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1. Introduction and
objective




signaling
Axons are covered by layers of lipid and proteins (myelin)

The myelin sheet is interrupted at regular intervals along axon by nodes
(nodes of Ranvier)

At nodes of Ranvier extracellular fluid gains direct access to the axonal

membrane:
- Regulate the flow of ions across
membrane
- Are responsible for action potential
creation and propagation A
- Are described by HOdgkm HUXIey model Adapted fror:a;(;‘parhysios of computation. C.
(sodium, potassium and leakage channels) Kock 1999
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| Mechanical traumas
« Axonal injuries are one of the most common and
devastating consequences of traumatic brain and spinal
cord injury smuate  record
- - These injuries are the results of - l’
= mechanical stresses/strains at okl ket X . If # | isotonic ke
o generally high stress/strain-rates i
= (tension, compression, shearing,
etc.) Spinal cord I
- Such damage can produce the W"'Li::il‘:;rebs, N sucrose
disruption of axon functionalities, mollfion [ b _—
e.g. degradation of electrical ciage P4 Lo
properties 7 “
- Ex vivo model of Shi and coworkers sadiaat

allows for quantification of axon
electrical property loss after
stretching and compression

J.M Jensen and R. Shi. Effects of 4-
Aminopyridine on stretched mammalian
spinal cord: the role of potassium channels
in axonal conduction. Journal of
Neurophysiology. 2003; 90: 2334-2340



Objective

Develop an electro-mechanical model simulating the
axonal electrical behavior during mechanical loading

« Cable theory and Hodgkin Huxley model to describe

- electrical conduction along axon (myelinated and nodes of
. Ranvier, respectively)

* The mechanical model relates the electrical and
mechanical properties

* In the application example, calibration and validation
against experimental works of Shi and Whitebone (2006)
and Ouyang et al (2010)




2. Model




idea ({#) Mechanical and coupling models

materials

Axon

TR __,;35{ {-? CDrtEK-rh\ ..-'!'-.,JIHFE’:-?I} I R
: gl FalEm)
: o

,I, Crel Em)
Em —» rrn{-Em]

T Froy( Emm)

gha(Em)
Ema_ gu(Em)
NR

1
Extracellular matrix + Cytoplasm
viscosity viscosity

Coupling

Mechanical model

Adapted from: A computational model coupling mechanics and electrophysiology in traumatic brain injury. Journal of Neurotrauma, 2012, Under review.
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Discretization

General scheme:

Internodal region (IR) Mode of Ranvier (NR)

N 2 H 4 s 5
= I]_ w:_,: j_cm,ufnn. Vel EcT TE T _T I'|' —= Ij-

» Finite difference method (FDM)

1| 1+1 Name Example
" IR | IR Pure IR 1=1
» Spatial and temporal S =
dlSCfEtlzathn IR | NR | Paranodal IR-NR 1=2
NR | IR | Paranodal NR-IR 1=4

» Different type of elements
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» Relates the current state of a variable to its and its
neighbors old states

» Forward difference in time for first order derivative
» Numerically stable for a time step small enough



Explicit scheme (2/2)

Final set of equations for the explicit method:
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Implicit Scheme
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Overall model

materials

I i dea

Internodal region (IR) Node of Ranvier (NR)
»
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A computational model coupling mechanics and electrophysiology in traumatic brain injury. Journal of Neurotrauma, 2012, Under review.
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i .dea (# Convergence = stability +consistency
- | Expectral analysis
Stability: L — —
Temporal Spatial
Explicit Implicit Unconditioned

- Al, = min (AtiR, AtiVR) Unconditioned
(= Guaranteed!!!
(am]
32 Consistency: Guaranteed!!l

0.06 |

4

‘W » Solutions calculated by the difference oos |

/ T scheme at a given coordinate converge to

its analytical PDE solution when the grid
goes to zero (A", AzNF and At)

» Analytical solutions are unknown

» Consistency is assumed when the results

do not change when the grid is decreased
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Stability + consistency = convergence !!!



Electro-mechanical model
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Application example

Calibration
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Conclusions:

» Coupling Neurite to the mechanical model is a novelty in the field to
simulate functional deficits produced by mechanical loading

» The development, testing and analysis of this new extension of Neurite
IS the main contribution of this work

» This thesis constitutes a first step in the direction of a fully integrated
mechanical-electrical-chemical in silico simulation platform for neurites

Future work:

» The electrical part of Neurite will be implemented in GPU’s
(collaboration with DATSI department UPM).

» Application of Neurite to simulate action potential propagation in
human nerves (Collaboration with Center of Biomedical Technology in
UPM).

» Extent Neurite from FDM to FEM (3D)

» Coupling both parts of Neurite: the growth model + electro-
mechanical model
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dea Neuronal membrane
Neuronal membrane is fon channel
composed of:

— Lipid bilayer

— lon channels

The membrane separates
charges between inside and
outside: acts as a capacitance C

Current conductance along

Biophysics of computation. C. Kock. 1999

possible gates (passive ion
channels, pores, etc.) Is R
. . C -
described by a resistance R
V..t represents the membrane T Vrest

potential at rest



Calibration (2/2)

Reference
~7"92.5% CPA slow X=89%
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T 2% CPAfast X=2%
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NEUROSCIENCE:
» Definition
» Computational
neuroscience,
Neuroinformatics, etc
» Applications

THE NEURON:
> Excitable cells

Neurons

. axon
dendrites

presynaptic terminals
-

T

Franze and Guck. The biophysics of neuronal growth. Reports on
Progress in Physics, 73:19pp, 2010

» Electrical and chemical signaling

» Axon and dendrites
» Networks
» Synapses



Myelinated axons

« Axons are covered by layers of lipid and proteins (myelin)
« Myelin layers insulate axon from extracellular fluid

« The myelin sheet is interrupted at regular intervals along axon by
nodes (nodes of Ranvier)

JZ + Atnodes of Ranvier extracellular fluid gains direct access to the
&  axonal membrane
5
—

« The region where internodal part transforms to node of Ranvier is
' called paranodal region

« Passive behavior for myelinated part and active for the nodes of

Ranvier |
Myelin Paranodal regions Ranvier node

Internodal distance X

AXon

Extracellular fluid ron /.

membrane

—

Node width



Membrane description

Neuronal membrane is composed of:

— Lipid bilayer
— lon channels
lon channels (uncovered at nodes of Ranvier):
- Regulate the flow of ions across i c
membrane Extracellular ma'ix { “ :::j; e + .—+, +
- Are responsible for action A g sy
potential creation and propagation ++J+V”
- Are described by Hodgkin Huxley L e e e
model (sodium, potassium and e
Ieakage ChannGIS) Adapted from Biophysics of computation. C.

Kock. 1999

 Internodal part is described by cable theory
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matemals

Mechanical model

y

01 =FE(€ma—€Da)
01 = nil:(éa — ém,a)
< O2 — 7726-0,

O = 01+ 09

| (01— 00— képa)épa =0
and o1 < o9 + kepg

Free parameters of the model:

(T = Neq/
TH=n{/E

Mechanical model Y=o0y/L
Adapted from: A computational model coupling a p— E/k

mechanics and electrophysiology in traumatic \
brain injury. Journal of Neurotrauma, 2012,
Under review.

11
Extracellular matrix + Cytoplasm
viscosity viscosity




Coupling mode|

» The bridge between the mechanical
model and Neurite

> > Anew parameter ¥ € [0,1] s
IR ro(En) roposed for distributing the strain alon
Ema EITIj{ElTI}
Crl Em) the axon
Em rm{Em] j\'TR L
Fry( Em) € S v €,
ga{ Em) m,a nypLyg THa
Fr\TR gk(Em) EIR _ (1 o I/) L ¢
. “m,a nipLip THa

and assuming incompressibility:
I +e€, = \/1 - Em.a

Adapted from: A computational model coupling

mechanics and electrophysiology in traumatic d[)
brain injury. Journal of Neurotrauma, 2012, d f—
Under review. VIt éena Conductances for Hodgkin and

Huxley model do not change
h = ho under mechanical loading



