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Abstract 

The characteristics of CC and CLP systems are in principle very different. However, a 
recent trend towards convergence in the implementation techniques for these systems 
can be observed. While CLP and Prolog systems have been incorporating capabilities 
to deal with user-defined suspension and coroutining, CC compilers have been trying to 
coalesce fine-grained tasks into coarser-grained sequential threads. This convergence 
of techniques opens up the possibility of having a general purpose kernel language and 
abstract machine to serve as a compilation target for a variety of user-level languages. 
We propose a transformation technique directed towards such an objective. In partic­
ular, we report on techniques to support the Andorra computational model, essentially 
emulating the Andorra-I system, via program transformation into a sequential lan­
guage with delay primitives. The system is automatic, comprising an optional program 
analyzer and a basic transformer to the kernel language. It turns out that a simple 
(parallel) CLP (or Prolog) system with dynamic scheduling is sufficient as a kernel 
language for this purpose. The preliminary results are quite encouraging: performance 
of the resulting system is comparable to the current Andorra-I implementation. 
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1 Introduction 

Many current proposals for parallel or concurrent logic programming languages and 
models are actually "bundled packages", in the sense that they offer a combined so­
lution affecting a number of issues such as choice of computation rule, concurrency, 
exploitation of parallelism, etc. This is understandable since a practical model has to 
offer solutions for all the problems involved. However, the bundled nature of (the de­
scription of) these proposals has two significant disadvantages. First, performing com­
parisons among these systems becomes difficult due to the complexity of determining 
how different design decisions might affect performance. Second, reusing components 
of one system in another turns out to be a difficult task. As a result, implementors 
are typically forced to build their systems from scratch, by writing their own runtime 
systems and constructing compilers to compile programs into low-level languages such 
as C or assembler. The tremendous engineering and manpower overhead involved in 
such an enterprise means that , in many cases, implementors may be unable to take 
advantage of clever optimizations that other researchers have implemented, or to in­
vest the time and effort necessary to turn their systems from research prototypes to 
mature and robust systems that can be shared with other researchers and users. Very 
often, researchers find the "non-research" engineering overhead of system implementa­
tion sufficiently daunting that their ideas and languages do not make it past the paper 
design stage. 

This is an unfortunate state of affairs, and leads to a great deal of duplicated effort 
and wasted time. This situation can be improved by performing a "separation analysis" 
of the execution model underlying the language and isolating its fundamental principles 
[15]. Such un-bundling not only identifies fundamental principles but also shows that 
the applicability of such principles can be enlarged by allowing the transference of the 
valuable features of a model to another. This fact at the same time explains and is 
supported by the recent trend towards convergence in the analysis and implementation 
techniques of models that are in principle very different. In fact, the techniques used in 
various and-parallel implementations of Prolog (e.g., [14, 21]), in the implementations of 
various committed choice languages (e.g., [3, 11, 16, 25, 26]), and in the implementation 
of sequential Prolog systems systems using coroutining (e.g., [8, 2, 24, 9]), are often 
very similar. 

This convergence of trends opens up the possibility of having a general purpose kernel 
language and abstract machine to serve as a compilation target for a variety of user-
level languages. Given a sufficiently high level intermediate language of this kind, and 
carefully crafted compilers and runtime systems for this language, the implementation 
of other logic programming languages would be simplified considerably: rather than 
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reinvent all aspects of an implementation from scratch, it would be possible to share the 
"back end" across different systems, and thus require only the construction of compilers 
to the intermediate representation. Encouraging initial results in this direction have 
been demonstrated in the sequential context by the QD-Janus system [7]. QD-Janus, 
which compiles down to SICStus Prolog and uses the delay primitives of the Prolog 
system to implement data-flow synchronization, offers performance that is competitive 
with some natively implemented concurrent logic programming systems. 

In this paper we set a more ambitious target: supporting the Basic Andorra Model 
[21], which incorporates a rather smart, concurrent, determinacy-based selection rule. 
We show how a standard Prolog/CLP system with delay primitives can serve as a target 
language for compiling Andorra (and, in particular, Andorra-I) programs, and achieve 
good performance. We show how to translate such programs (Section 2), including the 
determinacy-based suspension conditions (Section 3) and support for built-ins (Section 
4). We also propose optimizations that can be applied both during and after such 
translation (sections 5 and 6). The transformation is illustrated in Section 7 with a 
detailed example in which we follow all the different steps involved. We also show 
how using our approach it is possible to arbitrarily mix Prolog and Andorra execution 
(Section 8). Our transformation can then be seen as a straightforward way of adding 
Andorra-style search to a Prolog or CLP system, which can be used optionally in parts 
of a program. Finally, in Section 9 we provide some experimental results which are 
encouraging: performance of the resulting system is comparable to the direct Andorra-

1 implementation [22]. 

We do not mean to imply that the performance of a system implemented using our 
approach is optimal or that it will achieve better results than a native Andorra-I imple­
mentation, but rather that the technique is practical and allows the support of the Basic 
Andorra Model on a generic system with reasonable performance. Our main overall 
message is that using this approach, it is possible to construct implementations for logic 
programming languages—even those whose execution models depart quite significantly 
from Prolog's—in terms of simple and easy-to-verify source-level transformations, in 
a fairly straightforward way (e.g., without having to reimplement garbage collectors, 
stack shifters, complex low-level compiler optimizations such as register allocation and 
instruction scheduling, etc.), in a fairly short time, and nevertheless at tain fairly good 
performance. 

2 A General Transformation for the Andorra Model 

In the Basic Andorra Model a goal, or, more precisely, a reduction, is delayed until 
either (a) it becomes determinate or (b) it becomes the leftmost reduction and no 
determinate reduction is available. Simulating (a) in Prolog is conceptually simple, 
although it might require complex machinery. Simulating (b) is more complicated 
because it is necessary to keep track of the order in which the goals would have been 
reduced in a sequential system with a left-to-right computation rule. 
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For a program P, the operational semantics of the Basic Andorra Model can be 
presented as a transition system on states {G,c,D,Inf) where G is a sequence of 
literals, c is a constraint, D is a sequence of delayed literals, and Inf is a given structure. 
Intuitively, G is the sequence of literals being considered for execution, c is the current 
store, D contains the sequence of literals which satisfy neither (a) nor (b), and Inf 
contains the information necessary for detecting condition (b). The transition system 
is parameterized by three functions, namely determinate, leftmost, and add-info. The 
function determinate (I, c) holds iff the literal / is determinate in the context of constraint 
c. The function leftmost (I, Inf) holds iff, according to Inf, the literal I is leftmost. The 
function add-info (I, Inf) updates the structure Inf to take into account that the literal 
/ is delayed. For the sake of simplicity, the system will be also parameterized by 
the procedure reduce((G,c,D)) which obtains a sub-state (G',c',D!) by performing a 
reduction step from sub-state (G,c,D), based on the particular operational semantics 
of the kernel language. The transitions in the transition system are: 

(a) if determinate (I, c) holds and reduce((l : G,c,D)) = (G',c',D'), 
(l:G,c,D,Inf)^det(G',c',D',Inf) 

(b) (/ : G, c, D, Inf) —>del {G, c,l : D, Inf') where add-info (I, Inf) = Inf'. 

(c) if determinate (I, c) holds and reduce((l : G,c,D)) = (G',c',D'), 
(G, c,DUl, Inf) -+wdet (G', c', D', Inf) 

(d) if leftmost (I, Inf') holds and reduce((l : G,c,D)) = (G',c',D'), 
(G, c,DUl, Inf) -+wleft (G', c', D', Inf) 

In a system with left-to-right computational rule, the Basic Andorra model would be 
simulated by ensuring that transition (d) is applied only if neither (a) nor (b) nor (c) 
can be applied, and transition (b) is applied only if (a) cannot be applied. Basically, 
goals are inspected left-to-right. At each time, the inspected goal is reduced by (a) if 
determinate, or delayed by (b), otherwise. Delayed goals which become determinate 
during inspection are reduced by (c). When inspection has finished, and no determinate 
goals remain, the delayed goal which was leftmost during inspection is reduced by (d), 
and inspection has to continue. 

To achieve the desired effect, we propose to use program transformation into a lan­
guage with left-to-right computational rule and delay. To this end, we need to define the 
parameterized functions determinate and leftmost. There are many ways in which this 
can be done, mainly depending on the concept of determinacy chosen and the kind of 
structure Inf used, respectively. The concept of determinacy will be instantiated later 
on in Section 3. Regarding the structure Inf, we will define it as a list of variables, 
each of them attached to the goal that would have been reduced in a sequential system 
with left-to-right computation rule, the relative order among the variables reflecting 
the relative order among such reductions. In this context, leftmost (I, Inf) will hold if 
the variable in Inf attached to I has become non variable. 
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We will build Inj by means of difference lists. In particular, for each program pred­
icate p / n , we will create two predicates: p / n + 2 and p_susp/n + 2. The definition of 
p / n + 2 is the following: 

p ( X , L , L l ) : -
L = [SIL0] , 
detsusp( (det-Cond(l) ; n o n v a r ( S ) ) , p_susp(X,LO,Ll) ) . 

where X is a sequence of n distinct variables, det-cond(l) is a condition on X which 
holds iff for the given constraint store c determinate (p (X), c) holds, and detsusp/2 is a 
suspension primitive of the language which delays the goal provided as second argument 
until the condition provided as first argument becomes true. Our definitions of these 
two functions are given in Section 3. 

Intuitively, S is the variable attached to p(X) and L0,L1 are the pointers which 
delimit the sublist in which the variables attached to the subgoals in the derivation 
tree of p (X ,L0 ,L l ) will appear. In a manner of speaking, Inj can be considered a 
chain, and LO and LI can be considered the links which connect the reductions needed 
to execute p (X ,L0 ,L l ) with those needed to execute the goals to the left and right of 
p ( X , L 0 , L l ) , respectively. 

The definition of p_susp/n + 2 is derived from the definition of p / n as follows: 

• For every fact p(X), we add the fact p_susp(X,L,L) . 

• For every clause p(X) : - qi ( ? i ) , • • •, q„ (Yn) ., with n > 0, we add the clause 
p_susp(X, L i ,L„ + i ) : - q i (Yi ,Li ,L 2 ) , •••, q„ (Yn, Ln , L„ + i ) . 

When a fact is selected during the execution of p / n + 2, no further reductions are 
needed, and therefore we must unify the pointers associated to the goal thus closing 
the associated list. Otherwise, we need to split up such list in as many sublists as goals 
appear in the body of the clause, always keeping the left-to-right order. 

We have already mentioned that leftmost (I, Inf) is true if the variable in Inj attached 
to / has become non variable — thus, we will call such variables (S in the above 
definition) the "leftmost-tokens." The instantiation of these tokens is achieved by 
means of a transformed query. 

• For a given query : - q i ( Y i ) , •••, q n ( Y n ) , where n > 0, we create the new 
query 
: - q i ( Y i , L i , L 2 ) , •••, q n ( Y n , L n , L „ + i ) , wakeup(Li ,L„+ i ) . 

where wakeup/2 is defined as follows: 

wakeup(Ll ,L2) : - L l = = L 2 , ! . 
wakeup( [L l |L2 ] ,L3 ) : - Ll=up, wakeup(L2,L3) . 
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Given a language with left-to-right computation rule and which awakes suspended 
goals as soon as possible (eager awakening), the sequential execution of the transformed 
program in the target language emulates the determinate phase of an Andorra-I exe­
cution: the program is executed left-to-right but only determinate goals are reduced, 
non-determinate goals being suspended. As the reduction of determinate goals pro­
gresses, suspended goals which have become determinate are woken and the determinate 
phase continues. When no more determinate goals are available, wakeup/2 is reduced 
and instantiates the first token in the chain-list, thus awakening the leftmost suspended 
(non-determinate) goal. 

E x a m p l e 2.1 Consider the following Andorra-I program: 

p : - p l , p 2 . q(X) . p l ( X ) . p2 . 
p. q ( Y ) . p l ( Y ) . 

Following the transformation mentioned above, we will obtain the transformed program: 

p ( L , L l ) : - L=[S |L0] , det_susp( nonvar(S) , p_susp(LO,Ll) ) . 
q ( X , L , L l ) : - L=[S |L0] , det_susp( nonvar(S) , q_susp(X,LO,Ll) ) . 
p l ( X , L , L l ) : - L=[S |L0] , det_susp( nonvar(S) , pl_susp(X,LO,Ll) ) . 
p 2 ( L , L l ) : - L=[S |L0] , det_susp( ( t r u e ; n o n v a r ( S ) ) , p2_susp(L0,Ll) ) . 

p _ s u s p ( L l , L 3 ) : - p l ( L l , L 2 ) , p 2 ( L 2 , L 3 ) . q_susp(X,L,L). pl_susp(X,L,L) 
p_susp(L,L) . q_susp(Y,L,L). pl_susp(Y,L,L) 

p2_susp(L,L) . 

Consider the query : - p , q ( X ) . The transformed query is: : - p ( L l , L 2 ) , q(X,L2,L3) , 
wakeup (LI , L3) . The following trace represents the computation states in the execution 
of the transformed program. Note that some steps are summarized and the current store 
is omitted and already applied to the resolvent. 

(p(Ll,L2) : q(X,L2,L3) : wakeup(Ll, L3) ,n i l ) 
L l = [ S p | L l l ] 

(q(X,L2,L3) : wakeup([Sp|LIl], L3),p_susp(Lll, L2)) 
L2=[Sq|L21] 

(wakeup([Sp|Lll],L3),q_susp(X,L21,L3) : p_susp(Lll, [Sq|L2l])) 
Sp=up 

(p_susp(Lll, [Sq|L2l]), wakeup(Lll, L3), q_susp(X, L21, L3)) 
(pl(A, L l l , L12),p2(L12, [Sq|L2l]), wakeup(Lll, L3), q_susp(X, L21, L3)) 

L l l = [ S p l | L l l l ] 
(p2(L12, [Sq|L2l]), wakeup([Spl|Lll], L3),pl_susp(A, L l l l , L12) : q_susp(X, L21, L3)) 

L12 = [Sq|L21] 
(wakeup([Spl|Lll l] ,L3),pl_susp(A,Llll , [Sq|L2l]) : q_susp(X,L21,L3)) 
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Spl=up 
(pl_susp(A, L l l l , [Sq|L2l]) : wakeup(Ll l l , L3), q_susp(X, L21, L3)) 

L l l l = [Sq|L21] 
(wakeup([Sq|L2l], L3), q_susp(X, L21, L3)) 

Sq=up 
(q_susp(X,L21,L3) : wakeup(L21,L3),nil) 

L21 = L3 
(wakeup(L3,L3),nil) 
( n i l , n i l ) 

• 

3 Determinacy Conditions and Suspension Declarations 

The concept of determinacy (of goals, literals, or predicates) has been defined in a 
number of different ways in the logic programming community. In general, the idea 
is that , for a given goal to a predicate, at most one clause will succeed. Informally, a 
predicate is said to be determinate if every goal that complies with the intended use 
of that predicate is determinate. In a particular program, we will say that a literal is 
determinate if all goals arising from that literal are; and a predicate is determinate if 
all literals for that predicate in the program are determinate. 

In the following we will apply the definition used in the Andorra-I compiler, namely, 
flat determinacy [5, 23]. This refers to determinacy that can be recognized by means 
of a simple analysis of head unification and built-ins. We will use this exact notion 
of determinacy for two very practical reasons: first, we would like to make a fair 
comparison between our results and those of Andorra-I; and, second, we would like to 
reuse the determinacy detection phase of the Andorra-I compiler in our implementation. 

Another relevant issue in the context of determinacy detection is the nature and 
complexity of the determinacy conditions, which can vary from the simplest conditions 
such as t r u e or f a l s e , to complex conjunctions and/or disjunctions of tests regarding 
the instantiation states, the type, or the unifiability of some variables. In fact, it is 
generally possible to express the detsusp/2 function introduced in the previous section 
using the suspension primitives that are available in most general purpose Prolog/CLP 
systems [2, 8, 9, 24]. SICStus Prolog, for example, provides coroutining facilities by 
means of b l o c k declarations and when meta-calls, among others. The block declaration 
takes the form: 

: - b l o c k Spec, ..., Spec. 

where each Spec is a mode specification of the goals for the predicate, and specifies 
a condition for blocking goals of the predicate referred to by it. When a goal for the 
predicate is to be executed, the mode specifications are interpreted as conditions for 
blocking the goal, and if at least one condition evaluates to true, the goal is blocked. A 
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b l o c k condition evaluates to true iff all arguments specified as "-" are uninstantiated, 
in which case the goal is blocked until at least one of those variables is instantiated. 
The more general (and more expensive) when meta-call has the general form: 

when (Condition, Goal) 

and blocks Goal until Condition is true, where Condition is a Prolog goal given by the 
following restricted syntax: 

Condition ::= nonvar(X) | ground(X) | X ? = Y \ Condition, Condition \ 
Condition] Condition 

Whenever the determinacy condition det-cond only contains nonvar tests over the 
predicate arguments, then a block-l ike suspension declaration can be used. It will only 
be necessary to put det-cond in conjunctive normal form and define one mode spec for 
each conjunct, where each of these will have the corresponding argument replaced by 
a "-" flag. If this is not possible, but the condition fits into the above syntax, then 
when-like literals can be used. Again, the condition can be put in either conjunctive 
or disjunctive normal form, each item in this expression replaced by the corresponding 
checks, and an expression built from the latter. If neither of them can be used, user-
defined predicates should be used, which will be the result of compiling the decision 
graph which corresponds to the condition into Prolog itself. This compilation process 
is based on the observation that conditions can always be reduced to conjunctions of 
tests from the above syntax, plus other Prolog tests. For each of the former, a predicate 
exists which suspends until the condition is satisfied, and then checks all of the latter. 
See Section 7 for an example, and [10] for details. 

4 Handling Non-Pure Features 

In this section we will discuss the transformation of built-ins. There are basically three 
kinds of built-ins. The first type is formed by those built-ins which can be considered 
as normal user goals whose low-level implementation is only due to efficiency reasons. 
In this case, there are only two differences between the general transformation defined 
in the previous section and that applied to these built-ins.1 Firstly, the determinacy 
condition is obtained from an internal database rather than from the examination of the 
definition of the predicate. Secondly, the predicate provided as the second argument of 
detsusp/2 is the original built-in. 

E x a m p l e 4 .1 One possible transformation for the > / 2 built-in could be the following: 

>(X,Y,L,L2) : - L = [ S | L 1 ] , when( ( g r o u n d ( X / Y ) ; n o n v a r ( S ) ) , X>Y ) . 

1To avoid having to include such transformed built-ins in each transformed program, they are part 
of a special module, containing also the definition of the wakeup/2 predicate, that is loaded with every 
transformed program. 
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• 

The second class is formed by those built-ins whose early evaluation may affect the 
correctness of the execution. For example, side-effect built-ins such as w r i t e / 1 , me t a -
logical predicates such as v a r / 1 , or pruning operators such as cuts. In the Andorra-I 
system this problem is easily solved by just delaying such built-ins until they become 
leftmost [5]. In our approach, this simply corresponds to creating a false determinacy 
condition. 

The third class is formed by built-ins which can be affected by the early execution 
of goals which are dependent on it. In particular, whenever: 

• an early failure prevents the execution of a side-effect, or 

• an early binding affect cuts, meta-logical predicates, and side-effects that assume 
their arguments to be unbound. 

Many different approaches can be taken in order to eliminate this problem [5]. We 
will follow the same approach taken by the Andorra-I system, namely to detect these 
sensitive built-ins and prevent any execution of goals to the right of one such built-in 
until both all goals to its left and the built-in itself have been completely executed. In 
order to do this we will make use of "intermediate" wakeup goals. Since the method is 
simple and intuitive, we omit its formal definition. The technique is as follows. 

The idea is to add a wakeup goal just after the transformed sensitive built-in, thus 
forcing all goals to the left to be executed before continuing with those to its right. This 
implies adding (at least) an extra argument to the predicates in order to provide the 
wakeup goal with the appropriate "initial" pointer. Note that for those built-ins which 
belong both to the second and third classes, allocating the wakeup goal just before the 
original (non transformed) built-in, would both prevent any execution of goals to its 
right and delay the built-in until it becomes leftmost, thus solving both problems. 

E x a m p l e 4.2 Consider the following fragment of a program: 

p ( X ) : - q ( X ) , r ( X ) , w r i t e ( X ) , s ( X ) . 

An early execution of w r i t e (X) might affect the correctness of the execution. Thus 
we will delay it until leftmost. Also, it is a "sensitive" built-in and therefore we must 
disallow early execution of the goals to the right. The predicate can be transformed as 
follows: 

p ( X , L , L l , I n ) : -
L=[S |L0] , det_susp( nonvar(S) , p_susp(X,LO,Ll,In) ) . 
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p _ s u s p ( X , L l , L 4 , I n ) : -
q ( X , L l , L 2 , I n ) , r ( X , L 2 , L 3 , I n ) , w a k e u p ( I n , L 3 ) , w r i t e ( X ) , 
s ( X , L 3 , L 4 , L 3 ) . 

The transformation is just changed in that we have to add an extra argument, which 
will be the first argument of the intermediate wakeup goal introduced just before the 
sensitive built-in. Then, when all goals in the list delimited by In and L3 have been 
already executed, the second argument of the wakeup goal (i.e., L3) will become the 
new left pointer. • 

Note that with this transformation, wakeup goals outside the derivation tree of 
p (X,Ll , L 4 , I n ) will also have In as the first argument, even when all variables from 
In to the place initially marked by L3 are already instantiated to up. Therefore, we 
will be generating useless work. This problem can be solved by adding another extra 
argument which returns the new left pointer. 

E x a m p l e 4 .3 Consider again the predicate of 4.2. A less naive transformation would 
yield the following definitions: 

p ( X , L , L l , I n , O u t ) : -
L = [ S | L 0 ] , d e t _ s u s p ( n o n v a r ( S ) , p _ s u s p ( X , L O , L l , I n , O u t ) ) . 

p _ s u s p ( X , L l , L 4 , I , 0 ) : -
q ( X , L l , L 2 , I , 0 1 ) , r ( X , L 2 , L 3 , 0 1 , 0 2 ) , wakeup(02 ,L3) , w r i t e ( X ) , 
s ( X , L 3 , L 4 , L 3 , 0 ) . 

• 

5 Optimizing the Transformation 

Several sources of possible overheads arise in the above transformation. First, the 
amount of code generated: for each procedure definition, the (generic) transformation 
yields at least two other procedures. Second, the addition of some arguments — at 
least the pointers to the chain-list of tokens, which may happen to be unnecessary. 
Finally, the need for detecting the conditions for determinism and the leftmost goal, 
and the related suspension on these conditions. In this section we discuss some op­
timizations that can be performed regarding these three sources of possible overhead, 
based on information available prior to performing the transformation. We then define 
an improved transformation. 

5.1 Simple enhancements 

If a goal is determinate at the time it is first considered for execution, it should not 
be suspended to be immediately woken. Therefore, a translated program which checks 
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the determinacy condition det-cond(J) first before blindly suspending with detsusp/2 
can be more efficient at execution time: 

p ( X , L , L l ) : -
goal(det-cond(X)) -> L = L I , p_det(X,L0,L1) 
; L = [ S | L 0 ] , det_susp( (det-Cond(l) ; n o n v a r ( S ) ) , p_susp(X,LO,Ll) ) . 

In general, det-cond(l) may not be directly executable in the target language, and 
thus it must be mapped into suitable goals by goal(det_cond(J)). If this goal succeeds, 
a specialized version of p_susp/n+2 which does not need to suspend, p_det /n+2, will 
be called. Because this predicate will only be called when goals are known to be 
determinate, it is possible to avoid the creation of choice-points when reducing the 
predicate with its clauses by appropriately adding cuts. This would closely simulate 
the commitment to certain clauses introduced by Andorra-I once a reduction is known 
to be determinate. 

5.2 Unchaining calls to predicates 

This optimization is based on the observation that certain clauses do not need the 
extra arguments for the difference list of tokens to be passed. Such clauses include 
facts, and others which only have literals in their body which, in turn, do not need 
such arguments, either. A clause is, therefore, said to be unchained if all literals in 
its body are either constraints (or unification equations), "always-executable" built-ins 
(such as t r u e ) , or goals for an unchained predicate. A predicate is said to be unchained 
if all clauses in its definition are unchained and the predicate itself is determinate. 

Note that an unchained clause does not need to have the extra arguments because, as 
soon as it is reduced, the left-to-right execution of its body corresponds to the Andorra 
model, due to the nature of the literals in it. Also, since the previous definitions are 
recursive, one might imagine that an analysis for "unchainedness" would require an 
iterative fixpoint computation, but it turns out that this is not necessary. The reason 
for this is that if all of the literals of a clause are unchained, except for a recursive 
call, then the clause will be unchained only if this recursive call does not need a token 
to be passed, and this is so only if it is determinate. For handling mutually recursive 
predicates in this manner, we regard them to be a single predicate in what follows. 
Therefore, a simpler algorithm in this style, which will allow marking clauses and 
predicates as unchained, can be defined as follows: 

unchained(p/n) <— constraint^/n) 
unchained(-p/n) <— ready-builtin(-p/n) 
unchained(-p/n) <— determinate^/n) A VC £ c?e/n(p/n) unchained(C) 
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unchained(C) <— body(C) = 0 
unchained(C) <— Vp/n G body(C) 

(-•recursive (p/n) —> unchained(-p/n))A 
(recursive(-p/n) —> determinate (p/n)) 

where constraint^/n) holds if p / n is a constraint symbol, readyJbuiltin(-p/n) if it 
is an "always-executable" built-in, determinate (p/n) if predicate p / n is known to be 
determinate, recursive (p/n) if it is recursive, c?e/n(p/n) gives the set of clauses defining 
it, and body(C) gives the list of predicates of the body of a clause C. Given this 
definition, unchained goals and predicates can be identified in linear time by a simple 
depth-first traversal of the call graph of the program. 

Given that some predicates and clauses are marked as unchained, the definition of 
p_susp/n+2 presented in Section 2 can be modified to take this into account: 

• If unchained(-p/n), then we can avoid the two extra arguments, the definition of 
p_susp/n being the result of renaming the functor p by the functor p_susp. 

• Otherwise, for every clause C in the set of clauses SC defining p /n : 

- If C = p(X)., it is transformed into p_susp(X,L,L) . 

- If C = p ( X ) : - q i (Yi) ••• q n ( ? „ ) . , with n > 0, and 3i G 
[l ,n] unchained(qi/n,), C is transformed into the clause p_susp(X,Li ,L„) : -
Qi)""")Qm- where m = n — 1, and 

n = J ^ ^ ' Li = Li+1 ^ unchained(qi/rii) 
% y qj(Y,, Lj, Lj+ i ) otherwise 

Obviously the unification equations can be solved during the transformation, sub­
stituting one variable for the other. In the following we will denote by chain(SC) the 
function which transforms the set of clauses SC following the above proposed method. 

5.3 Determinacy condition is true 

It is sometimes possible through program analysis to determine that a determinacy 
condition will always succeed. When the determinacy condition is reduced to true, 
the general transformation defined previously, which was based on the construction 
of an if-then-else, can obviously be reduced to its "then" part . Therefore the extra 
clause that the transformation adds amounts to a simple renaming, which, in fact, can 
be performed at transformation time. Alternatively, this can be achieved by partial 
evaluation with a simple one-step unfolding. 

Global analysis can help in determining such situations. The conditions for deter­
minacy of a predicate are often expressed as checks on the degree of instantiation of 
certain argument variables. A mode or moded type analysis can then guarantee that 
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the required degree of instantiation is always reached at the time of executing a given 
goal. Let SC be the set of clauses in the definition of a predicate. Let us assume 
that we associate with each clause C;b G SC the subset Mj of the set of facts which 
define the meaning of such clause, so that the mutual exclusion of such subsets makes 
the predicate determinate. The condition to be checked is that for a given abstract 
constraint A, and for every constraint c approximated by A, it holds that for every two 
sets Mi and Mj, i ^ j , there are at least one / , G M$ and one fj G Mj, such that either 
fi A c or fj A c is inconsistent, but not both. Note that , in our terms, a determinacy 
condition is one built up from the Mi sets which is sufficient for such inconsistency to 
hold. The main issue in performing such a global analysis is to take into account the 
different selection rule being used (see Section 6). 

In some cases, even a simple local analysis of the program can allow optimizations. 
A simple case of determinate goals, for which nothing more than local inspection of the 
program text is needed, is that of goals of a predicate defined by a unique clause. In 
this case, a straightforward compile-time optimization can be achieved by a naive one-
step unfolding of such goals. For some other predicates, determinacy can be inferred 
by simply examining the head of the clauses and/or simple built-ins appearing at the 
beginning of the body. 

5.4 Determinacy condition is false 

When the determinacy condition is reduced to false, it is clear that the general trans­
formation based on an if-then-else defined previously can be reduced to its "else" part . 
The only thing needed is introducing a leftmost-token (i.e., to attach a particular vari­
able), so that goals always suspend until leftmost. In this case the original definition 
of predicate p is not only renamed to p_susp, but additionally an extra argument is 
added on which to suspend. 

In this case, the condition to be checked is that , for at least two sets Mi and Mj 
of facts which are true for clauses C, and Cj of the predicate, it holds that for every 
fi G Mi and fj G Mj, i ^ j , and for every constraint c (which could possibly happen 
upon execution of the program), fi A fj Ac is consistent. In some cases, it is possible to 
detect simply from the definitions of predicates that it is not possible for the clauses to 
be exclusive. This happens if for every fi G Mj and fj G M j , i ^ j , fiAfj is consistent. 

5.5 An optimized algorithm 

The optimizations presented, except that of unchaining calls, can be defined in terms 
of program specialization and code reduction. Having such a specializer, together with 
a simple partial evaluator, the transformation proposed can default to the most general 
one, plus unchaining. All other optimizations will then be performed by specialization 
and partial evaluation of the transformed program. However, because doing the whole 
process in one single step can be more efficient, and also because some unfoldings can be 
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done which relate to predicates affected by delay declarations (something that a partial 
evaluator will normally not consider), we present a generic algorithm performing the 
translation from the original program and achieving all the optimizations. 

Let SC be the set of clauses which define predicate p /n , with most general goal 
p(X), and C(X) be the determinacy condition w.r.t. p(X), already simplified making 
use of the information available. The transformation will substitute SC by a new set 
of clauses SC as follows: 

• If C(X) = true and unchainedfa/n) holds, the predicate will never suspend and no 
goal will be suspended during its execution. Therefore, we need neither suspension 
conditions, nor attached variables, nor chain pointers. Thus, SC = SC. 

• If C(X) = true but unchained(-p/n) does not hold, the predicate will never sus­
pend but goals might suspend during its execution. Thus we might need chain 
pointers. Therefore, SC = chain(SC,p). 

• If C(X) = false and unchained(-p/n) holds, the predicate will always be initially 
suspended but, once it has been woken, no goal will be suspended during its 
execution. Thus, we will just need to attach a variable and place a condition on 
the instantiation state of such variable. Therefore SC is equal to SC plus the 
following clauses: 

p ( X , [ S | L ] , L ) : - p__susp(X,S). 
: - b l o c k p _ s u s p ( ? , - ) . 
p _ s u s p ( X , S ) : - p ( X ) . 

• If C(X) = false and unchainedfa/n) does not hold, we may also have to add 
chain pointers. Thus, we will just need attached variables. Therefore SC is 
equal to chain(SC, p_det) plus the following clauses: 

p ( X , [ S I L O ] , L 1 ) : - p_susp(X,S,LO,Ll) . 
: - b l o c k p _ s u s p ( ? , - , ? , ? ) . 
p_susp(X,S,LO,Ll) : - p_de t (X ,L0 ,L1) . 

• Otherwise, SC is formed by the following clauses: 

p ( X , L , L l ) : - goal(C(l)) -> work_goal (p (X) ,L,Ll) 

L=[S|L0] , det_s«sp(C(X),p(X),S,LO,Ll) . 
work-def(SCi-pa)) 

where work-def, work-goal, and detsusp are defined as follows: 

work def(SC p(X)) = ( SC if unchained(v/n) 
1 chain(rename(SC,p-det)) otherwise 
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detsusp(C(X), p(X) ,S,L0, Ll) = 
p_susp(X,S,LO,Ll) . 

if block(C(X)) < : - block p_suspWoc/s(C(X)), - , ? , ? ) . 
p_susp(X,S,LO,Ll) : - wark-goal(p(X),LO,Ll). 

«/ when{C(J)) when( ( when(C(l)) ; nonvar(S) ) , 
work .goal (p(X),L0,Ll) ) 

where chain(SC, f) is identical to the function chain(SC) defined before but using 
the functor f instead of p_susp, goal(C(l)) gives the Prolog goal corresponding to 
a determinacy condition C(X), block(C(i)) gives the sequence of block annotations 
corresponding to C(X) or fails if it is not possible to do so, and when(C(l)) does the 
same for when annotations. These functions, as well as the general transformation for 
when these two cannot be applied, have been informally defined in Section 3. 

6 Applying Global Analysis 

As mentioned during the description of the optimizations, global analysis can poten­
tially greatly improve detection of when the optimizations can be applied. Unfortu­
nately in this application Prolog semantics based analyses are not safe: such analyses 
will not take into account that goals may run "ahead of their turn." Therefore the in­
ferred state of instantiation of the variables would not be guaranteed to always hold at 
execution time. Analyses designed for traditional concurrent logic languages cannot be 
used "as is" either, since most of these analyses do not take into account backtracking 
and are designed for a different delay rule. Even if backtracking were included in the 
semantics, the language assumed is generally concurrent by default, and all possible 
interleavings of the computation usually have to be considered. Since this is not our 
case, a loss of accuracy may be expected from such an analysis. 

Analyses aimed at sequential programs with delay primitives, such as for example 
[19], are on the other hand closer to our purposes. Such an analysis can be applied 
directly to the transformed programs (we refer to this as an "a posteriori" analysis). 
The analysis keeps track of the possible suspensions occurring at each point in the pro­
gram, while computing safe approximations of the instantiation states of the program 
variables. Such information can then be used to reduce the determinacy conditions, 
even if they cannot be detected to always hold, nor to always fail. Each test in the 
condition can be checked against the inferred information. Those which are found to 
be "abstractly executable" [12] (reducible to true, false, or some simple constraints) in 
their (abstract) context are replaced, and the applicable code reduction performed. 

Alternatively, an analysis can be designed that directly models Andorra execution 
and can thus be applied before the transformation (we refer to this as an "a priori" 
analysis). Such an analysis can be based on an extension of classical Prolog analysis 
technology, following similar ideas to those of [6]. It keeps track of the relevant proper­
ties of the variables, while determining if the literals in the program will definitely not 
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Figure 1: Andorra-I Decision Graph. 

suspend. If it is not known that a literal will not suspend, then a safe approximation of 
the execution state is taken, and analysis proceeds. The non-suspension conditions on 
a predicate are identified as the demand of the predicate - in our context this demand 
is given by the determinacy conditions. The analysis identifies goals whose degree of 
instantiation satisfies the demand of the predicate. 

Note that for both types of analysis, if definite success or failure of the determinacy 
conditions cannot be determined, the analysis can be unfolded for the two cases (as is 
already done in [19]). The cases in which determinacy of a predicate might condition 
the determinacy of other predicates can then be captured to a higher extent. To take 
advantage of this situation, and still be safe w.r.t. all cases at execution time, multiple 
program specialization [27, 20] of the resulting program should be done. 

7 An Example 

In this section we will illustrate the transformation and optimization procedure by 
means of a detailed, simple example, the well known program for computing the Fi­
bonacci series. 

f i b ( O . l ) . 
f i b ( l . l ) . 
f ib (A.B) : - A>1, C i s A - l , D i s A-2, f i b ( C . E ) , f i b ( D , F ) , B i s F+E. 

The decision graph created by the Andorra-I preprocessor for this program is the one 
shown in Figure 1. Given that graph, it easy to conclude that f ib(X,Y) will be deter­
minate as soon as (a) X become non-variable or (b) Y become a term not unifiable to 
1. If only condition (a) had been necessary, a b l o c k suspension primitive would had 
been enough: 

f ib (X,Y,L ,L2) : -
L = [ S | L 1 ] , f i b _ s u s p ( X , Y , S , L , L 2 ) . 
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: - block f i b _ s u s p ( - , ? , - , ? , ? ) . 

f ib_susp(X,Y,S ,L l ,L2) : - f ib_det (X ,Y,L1 ,L2) . 

f i b _ d e t ( 0 , l , L l , L l ) . 
f i b _ d e t ( l , l , L l , L l ) . 
f ib_de t (A ,B ,L l ,L2) : -

> (A,1 ,L1 ,L3) , i s ( C , A - l , L 3 , L 4 ) , i s ( D , A - 2 , L 4 , L 5 ) , 
f i b ( C , E , L 5 , L 6 ) , f i b ( D , F , L 6 , L 7 ) , i s (B ,F+E,L7 ,L2) . 

However, given the need for a non-unifiability test, even a when declaration is not 
enough. Thus, the transformation needs to perform an explicit checking on the condi­
tions the above graph represents: 

f i b ( A , B , L , L l ) : - L= [SILO], f ib_check(A,B,S ,LO,Ll ) . 

f ib_check(A,B ,S ,L ,L l ) 
f ib_check(A,B ,S ,L ,L l ) 
f ib_check(A,B ,S ,L ,L l ) 

f i b _ d e t ( A , B , L , L l ) 
f i b _ d e t ( A , B , L , L l ) 

nonvar(S) , 
nonvar(A), 

:- nonvar(B), 
B\==l -> f ib_de t (A ,B ,L ,L l ) 

; when( ( nonvar(S) ; nonvar(A) ) , 
f ib_check(A,B ,S ,L ,L l ) ) . 

f i b _ c h e c k ( A , B , S , L , L l ) : -
when( ( nonvar(S) ; nonvar(A) ; nonvar(B) ) , 

f ib_check(A,B ,S ,L ,L l ) ) . 

Given a(n) (abstract) query where the first argument is known to be ground, a rela­
tively simple abstract interpretation-based analysis can usually determine that it will 
be ground recursively for all calls to f i b / 2 , and thus that f i b / 2 is determinate. Fur­
thermore, it will also determine that the built-ins are directly reducible. In this case, 
the unchaining optimization discussed in Section 5.2 would be applicable, and would 
result in code identical to the original Prolog program. 

An a posteriori analysis can also provide similar information. Furthermore, this kind 
of analysis may allow further optimizations. For example, if it can determine that for 
a given query with the first two arguments free and the third ground (which, given the 
transformed program, is perfectly possible), no goal is ever determinate (i.e. the goals 
are only awakened on the attached variable S), suspensions can be further reduced. 
The following program could be obtained: 

f ib(X,Y,L,L2) : - L = [ S | L l ] , f i b _ s u s p l 2 ( X , Y , S , L 1 , L 2 ) . 

: - block f i b _ s u s p l 2 ( ? , ? , - , ? , ? ) . 

f i b _ s u s p l 2 ( X , Y , S , L l , L 2 ) : - f ib_det (X ,Y,L1 ,L2) . 
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8 Mixing Prolog and Andorra-I Code 

As argued in the introduction, while the Basic Andorra Principle is certainly interesting 
for its pruning capabilities, in some cases a simple Prolog execution may be more 
desirable. This can be the case for programs known to be deterministic, or for which a 
fixed ordering of choice points is known to be best. In Prolog execution the determinacy 
checking overhead can be avoided (as well as the associated compilation time). One 
interesting possibility that the transformational approach brings is to mix execution 
in "Andorra mode" with normal (in this case, Prolog) execution. It is quite easy 
to call from straight Prolog code to "Andorra transformed" code and the other way 
around. We will assume that the source is marked in some way to distinguish those 
predicates that should be compiled as normal Prolog predicates from those that are to 
be compiled to support the Andorra model. The transformation is then done only on 
those predicates (files, modules,...) marked as meant to run under the Andorra model. 
Calls from Prolog to Andorra goals are done in the same way as shown previously for 
queries: a call to wakeup/2 is introduced after the goal, so that the whole Andorra 
computation is completed before continuing the Prolog execution (if this is what is 
desired - we assume the intended operational behavior is to isolate both executions).2 

Calls from Andorra-I to Prolog are preceded by a call wakeup/2, and will be then 
executed normally, outside the context of any Andorra goals (again, if this is what is 
desired). An interesting alternative, from the point of view of marking Andorra and 
Prolog execution parts would also be to simply mark certain calls as Andorra calls 
(by, for example, wrapping them in a bam/1 goal). The compiler would then simply 
generate special, transformed versions of all the predicates called by that goal and its 
descendents (in addition to the normal ones). This avoids having to mark program 
parts instead. 

9 Performance Figures 

In this section we present results obtained from a preliminary implementation of the 
proposed approach. The system implements the automatic transformation described 
in the previous sections. Optimizations are applied as follows (no global analysis is 
used in the experiments presented). First, the necessary code to avoid the suspension 
of a goal that is determinate at the moment it is processed is added to the program, 
as explained in Section 5.1. Second, eligible predicates are unchained following the 
algorithm described in Section 5.2. Third, cases in which the determinacy conditions are 
f a l s e are taken into account and simplified. Finally, predicates which are determinate 
because their definition is a single clause are also taken into account and simplified. 
However, they are not unfolded into the calling clause since Andorra-I does not perform 
this optimization. 

The benchmark programs have been previously used in benchmarking Andorra-I 

2Note that this has some resemblance to a deep guard, as used in AKL [17]. 
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Bench 

crypt 
dia_sums 
f i b 

map 
money 
mqu 
mutest 
qu_evan 
qu_vitor 

Andorra-I 

(A) 

196,972 

135,023 
112 

470 
751 

136,196 
223 

8,956 
7,765 

QE-Andorra+SICStus 

Compiled 

196,400 
280,010 

89 

19 
980 

205,660 
69 

9,550 
31,310 

Interpreted 

214,620 
891,860 

480 

39 
1,010 

1,045,369 
409 

14,200 
34,020 

Geometric Mean: 

A/QEcomp 

1.003 
0.482 

1.258 

24.737 
0.766 
0.662 
3.232 

0.938 
0.248 

1.214 

A/QEm t 

0.918 
0.151 
0.233 

12.051 
0.744 

0.130 
0.545 
0.631 
0.227 

0.523 

SICStus 

Compiled 

2,070,760 
3,730 

30 

10 
1,606,370 
> 2 days 

10 
49 

190 

-

Table 1: Execution times in milliseconds 

and have been taken directly from the Andorra-I distribution. They were first run 
directly with the Andorra-I system, on a 55MHz SPARC-10, with 64Mbytes of memory, 
SunOS 4.1.3. The same programs were transformed by our preprocessor and then run 
on SICStus 2.1(8), on the same machine. For the latter, two cases were considered: 
compiling to native code, and interpreting the source code. This was done because 
the implementation technology of the Andorra-I system available to us (which is not 
the latest, fully compiler-based version), is somewhere between a compiler and an 
optimized interpreted system. The bodies of the clauses are executed by an optimized 
interpreter written directly in C, which should be faster than the source-level me ta -
interpreter used in the SICStus interpreter. The indexing operations are compiled by 
the preprocessor into specialized instructions. These may be slower than the native 
code produced by the SICStus compiler, although on the other hand the indexing is 
more sophisticated, since it is done on all arguments, while SICStus only indexes on the 
first argument. Table 1 shows the resulting execution times in milliseconds (the times 
given for QE-Andorra include garbage collection time; we were unable to determine 
whether the Andorra-I system was doing garbage collection or not). For comparison, 
the result of running the original programs directly on SICStus Prolog, compiling to 
native code, is also shown. 

The performance of the resulting system, even without any optimizations based on 
global dataflow analysis, is comparable to the native Andorra-I implementation: us­
ing compiled SICStus Prolog, our system is about 20% faster, on the average, than 
the Andorra-I system; if we disregard the two outliers in the benchmark suite—map, 
on which QE-Andorra significantly outperforms Andorra-I, and qu_vi tor , where it is 
outperformed—the two systems have essentially identical performance on the average. 
By using global analysis, these results could be improved further. The comparison with 
direct Prolog execution shows that there is advantage to avoiding the transformation 
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overheads, except for those cases where the Andorra selection rule is performing better 
search. This supports our idea of mixing Prolog/Andorra execution, and also that if 
the transformation can be optimized more, better results can be obtained. 

10 Conclusions 

We have reported on a transformation technique which allows supporting the Andorra 
computational model, essentially emulating the Andorra-I system, via program trans­
formation into a sequential language with delay primitives. We have also proposed 
several optimizations to the transformation. The system is automatic, comprising a 
basic transformer to the kernel language, which can optionally be interfaced with a 
global analyzer. The preliminary results are quite encouraging: performance of the 
resulting system is comparable to the current Andorra-I implementation, even without 
global analysis. 

We do not mean to suggest that the performance of a system implemented using 
our approach is optimal or that it will achieve in the end better results than a highly 
optimized, native Andorra-I implementation, but rather that the technique is practical 
and allows the support of the Basic Andorra Model on a generic system with reasonable 
performance. This is specially useful in view of the proposed methods for combining 
traditional Prolog (or CLP) code and Andorra code. 

We plan to further optimize and benchmark the system. Coupling the transforma­
tion with the global analyses we have outlined could drastically improve the overall 
performance. The global analyses sketched are actually under construction. We are 
also planning on testing performance on parallel systems. Note that or-parallelism 
comes for free by simply running the transformed program on a system like Muse [1] or 
Aurora [18]. Finally, we also plan on implementing and-parallelism (both determinate-
dependent and also independent) by using the recently proposed notions of indepen­
dence in systems with delay [4] and the associated compilation technology. And /Or 
parallelism can potentially be directly supported on a system like ACE [13]. 
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