to this fire
when the relational complexity of
product use is high, which is seen as
misuse, insatisfaction, etc.
(manifestations of disorder from the
perspective of the technological world,
based on logic and organization).

As you can see, the third level of
complexity is applicable to
anthropo.technical systems, where we
can also clearly see disorganized
complexity,

Finally, the diagram in Figure 1
should be developed into a' 5-p diagram
(Figure 6). We should also add that the
set of possible users (the 5th p) is
an inseparable part of the diagram.
Moreover, we can assert that the study
of complexity should be systematically
and incisively introduced into high
level Software Engineering Education.

PEOPLE (PRODUCERS)

PROBLEM PROCESS PRODUCT PEOPLE (USERS)

Figure 6. 5-p Diagram for Software
Engineering.

REFERENCIAS

[1] J.M. Fox, Software and its
Development, Prentice-Hall, N.J.,
1982 .

[2] E. Morin, La Méthode I: La Nature
de la Nature, Seuil, Paris, 1977.

[3] B, Boehm, Software Engineering
Economics, Prentice-Hall, N.J.,
1981, pag. 20.

[4] M.M. Lehman, Programs, Life Cycles,
and Laws of Software Evolution,
Proceedings of the X.E.E.E., Vol.
68, No 9, Sept. 1980, pp. 1060-1076

[5] F. Sáez Vacas, Seminar on Planifi-
cación y Control de Proyectos In-
formáticos, ERIA, Madrid, Apr.1980

[6] W. Myers, A Statistical Approach
to Scheduling Software Development,
Computer IEEE, Dec. 1978.

[7] F. Sáez Vacas, Factores Críticos
en el Proceso de Desarrollo de
Software y Expectativas Tecnológ_i
cas, Presentation at Conference
COMPU-82, Quito, Oct. 1982.

[8] M.H. Halstead, Elements of Soft-
ware Science, Elsevier North-
Holland, N.Y., 1977.

T. McCabe, A Complexity Measure,
IEEE Trans. Software Eng., Vol.
SE-2, Dec. 1976, pp. 308-320.

F. Sáez Vacas, Facing Informatics
Via Three Level Complexity Views,
10th International Congress on
Cybernetics, Namur, Aug. 1983.

