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MedVir framework is an intuitive and new mechanism based on the visualization of 
multidimensional and medical data. The data are visualized in a tridimensional environment by 
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the visualization. It has been devised in order to make easier to the expert the possibility of 
drawing conclusions in a fast way.  
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Summary 

The origins for this work arise in response to the increasing need for biologists 

and doctors to obtain tools for visual analysis of data. When dealing with 

multidimensional data, such as medical data, the traditional data mining techniques 

can be a tedious and complex task, even to some medical experts. Therefore, it is 

necessary to develop useful visualization techniques that can complement the expert’s 

criterion, and at the same time visually stimulate and make easier the process of 

obtaining knowledge from a dataset. Thus, the process of interpretation and 

understanding of the data can be greatly enriched.  

Multidimensionality is inherent to any medical data, requiring a time-

consuming effort to get a clinical useful outcome. Unfortunately, both clinicians and 

biologists are not trained in managing more than four dimensions. Specifically, we 

were aimed to design a 3D visual interface for gene profile analysis easy in order to be 

used both by medical and biologist experts. 

In this way, a new analysis method is proposed: MedVir. This is a simple and 

intuitive analysis mechanism based on the visualization of any multidimensional 

medical data in a three dimensional space that allows interaction with experts in order 

to collaborate and enrich this representation. In other words, MedVir makes a powerful 

reduction in data dimensionality in order to represent the original information into a 

three dimensional environment. The experts can interact with the data and draw 

conclusions in a visual and quickly way. 
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1 - Introduction 

 
Diseases such as cancer have become a great social problem to which we must 

seek a solution as soon as possible. In the struggle to find the solution, biologists, 
doctors and computer experts are working together in interdisciplinary projects, 
creating a new field called Computational Biology (CB) [1]. One of the many types of CB 
research [2] is the gene profile discovery in diseases using data analysis techniques. 
The work, here presented, is focused on this field. 

Besides that, visualization techniques are also being used by the scientific 
community to understand and obtain different conclusions about a particular dataset 
in an easy way. Nevertheless, these techniques are not frequently used to analyze very 
huge data volumes in life sciences field, particularly in genomics, due to the high 
complexity of the data ('curse of dimensionality' [3]). There exist approaches that 
highlight the most important features of the data, and they make possible the 
construction of virtual reality spaces to visually understand the intrinsic nature of the 
data [4]. The benefits of representing n-dimensional data in tridimensional spaces are 
very well-known [3]. Nowadays, these kinds of representations are carried out by 
means of dimensionality reduction and transformation of the data, and making use of 
a strong component of interaction methods.  

Initially, the development of a tool for making easier and faster the visualization 
of multidimensional medical datasets in a tridimensional environment was required. 
This mechanism should allow the acquisition of valid and implicitly underlying 
knowledge in data, for example different patterns, relationships between attributes or 
instances, outliers or trends in data. 

Thus, a new analysis approach is presented: MedVir. This is a simple and 
intuitive analysis mechanism based on the visualization of any medical data (in the 
present case DNA Microarray data, e.g. gene profiles, patients, clinical data, etc.) in a 
three dimensional space that allows interactions with experts in order to collaborate 
and enrich this representation. In other words, MedVir makes a powerful reduction in 
data dimensionality, through an Evolutionary Optimization technique, in order to 
represent all the information in three dimensions. After this, the expert could be able 
to understand multidimensional biological data in an easier way and interact with 
them in a way as never seen before. Therefore, the multidimensional intrinsic nature 
of data will be presented in a tridimensional environment, while a minimum loss of 
information during the dimensionality reduction process is achieved. This will allow 
that the possible patterns, trends, outliers or relationships that originally exist in the 
data will be preserved in the tridimensional space in order to be analyzed by the 
biologist expert. 

This study directly focuses on DNA Microarray data. A lot of research into this 
topic has tried to find the gene profile (based on D gene expressions) that helps to 
diagnose the disease. After finding the gene profile, the researchers do not usually 
analyze the relationship between these gene expressions at the different stages of a 
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disease, or in different patients. However, it is crucial to understand the disease and its 
possible manifestations in different patients in order to generate personalized 
treatments. Of course, depending on the number of gene expressions of the profile, 
patients and other data, this analysis could require more effort and considerable time 
on the part of the experts. For this reason, an analysis mechanism that reduces both 
time and effort is needed. 

At the same time, the use of data mining techniques for the gene profile 
discovery of diseases is becoming usual. These techniques do not usually analyze the 
relationships between genes in depth, depending on the different variety of 
manifestations of the disease (related to patients). This kind of analysis takes a 
considerable amount of time and is not always the focus of the research. However, it is 
crucial in order to generate personalized treatments to fight the disease. 

MedVir can be seen as a mechanism for validating a particular gene profile 
analysis, in order to be used by the medical and biologist experts. As said above, 
MedVir could be considered as a dimensionality reduction approach. In this way, 
MedVir is compared with different dimensionality reduction state-of-the-art 
algorithms.  

 

 

 

 

 

 

1.1 - Document structure 

The work is organized as follows: the following section presents literature of 
Dimensionality Reduction algorithms.  Here, a formal definition of the problem, the 
different taxonomies in Dimensionality Reduction, methods and different measures to 
assess the quality in sense of geometry preservation, are presented. In Section 3, the 
MedVir framework is described in detail. Next, in Section 4, MedVir is assessed when 
applying it to DNA Microarray data. In order to evaluate it properly, a comparison of 
the results between MedVir and different state-of-the-art algorithms (in terms of 
geometry preservation capability) is carried out. Section 5 attempts to perform a data 
analysis when representing DNA Microarray data using MedVir. So, several conclusions 
about a particular dataset will be extracted. Section 6 formulates final conclusions and 
futures lines of research in MedVir, and Section 7 presents the bibliography. 
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2 - State of the Art 
 

By analyzing the Dimensionality Reduction (DR) word in the literature, it shows 
two general approaches for carrying out a DR [5]: 
 
Feature Extraction: Transforming the existing features into a different set of attributes. 
Feature Selection: Selecting a subset of the existing features without a transformation 
[6-8]. 
 

Since the MedVir algorithm is based on the first one, all of this work focuses on 
Feature Extraction (FE). There are currently two canonical ways of dealing with the 
data when carrying out a DR process. The first one does so in a linear (Linear 
Dimensionality Reduction or LDR), whiles the second one is in a nonlinear way (Non 
Linear Dimensionality Reduction or NLDR).  
 

LDR handles datasets containing linear dependencies. However, they are not 
powerful enough to deal with complex datasets. The behavior of many datasets, such 
as a DNA Microarray, could not be explained by means of LDR because maybe it 
contains essential multiple nonlinear relationships between attributes that cannot 
simply be interpreted by using linear models [3]. This suggests the design of other 
techniques (NLDR methods) in order to highlight the true underlying structure of the 
data. These methods assume that data are generated according to a nonlinear model.  
 

The following subsections present the definition of a dimensionality reduction 
process, a taxonomy of DR-FE algorithms based on feature extraction approaches, 
some technical details about the most known DR-FE algorithms and assessment 
measures to compare the algorithms in sense of geometry preservation. 
 
 

2.1 - Definition of the problem 

 
 

The problem of (nonlinear) dimensionality reduction can be defined as follows. 
Assume we have a dataset represented in a n x D matrix X consisting of n data vectors 
xi (i ϵ {1, 2,…, n}) with dimensionality D. Assume further that this dataset has intrinsic 
dimensionality d (where d < D, and often d << D). Here, in mathematical terms, 
intrinsic dimensionality means that the points in dataset X are lying on or near a 
manifold [9] with dimensionality d that is embedded in the D-dimensional space. 
 

Dimensionality reduction techniques transform dataset X with dimensionality D 
into a new dataset Y with dimensionality d, while retaining the geometry of the data as 
much as possible. In general, neither the geometry of the data manifold, nor the 
intrinsic dimensionality d of the dataset X are known. Therefore, dimensionality 
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reduction is an ill-posed problem that can only be solved by assuming certain 
properties of the data (such as its intrinsic dimensionality).  
 

 
 

2.2 - Taxonomy in DR-FE 

 
Different taxonomies or classification models in DR-FE techniques have been 

proposed. Laurens van der Maaten et al. [10] carried out a thorough comparative 
review (figure 1) of the most important linear DR technique (PCA), and twelve front-
ranked nonlinear DR techniques. They divided the DR techniques into two criteria.  

 
First of all, they defined the convex and non-convex intrinsic nature of the 

techniques. Convex techniques optimize an objective function that does not contain 
any local optima (i.e., the solution space is convex [11]), whereas non-convex 
techniques optimize objective functions that do contain local optima. The second 
division criterion is related to full or sparse spectral techniques. The first one carries 
out an eigen-decomposition of a full matrix that captures the covariance between 
dimensions or the pairwise similarities between datapoints. The other case solves a  

 
 

Figure 1. Laurens van der Maaten's Taxonomy. 
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sparse (generalized) eigenproblem. 
 

On the other hand, John A. Lee et al. proposed a different taxonomy of DR 
techniques [3] in accordance with procedures that reduce the features or 
dimensionality of the data by preserving the global shape of the geometry, or by 
preserving the local properties and neighborhood information of the data [12]. That is 
distance and topology preservation, respectively. The first one, the principle of 
distance preservation (DP), is very intuitively both simple to understand and easy to 
compute. The other one, topology preservation (TP), appears to be more powerful and 
elegant than DP but is also more complex to implement. DP and TP are described in 
detail in the following subsections. 

 
 

2.2.1 - Distance preservation 

 
From the point of view of an ideal case, the preservation of the pairwise 

distances measured in a dataset ensures that the low-dimensional embedding inherits 
the main geometric properties of data, like the global shape. However, in nonlinear 
cases distances cannot be perfectly preserved. To explain this, it is necessary to make 
use of the concept of mathematical manifold. As said in [9], a topological manifold M is 
a topological space that is locally Euclidean, meaning that around every point of M 
there is a neighborhood that is topologically the same as the open unit ball in ℜd. 

 
The underlying idea of DP is based on the fact that, theoretically, any manifold 

can be described by pairwise distances. That is, if a complete mapping between the 
pairwise distances in the high dimensional space and low dimensional space is carried 
out, the DR process will take place successfully. Intuitively, if far points are kept far, 
and if close points remain close, the manifold will be very similar in both dimensional 
spaces. 

DP methods can be divided, as considered by Lee et al. [3], into three groups: 

 
 Spatial distances as Euclidean (L = 2) or Manhattan (L = 1), are well known 

because of the intuitive and natural way everybody measure distances in a 
Euclidean space. Algorithms with this kind of distance are MDS [13], Sammon 
non-linear mapping [14] and Curvilinear component analysis (CCA) [15]. 

 
 Geodesic distances - graph distances. There exists an axiomatic basis for non-

linear DR based on the fact that it is possible to get a deep insight into the data 
by means of an unfolding data process. Taking this into consideration, the use 
of geodesic distances is obvious and justified. The geodesic distance between 
two points is defined as the distance along the mathematical manifold where 
the data points are embedded. The geodesic distance can be partially 
approximated by constructing a neighborhood graph, and considering the 
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distances between the points as paths in the graph (figure 2). This kind of 
distance was originally conceived to deal with some shortcomings in the spatial 
metrics (figure 3).  Examples of algorithms using this distance are Isomap [12, 
16], Geodesic nonlinear mapping (GNLM) [17-19] and Curvilinear distance 
analysis (CDA) [19, 20]. 
 

 
Figure 2. Geodesic distance between two points. This dataset consists of a list of 3-dimensional 
points. It is, a two-dimensional manifold embedded into a three-dimensional space. 

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Appearance of short circuit phenomenon. Left-hand figure: when performing an 
unfolding process, the appearance of short circuit induced by the Euclidean distance is likely. 
Right-hand figure: the benefits of the geodesic distance. The two points are not neighbors, 
because they are far away in accordance with the geodesic distance. 

 
 

 Other distances. There are also Non Linear DR (NLDR) methods that rely on less 
geometrically intuitive ideas. These techniques are characterized by the use of 
other distances. For instance, Kernel PCA (KPCA) [21, 22], which is closely 
related to the spectral methods. In these cases, the methods directly stem from 
mathematical considerations as regards the kernel functions. 
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2.2.2 - Topology preservation 

 
Techniques that reduce the dimensionality of the data by preserving the 

topology of the data rather than their pairwise distances are also called local 
preservation approaches. These techniques help to overcome the drawback of using 
the principle of DP: the manifold could be constrained with distance conditions and, in 
many situations, the embedding of a manifold requires some flexibility because some 
subregions must be locally stretched or shrunk to embed them into other dimensional 
spaces. 

 
What defines a manifold is its local topological information, i.e., the 

neighborhood relationships between the subregions of the manifold. In most cases, a 
manifold can be entirely characterized by giving relative or comparative proximities: a 
first region is close to a second one but far from a third one. 

 
Most of these techniques work with a discrete mapping model, and the 

topology is also defined in a discrete way. Such discrete representation of the topology 
is called a lattice [23], i.e, a set of points regularly and homogeneously spaced on a 
graph.  

 
Topology preservation (TP) techniques can be divided into two classes 

according to the kind of topology they use. The first one deals with methods relying on 
a predefined lattice, i.e, the lattice is fixed in advance and cannot change after the DR 
process has begun. Self-Organizing Maps (SOM's) [24] and Generative Topographic 
Mapping (GTM) [25] are well-known as predefined lattice methods. The second group 
contains methods working with a data-driven lattice. This concept means that the 
shape of the lattice can be modified or is entirely built while the methods are running. 
Locally linear embedding (LLE), Laplacian eigenmaps (LE) and Isotop [26] lie on this 
category. 

 

 

 

2.3 - Methods 

 

Once the two different taxonomies have been presented, this section describes 
six of the most currently used DR algorithms in order to be fully compared in terms of 
geometry preservation, within the framework presented here. The most popular LDR 
algorithm (PCA) and five NLDR algorithms have been selected for carrying out this 
study. Besides that, the original Star Coordinates algorithm (used in the 
implementation of MedVir) is presented. 
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2.3.1 - Principal Components Analysis 

 
Principal Components Analysis (PCA) [27, 28] carries out a DR process by 

embedding the data into a lower dimensionality linear subspace. 
 

This technique attempts to build a low dimensional representation of the data 
that describes as much of the variance in the data as possible. That is, it finds a linear 
basis of reduced dimensionality for the data. 
 

After this process, the amount of variance in the data is maximal. 
Mathematically, PCA builds a new coordinate system by selecting those d axes w1,…,wd 
ϵ ℜD, which best explain the variance in the data: 
 

         ‖ ‖      (  )        ‖ ‖    
         1) 

 
PCA searches a linear mapping w that maximizes the cost function trace 

(    ), where C is the sample covariance matrix of the data X. It can be shown that 
this linear mapping is made up of the d principal eigenvectors of the sample covariance 
matrix of the zero-mean data. w1,…,wd are chosen in the same way, but orthogonal to 
each other (C ϵ RDxD denotes the covariance matrix of the data X). Thus, the principal 
components pi = Xwi explain most of the variance in the data. Before mapping the 
data, the samples in X were centered by subtracting their mean. Since PCA only 
considers the variance between the samples it works best if those features, that are 
relevant for class labeling, account for a large part of the variance. The covariance 
matrix grows rapidly for high-dimensional input data. In order to overcome this 
situation, the covariance matrix is substituted by the matrix of squared Euclidean 
distances. 

    
 

 
   (      

   )      2) 

 

2.3.2 - Kernel PCA 

 
Kernel PCA (KPCA) [21, 22] is a non-linear extension of PCA using a technique 

called the kernel method. It is equivalent to mapping the data onto a very high 
dimensional space (up to infinite), namely, Reproducing the Kernel Hilbert Space 
(RKHS), and applying the same optimization technique as PCA in the RKHS. 
 

The changes brought about by Isomap to metric MDS were motivated by 
geometrical consideration, but KPCA extends the algebraical features of MDS to non-
linear manifolds, without regard to their geometrical meaning. Because of the non-
linear mapping process, the distance preservation is not an objective of KPCA, 
although PCA offers distance preservation in the RKHS. 
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2.3.3 - Locally Linear Embedding 

 
Locally Linear Embedding (LLE) [29, 30] tries to preserve the local properties of 

the data from a different point of view. In LLE, the local properties of the data manifold 
(represented as Xi) are constructed by mapping the datapoints as a linear combination 
of their k nearest neighbors. In the low-dimensional representation of the data, LLE 
attempts to retain the reconstruction weights in the linear combinations as best as 
possible. 

  
⃗⃗  ⃗   ∑    

 
     

⃗⃗  ⃗      3) 

Weights Wij are computed by minimizing the constrained least-squares 

problem. The embedding vectors   ⃗⃗  are reconstructed by Wij, by minimizing Eq. 5. 

 

 ( )   ∑ |  
⃗⃗  ⃗   ∑      

⃗⃗  ⃗ 
   | 

   
2      4) 

 ( )   ∑ |  ⃗⃗   ∑      ⃗⃗ 
 
   | 

   
2       5) 

 

Although Wij and    ⃗⃗  are computed by methods in linear algebra, the constraint 
that points are only reconstructed from neighbors can result in highly nonlinear 
embeddings. 

 

2.3.4 - Laplacian Eigenmaps 

 
The Laplacian Eigenmaps algorithm (LE) is similar to LLE in the sense that it finds 

a low-dimensional data representation by preserving the local properties of the 
manifold [31, 32]. LE can be included in sparse spectral techniques. 
 

This algorithm attempts to compute a low-dimensional representation of the 
data in which the distances between a datapoint and its k nearest neighbors are 
minimized. The distance in the low-dimensional data representation between a 
datapoint and its first nearest neighbor contributes more to the cost function than the 
distance between the datapoint and its second nearest neighbor. Using spectral graph 
theory, the minimization of the cost function is defined (eq. 6) as an eigenproblem, 
where Wij values are from the Gaussian kernel function, 
 

 ( )   ∑ |  ⃗⃗     ⃗⃗ |  
2 Wij        6) 

 
and for neighboring yi, yj (W(i,j) = 0 otherwise), the distances between the low 

space representations are minimized and the nearby samples xi,xj are highly weighted, 
and thus brought closed together. 
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2.3.5 - Difussion Maps 

 
The Diffusion Maps (DM) algorithm [33, 34] is based on diffusion processes for 

finding meaningful geometric descriptions of data sets. In this technique, a graph is 
built from the samples on the manifold where the diffusion distance describes the 
connectivity on the graph between every two points. This distance is characterized by 
the probability of transition between them. DM captures the intrinsic natural 
parameters that generate the data, which usually lie on a lower dimension.  
 

The assumption is that the data lie on a non-linear manifold. The data are 
transformed using a Gaussian kernel function (7). This kernel is used for the 
construction of Markov Random Walk (MRW) matrix. The diffusion distances in the 
original space are mapped into Euclidean distances in the new diffusion space. Because 
of the diffusion distance between two points is obtained from all of the possible paths 
in the graph, DM is robust to noise. 

 (   )      ( 
‖     ‖

 

  )       7) 

 

 

2.3.6 - Isomap 

 
Isomap [12, 16] is one of the simplest non-linear DR methods that use the 

graph distance (based on geodesic distance). Isomap uses graph distances instead of 
Euclidean ones in the algebraical procedure of metric MDS. It is important to 
remember that the non-linear capabilities of Isomap are exclusively contributed by the 
graph distance. 
 

In Isomap, the geodesic distances between the datapoints xi (i = 1, 2,…,n) are 
calculated by constructing a neighborhood graph G. Every datapoint xi is connected to 
its k nearest neighbors xij in the dataset X. 
 

The shortest path between two points in the graph can easily be computed 
using Dijkstra's or Floyd's algorithm [35]. The geodesic distances between all 
datapoints in X are computed, making up a pairwise geodesic distance matrix. The low-
dimensional representations yi of the datapoints xi in the low-dimensional space Y are 
computed by applying MDS in the resulting pairwise geodesic distance matrix. A 
significant weakness of the Isomap algorithm is its topological instability [36]. 

 
 
 
 
 



Antonio Gracia Berná                         Master in Advanced Computing for Science and Engineering                              
 

Facultad de Informática                                                      U.P.M | 2 - State of the Art 11 

 

2.3.7 - Star Coordinates algorithm 

 
The original Star Coordinates algorithm [43] constructs a low dimensional space 

composed of a linear combination of the attributes. It works as follows: first, it 
considers the attributes of the dataset as coordinate axes. Then it arranges the 
coordinate axes onto a flat (two-dimensional) surface forming equidistant angles 
between axes. The mapping of an n-dimensional point to a two-dimensional Cartesian 
coordinate is computed by means of the sum of all unit vectors of every coordinate, 
multiplied by the data value of that coordinate. Figure 4 illustrates an example of the 
final position of a data point in an 8-dimensional dataset. In this framework a 3D 
extension is used, so it can be described as in the following equation: 

 
 

 
 
 

  (     )   {

    ∑    (         )
 
   

    ∑    (         )
 
   

    ∑    (         )
 
   

        8)   

 
 
 

 
 

Figure 4. Process of obtaining the final position of a data point for an 8-dimensional dataset 
(two-dimensional space). 

 
 
Where dji is the j-th data with the i-th value, mini is the minimum value of the 

scaled values in every coordinate, uxi and uyi are unit vectors in the direction of every 
coordinate, and ox,oy,oz is the origin of the coordinate system. 
 
 

2.4 - Quality assessment measures 

 

There are many different quality assessment criteria for evaluating the 
performance of the DR algorithms. Current approaches focus on evaluating the local-
neighborhood-preservation and the global-structure-holding performance of DR 
methods. By taking both properties into consideration, their intrinsic capability can be 
more faithfully reflected, and hence more a rational measure for the proper selection 
in real-life applications can be offered. Three local-neighborhood-preservation criteria 
and one global-structure-holding criterion have been selected in order to evaluate the 
different DR algorithms.  
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2.4.1 - Local-neighborhood-preservation criteria 

 
In this section the three local quality assessment criteria for NLDR were 

reviewed: LCMC [37], T&C [38, 39] and the MRRE [3, 40, 41]. By using the criteria 
below, the local-neighborhood-preservation performance of the DR methods can be 
effectively assessed. 
 
If the original dataset is denoted by X = {xi}

l
i=1 , and the corresponding representational 

set computed by the DR method used is as Y = {yi}
l
i=1 . Then, the LCMC can be defined 

as: 
 

      
 

  
 ∑ (|  

 ( )⋂  
 ( )|   

  

   
) 

          9) 

 
 
Where k is the pre-specified neighborhood size,   

 ( ) is the index set of xi’s k-NN and 

  
 ( ) is the index set of yi’s k-NN. The k-NN value represents the k nearest neighbors 

of a datum. If the overlap between two k-NN neighboring sets of the original and 
representational sets is computing, the LCMC gives a general measure for the local 
faithfulness of the calculated embeddings. The interval of QL ϵ [0,1], whose values next 
to 1 mean a high neighborhood overlap between the two dimensional spaces, and next 
to 0 values the opposite of it. 
 

The second local measure (T&C criterion) involves two evaluations, the 
trustworthiness and the continuity measure, defined, respectively, as: 

 
 

      
 

  (       )
 ∑ ∑ ( (   )       ( )   ( ) ) 

         10) 

 
 

      
 

  (       )
 ∑ ∑ ( (   )       ( )   ( ) ) 

        11) 

 
 
where k is the size of the neighborhood, r(i,j) and  (i,j) are the rank of xj and yj in the 
ordering according to the distance from xi(yi) in the original (representational) space. 
Uk(i) and Vk(i) are the set of those data samples that are in k-NN of xi(yi) in the 
representational (original) space.  
 
As regards the meaning of MT and MC, the first one measures the degree of 
trustworthiness that data points originally farther away enter the neighborhood of a 
sample in the embeddings. The latter evaluates the degree of continuity that data 
points that are originally in the neighborhood are pushed farther away in data 
representations. Therefore, the T&C measure is defined as: 

 
 

        (    )        12) 
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where α ϵ [0,1] is the compromise parameter. The trade-off between the two terms, 
tunable by a parameter α, governs the trade-off between trustworthiness and 
continuity. A properly selected α value, can reflect the consistency between the local 
neighborhoods of the original data and the corresponding ones in the embeddings 
calculated by the NLDR method. The interval of QT ϵ [0, 1] means that the higher values 
represent a good trustworthiness and continuity preservation. 
 
The MRRE criterion is based on a very similar principle to that of the T&C, but it 
includes two elements defined as 
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where k is the size of the neighborhood and eq. 15 is the normalizing factor. The MRRE 
criterion is eq. 16 where β ϵ [0, 1] is the compromise parameter. The main difference 
between the MRRE and the T&C is that the first one considers all of the k-NN samples 
in the representational (original) space, and the latter focuses on the k-NN of the 
samples in the representational (original) space but not in the original 
(representational) space.  
 
Although we are talking about subtle differences between them, they are important 
enough to be considered. The interval of QM ϵ [0, 1], whose values next to 0 will 
indicate a small rank error in the final embedding, is result of the error-based nature of 
MRRE. 
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           15) 

 
        (   )           16) 

 
 
 
 
 
 

2.4.2 - Global-structure-holding criterion 

 
 
The global geometry preservation (GGP) relies on the assumption that the global 
geometry of a mathematical n-dimensional manifold can be successfully mapped onto 
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a lower dimensional manifold, by preserving the original distances between the high-
dimensional points. Thus, theoretically the final embedding will retain, as much as 
possible, the original geometry of the n-dimensional manifold in which the data are 
embedded. 
 
According to this concept, Sammon error [14] measure is used in order to compare the 
DR algorithms, in terms of global-structure preservation. Examples of error measures 
frequently used for structure preservation are [42] Stress (eq.17), Sammon (eq.18) and 
Quadratic error (eq.19). 
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where the distance between ith and jth objects in the original space are denoted by δij, 
and the distance between their projections by ζij . Sammon error must be minimized by 
carrying out a gradient descent, or by other means, usually involving iterative 
methods. 
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3 - Proposed algorithm 
 

The MedVir framework is based on a previously developed framework [44], and 
its aim is to make easier the formulation of conclusions about multidimensional and 
biological data. Here, a new approach of acquiring knowledge in a visual and quick way 
is presented.   
 

In other words, the objective of MedVir is to make a tool available for the 
expert in order to visualize and interact with biological data. To achieve this aim, a 
pipeline based on the following stages is considered (figure 5). 

 
 
 
 
 
 
 
 
 
 

Figure 5. Pipeline of the framework. First, data are loaded into Module 1. After the 
optimization process a set of axes is obtained. Next, data are visually represented by means of 
the Module 2(VR engine). Finally, the expert interprets the visualization. 
 
 

The proposed framework is divided into two main modules. Module I carries 
out an optimization process (OP). Here, a search algorithm attempts to find a 
tridimensional embedding of the data which best preserves its intrinsic geometry. 
After the OP, the previous embedding in represented into a tridimensional 
environment. Thus, the Module II deals with the data visualization. In order to 
represent the geometry of the data in 3D, an extension of the original Star Coordinates 
algorithm (SC) is used [43]. This can be considered as a feature extraction process, as it 
transforms the previously selected features into three dimensions. Finally, the 
resulting 3D points are presented to the expert in a 3D and visually tangible way. In 
order to reinforce and stimulate the knowledge acquisition, the representation is 
complemented with different visual elements that make easier the interaction with 
the data. 
 

At the end of the pipeline, the expert would be able to obtain an interpretation 
of the model in a very short time. However, a consideration must be highlighted: the 
final conclusions will be closely related to the knowledge and acquired experience of 
the expert in the data domain. 

 
Next, the two main modules of the framework are explained in detail. 
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3.1 - Module 1. Optimization process 

 

The OP is carried out by an evolutionary algorithm, particularly the Differential 
Evolution (DE) algorithm [45]. DE algorithm is characterized by performing a more 
exhaustive search than a generic evolutionary algorithm [46]. 
 

As other evolutionary algorithms, it scans the population and carries out 
mutation and crossover operations on the individuals for a number of generations. 
Nowadays, most of the DR algorithms are based on deterministic approaches, 
therefore it expresses the need to complement the existing techniques with a purely 
stochastic approach. The idea is to find one of the best possible solutions, just by 
means of a search through the tridimensional space of solutions. 

 

3.1.1 - Codification of the individuals 

 
The initial population of individuals is generated randomly, and they are 

represented by using the SC algorithm [43]. That is, the N attributes of the dataset are 
represented through N spatial or axis vectors. So, each individual in the population 
represents different axes configuration in the 3D Euclidean space. This way, the initial 
population is built with K individuals, each one representing an axes configuration. 
Each individual needs to be evolved in relation to a fitness function to achieve a 
population consisting of improved individuals. It is, K different axes configurations that 
generate the best data embeddings. Finally, the best one will be selected. 
 

As regards the representation of the individuals, note that each axis 
corresponds to each one of the attributes in the input data, and it has three 
components normalized in spherical coordinates (θ, ϕ, r) where r is the radius, ϕ is the 
azimuthal angle (ϕ ϵ [0, 2π]) and θ corresponds to the elevation angle (θ ϵ [0, π]). 
 

In fact, each individual is represented by Cartesian coordinates in order to 
evaluate the distances. In the following formula, the transformation between spherical 
and Cartesian coordinates is shown (See Eq. 20 and Fig. 6). 

 
 

 

        

{

      ( )    ( )

      ( )    ( )
      ( )

        20) 

 

 
Figure 6. Relationship between spherical and cartesian coordinates. 
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3.1.2 - Scheme of the optimization process 

 
The overall scheme of the OP implemented in MedVir can be seen in figure 7. 

First, the data are taken as an input of the optimization module. After this, the DE 
algorithm carries out an optimization task in order to find an axes configuration in the 
tridimensional space that best preserves the original geometry of the data. 

 

 
 

Figure 7. Optimization process - Module I. Data are used as the input of the OP. DE algorithm 

generates a set of axes as the output of the system. 
 

 
In figure 8, the OP can be appreciated in greater detail. As a first step, this 

module has to calculate pair to pair distances of all the instances in the initial data. This 
is stored in a matrix which is considered as the target distance matrix, and it is 
squared. In other words, it represents the distance between the instance i-th in the 
rows and the instance j-th in the columns. The target distance matrix will contain 
absolutely all the information that it is expected to be conserved. 

 

 
Figure 8. Optimization process in detail. 

 
 
 

It is important to highlight the procedure of selecting the individuals in the 
population. For calculating the fitness value of Ii

k (initial individual) and Ii+1
k (new 

modified individual) and comparing them, a representation of the data is necessary 
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with the resulting axes contained in both individuals by means of the SC algorithm. The 
SC algorithm will generate a new list of 3D datapoints for each individual. Then, a 
generated distance matrix for each one is computed. This matrix represents the 
distance between all of the instances of the new data using these new optimized axes. 
Now, the generated distance matrix for Ii

k and Ii+1
k can be fully compared to the 

original target distance matrix. The first comparison between the generated distance 
matrix of Ii

k and the original target distance matrix will generate a fitness value for Ii
k 

individual. The second comparison between the generated distance matrix of Ii+1
k and 

the original target distance matrix generates the fitness value for Ii+1
k individual. Of the 

two individuals, the one that has a higher fitness will be selected to continue in the 
evolution process. 

 
During the OP the spatial positions of the axes will vary incrementally to obtain 

different tridimensional data embeddings. Finally, the individual with the best fitness 
value will be selected from the resulting population.  

 
This individual represents the optimum axes configuration that, used as the 

input parameters to module II, allows a tridimensional representation of the points 
that fully approximates the original geometry of the n-dimensional data to be 
obtained. In other words, the selected individual will retain, as much as possible, the 
shape of the data that it had before the DR process. 
 

To sum up, several aspects must be considered. First, in order to avoid heavy-
computational costs, the Euclidean distance (L = 2) has been used in the calculation of 
the distance matrices. When using Geodesic distances, the calculation of distance 
graphs implies a huge increase in terms of computation time. Thus, it was decided to 
use the Euclidean distance as distance metrics in order to perform the distance 
measurements. Secondly, in relation to the crossover stage, the exponential operator 
has been considered. Finally, the stopping criterion for the DE algorithm is based on a 
number of generations, a fixed value of 2000 generations for each algorithm 
execution.  

 

 
 
 

3.1.3 - Fitness 

 
The MedVir algorithm allows the optimization using both local and global 

geometry preservation criteria. 
 

Therefore, two different fitness functions have been implemented in order to 
solve the DR problem. The first one is directed towards improving the GGP, and uses 
the Sammon Error as quality assessment criterion. The second one deals with the 
improvement in the local topology or neighborhood preservation of the n-dimensional 
data, after the DR process. This function is evaluated by LCMC quality assessment 
criterion. 
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3.2 - Module 2. VR engine 

 

Once the optimization module has produced results, the aim is just to obtain a 
3D representation of the biological data. The input data of the visualization module 
consists of the set of optimized axes that will make a successful 3D embedding of the 
intrinsic geometric structure of the n-dimensional manifold possible (Fig. 9). 
 
The Unity3D [47] visualization tool is used. Unity3D is a game engine designed for the 
creation of multiple 3D powerful interactive contents. Thus, the SC algorithm takes the 
output data of the optimization module as input data, and generates a 3D 
representation of the original n-dimensional dataset according to the optimized axes. 
 

 
Figure 9. VR engine - Module II. The optimum axes configuration works as the input of the VR 
engine. By means of the SC algorithm, a 3D representation of the data will be made. Finally, 
the expert interprets the visualization. 
 
 

The background of this dimensionality transformation is the SC algorithm [43]. 
Thus, once the data has been represented in 3D, the experts can interact with the 
elements of the visualization in real time. The aim is to find relationships, patterns or 
trends originally contained in the data before and after the execution the DR process in 
a visual and quickly way. These patterns can be expressed, for example, through the 
separation of the classes, clustering or relationships between the different attributes 
of the dataset. For example, the way of interacting with the coordinate axes could 
provide the medical experts valuable information. There might be many observations 
that the expert could be interested in. Thus, in order to increase the acquisition of 
knowledge from medical data, the possibility of interacting in real time with the data 
has been included.  
 

The basic idea is that he can select several elements simply through simple 
actions. After selecting an element of the representation, for instance a coordinate 
axis, the expert can move that axis onto the tridimensional space and observe how the 
position of the points is rearranged in real time. This could inform the expert on the 
behavior of a certain dataset when he brings together, separates or even deletes an 
axis. Another option is to delete or add a particular attribute of the study. Thus, how 
the data are rearranged after cancelling or adding the contribution of that feature in 
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the data can be visualized. It is, however, usually the case that after deleting a group of 
attributes, the final data representation does not vary. This could suggest a low level of 
importance of those attributes. Multiple attribute selection provides the possibility of 
analyzing the data variation of a set of features respect to the rest, in such a way that 
by selecting attributes identified as important, the behavior of the dataset could be 
modeled. However, he might be interested in observing how the samples are 
clustered. It is, by playing with the coordinate axes, scaling or rotating, one could see 
how the spheres move in and out of clusters. Maybe new clusters could be discovered.  

 
For instance, a clear separation between classes of a dataset could be achieved, 

by moving the different coordinate axes. The expert is also able to observe the 
Biweight correlation [48] of the features. By means of a filtering process using a 
threshold value, the correlation values can be visualized in the form of color 
intensities. From here, the expert will be able to interpret the model according to his 
criteria and experience. 

 
Furthermore, by selecting one of the patients (represented as spheres), just by 

clicking, all of the information is presented in virtual 3D panels (right-hand image). 
Each panel contains a different type of information such as, clinical or chemotherapy 
information on the patient (in the case of DNA Microarray Data). In this way, the 
expert can navigate around all the information on any specific patient with just one 
mouse click. 
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4 - Goodness of MedVir applied to DNA Microarray Data.  
 

Once MedVir is presented, it has been evaluated and compared with the DR 
state of art algorithms. Particularly, MedVir has been studied when using real world 
data, such as DNA Microarray Data.  

 
The evaluation mechanism is to analyze the geometry's preservation, once 

Dimensionality Reduction is carried out. That is, when the algorithm transforms the N 
multidimensional data into three dimensions, the geometry in 3D has to be as similar 
as possible to the geometry in N dimensions. For that, the quality assessment criteria, 
presented before, are used. 
 

Thus, in this section the MedVir framework is evaluated and compared with the 
DR state-of-the-art algorithms, presented in the Methods section. In addition, 
representation of data with MedVir is presented in order to evaluate the visual 
qualities. 

 

4.1 - Datasets 

 
Five datasets have been used in this work: Two on Breast Cancer ([49] and 

[50]), two on Leukemia ([51] and [52]) and one on Medulloblastoma [53] (Table 1). 
 
 

 
 
 
Table 1. Summary of the gene expressions used for testing the dimension reduction 
techniques. 

 
The first one, the Van't Veer dataset [49], whose results have been approved by 

the FDA (Food and Drug Administration) were applied in a genomic profiling test called 
MammaPrint, that predicts whether the patients will suffer a relapse in breast cancer. 
The data are divided into two groups, learning (78 patients, 34 with a poor prognosis) 
and validation instances (19 patients, 12 patients with a poor prognosis). DNA 
microarray analysis [54-57] was used to determine the mRNA expression levels of 
approximately 24,500 genes for each patient. The microarray data are filtered to the 
70 Van't Veer selected gene expression (accepted by the FDA as breast cancer 
biomarkers).  
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The second dataset, the Van der Vivjer dataset [50], is related to the previous 
research. It consists of tumors from a series of 295 consecutive women with breast 
cancer (194 with a poor prognosis) from the fresh frozen tissue bank of the 
Netherlands Cancer Institute. Again, the same 70 genes where selected [50] in this 
research. 

 
The third dataset, from Stirewalt [51] is based on a study of 64 patients 

obtained from the Fred Hutchinson Cancer Research Center (FHCRC) or purchased 
from commercially available vendors. Analyses were also carried out using 38 normal 
samples and 26 with Acute Myeloid Leukemia (AML). In this study, 13 gene expressions 
were selected as a gene profile. 

 
 The other dataset on Leukemia is from Golub's research [52]. The data consists 

of 47 patients with acute lymphoblastic leukemia (ALL) and 25 patients with acute 
myeloid leukemia (AML). Each patient contains information of 7,129 genes. The 
Golub’s research reduced the number of gene expressions to 50, compiling a gene 
profile in order to differentiate the type of leukemia. 
 

The data based on [53] Medulloblastomas has been used in several lines of 
research of great impact [53,58,59]. The data set has 60 samples containing 39 
medulloblastoma survivors and 21 treatment failures. DNA microarray analysis was 
used to determine the mRNA expression levels of 5,920 known genes and 897 
expressed sequence tags. Finally, 96 gene expressions were selected by [60] and used 
for our research. 
 
 
 

4.2 - Experiments 

 
In order to analyze the quality of MedVir, it has been compared, using the 5 

gene profiles previously presented, with other different linear and nonlinear DR 
algorithms presented in the literature: Principal Components Analysis (PCA) [27, 28], 
Kernel PCA (KPCA) [21, 22], Locally Linear Embedding (LLE) [29, 30], The Laplacian 
Eigenmaps (LE) [31, 32], Diffusion Maps (DM) [33, 34] and Isomap [12, 16]. 
 

Although there is no standard framework to compare the DR algorithms, there 
are many different quality assessment criteria for evaluating the performance of the 
DR algorithms. Current approaches focus on evaluating the local-neighborhood-
preservation and the global-structure-holding performance. By taking both properties 
into consideration, their intrinsic capability can be more faithfully reflected, and hence 
more a rational measure for the proper selection in real-life applications can be 
offered. 
 

In this case, to compare the algorithms four geometry quality evaluation 
measures were selected: Sammon error [14], LCMC [37], T&C [38, 39] and MRRE 
[3,40,41]. All the four measures were represented in the same range [0, 1], where 0 
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represents the non-preservation of geometry and 1 represents a perfect preservation 
of geometry. In case of Sammon Error and MRRE, values were modified from the 
original measure (1 - measure). Values obtained from these measures were analyzed 
using two-sample Wilcoxon statistical test [61]. 

 
As said above, the MedVir algorithm allows an optimization process by using 

local and global parameters. In this work, two different optimizations were made: the 
first one with a local measure (LCMC) and the other with the global measure (SE). Both 
MedVir optimizations have to be compared with the other DR algorithms. In each 
comparison, because of the stochastic nature of MedVir, 10 executions of the 
algorithm were carried out, using the mean value to compare them. In this case, it was 
not necessary to present the standard deviation because they are less than 0.001 (low 
variability). 
 

4.2.1 - MedVir optimized by LCMC 

 
Firstly, MedVir optimized by LCMC compared with the other algorithms, were 

presented in the following tables. As we know, LCMC depends on the number of 
neighbors used. In this case, 6, 10 and 16 neighbors were used. Results using 6, 10 and 
16 neighbors are presented in tables 2, 3 and 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. MedVir optimized by LCMC and K = 6. 
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By analyzing these results it is possible to conclude that Isomap and LE are 
algorithms based only on local optima while LLE and DM are locally and globally 
optimal only when the number of instances in the data is high. PCA is a good algorithm 
in terms of local and global preservation. MedVir optimized by a local criteria, also 
optimizes the global criterion. Using the Wilcox statistical tests to compare the LCMC 
value of MedVir and the other algorithms (table 5), MedVir is better in all the cases (p - 
value < 0.001) except PCA in the Vant Veer dataset, Isomap in Brain dataset, and PCA 
and LE in the Van der Vivjer dataset. 

 
Another conclusion drawn on seeing the results is that MRRE and T&C values cannot 
be evaluated and compared because there is no significant variability between the 
values. 
 
 

 
 

Table 3. MedVir optimized by LCMC and K = 10. 

 
 

The results using 10 neighbors (K = 10) are presented in table 3. There we can 
see that the local values of all of the algorithms were improved. It is normal because 
the greater the number of nearest neighbors around, the lower margin of error the 
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algorithm will have. As the number of neighbors increases, the SE measure will also 
increase (so the Sammon error decreases). 
 

In general, there is the same tendency in the results as with K = 6. Using the 
Wilcox statistical tests to compare the LCMC value of MedVir and the other algorithms 
(table 5), MedVir is better in all the cases (p - value < 0.001) except PCA and DM in the 
Vant Veer dataset, Isomap in Brain dataset, and PCA in the Van der Vivjer dataset. 

 
Finally, the results using 16 neighbors (K = 16) are presented in table 4. Again, 

the local parameters were improved and, therefore, the global parameters also 
improved. In the case of the LLE algorithm with the Stirewalt dataset, there was no 
way to executing the algorithm and obtaining the results with 16 neighbors. 
 
 

 
 

Table 4. MedVir optimized by LCMC and K = 16. 
 

 
Using the Wilcox statistical tests to compare the LCMC value of MedVir and the 

other algorithms (table 5), MedVir is better in all of the cases (p - value < 0.001) except 
PCA in the Vant Veer dataset and Isomap and PCA in the Brain dataset. 
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In general terms, PCA and Isomap algorithms work successfully in preservation 
when the number of neighbors is high. On the other hand, KPCA is an algorithm that 
does not preserve the geometry. MedVir is better than the rest of the DR algorithms in 
most of the cases, except PCA with datasets with a large number of instances, and 
Isomap with the Brain cancer dataset. 

 
MedVir optimized by a local parameter is not only strong in local preservation, 

but is also strong in global preservation. By analyzing the results of the Sammon error 
when K = 16 and using the Wilcox statistical test to compare them (table 6), we 
demonstrate that MedVir is almost better (p - value < 0.001) than the other DR 
algorithms. 

 
 
Table 5. Wilcoxon test values comparing MedVir optimized by LCMC with the other algorithm. 

 
 
 

 
 

Table 6. Wilcoxon test of SE values when MedVir were optimized by LCMC. 
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4.2.2 - MedVir optimized by SE 

 

To optimize MedVir using the Sammon error measure, it is not necessary to 
indicate the K value. However, in order to calculate the local measures, it is necessary. 
Thus, the most restrictive K is selected (K = 6), in order to compare with the local 
optimization. 
 
The results of the comparison are presented in table 7. There, the results obtained in 
the SE measures are better than those obtained in the local optimization. However, 
the local values obtained here are worse than those obtained in local optimization. The 
local values obtained in MedVir are within the mean of the values of the other DR 
algorithms. 

On the other hand, the results of the MRRE and T&C measures do not vary 
much in respect to those obtained in the local optimization. Thus, we conclude that 
these two measures are not useful in validating the geometry preservation. 
 

Finally, using the Wilcox statistical tests to compare the MedVir SE values and 
the other algorithms, in this case MedVir is superior to all the algorithms in all the 
cases (p - value < 0.001). 

 

 
Table 7. MedVir optimized by the Sammon Error. 
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5 - Data Analysis 

 

This section attempts to confirm that the knowledge, based on the 

visualization, which MedVir framework provides is totally valid. Thus, it is intended to 

accept the MedVir’s hypothesis about the data as correct. In other words, a 

mechanism for validating MedVir results is needed. Besides that, several conclusions 

are extracted. 

First of all, the matter is not as trivial as it might seem a priori. We must bear in 

mind that when performing a DR process over a multidimensional dataset, a minimal 

loss of information (a DR process always involves a loss of information) occurs. This 

loss of information could be minimally causing distortions in the representation of the 

data and placing the data points in wrong spatial positions, thus causing confusion to 

the expert that analyzes the data and leading to invalid hypotheses. 

Although MedVir preserves to the maximum the geometry of the data and 

reduces very significantly this loss of information, the experience tells us it is very 

appropriate to carry out further analysis. 

The use of Distance Matrices [63] in the field of DNA Microarray Data is widely 
accepted by the scientific community. Therefore, a good way to know if the visual 
representations obtained for each dataset correspond to the real nature of each one 
would be to compare these visualizations with the distance matrix M of each dataset. 

 
A distance matrix shows visual similarities between the gene expression profiles 

of patients. Thus, the distance between two patients with very similar gene expression 
profiles will be close to zero (represented in blue tones in the distance matrix), while 
the distance between two patients with disparities in gene expression profiles will be 
much higher (red and yellow tones), (M is shown in figure 10 - left image). The distance 
metric used in the computation of Distance Matrix is L = 2, the Euclidean distance. 
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Figure 10. Matrices. Left: Distance matrix between patients of a study (blue tones indicate a 
high similarity between gene expression profiles of each patient, while red and yellow tones a 
low similarity). Right: Pearson Correlation Matrix of the Distance matrix (red tones indicate a 
high Pearson Correlation between distance distributions, while blue tones a low correlation). 

 
By using M, a new matrix called Pearson correlations matrix (P) of the distance 

matrix M could also be computed. This new matrix (P) will tend to highlight these 
differences between patients. Moreover, now the values appear standardized 
between 1 and -1. P shows the degree of similarity in the distribution of all distances 
from one patient to the rest of patients. That is, imagine that two patients (p1 and p2) 
have very similar gene expression profiles (and therefore they are located very close in 
space), so it is expected that the distribution in the distances calculated from p1 to 
other patients in the study is very similar to the distribution in the distances calculated 
p2 to the remaining patients (Figure 11).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Graphical meaning of Pearson Correlation Matrix of M. Circles labeled with 

numbers represent the instances. The black lines symbolize the distances. 1) Distance matrix of 
instances 1 and 2 to the rest of instances. 2) Pearson Correlation matrix of M. 
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Consequently, patients with similar gene expression profiles will show a high 

correlation between the distributions of their distances to other patients. It is an 
approach similar to the distance matrix, but it tends to further highlight the differences 
and discriminate the differences between patients. It is a different way of showing 
similitudes between patients, based on Pearson correlation matrices. 
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5.1 - Stirewalt’s dataset 

 
Figure 12 shows the tridimensional visualization of the Stirewalt’s supervised 

dataset using MedVir. First, the colored spheres refer to the dataset samples 
(patients). The coordinate axes represent each of the gene expressions included in the 
study (13 features). Each coordinate axis is accompanied by the name of the 
corresponding id_code gene. By taking into account the nature of the possible classes 
or labels of the dataset, a blue color represents normal tissue samples while the red 
one represents cancer samples identified as type AML (Acute Myeloid Leukemia). A 
complete discrimination between the two classes is appreciated, which suggests that 
the gene profile selection conducted by the author is quite valid [51]. 
 

 
 
Figure 12. Visualization of the Stirewalt’s dataset. The blue spheres represent normal tissue 
samples. Nevertheless, red spheres represent AML samples. The dotted green lines represent 
coordinate axes (genes). A separation of classes is clearly visible. Finally, the interface shows 
the different clinical information of the sample, if it exists. 

 
 
Drawing conclusions… in order to validate the visualization in MedVir, we will use both 

M_stirew and P_stirew to confirm several observations. For example, the previous 

visualization shows a clear discrimination between the two classes of the study. 

Moreover, the patients labeled as normal (blue spheres) are spatially more compact 

than the AML ones (maybe the differences between AML patients, in terms of gene 

expression profiles, are greater than normal patients). Let’s see these two 

observations by using M_stirew and P_stirew. 

First, M_stirew and P_stirew produce quite consistent results in accordance with the 

visualization obtained after running MedVir (figure 13). If we look at the main diagonal 

of both matrices, it is clear that patient number 1 to 18, and 45 to 64 are grouped 

showing very similar color intensity (black circles in figure 13). Therefore, these 

patients may show a pattern in their gene expression profiles, suggesting that they 

belong to the same typology, as MedVir previously indicated. Now, let’s check the 

original dataset labels assigned to these patients and we found that the label is the 

same type for absolutely all of these patients (label 1, normal tissue). Besides that, 
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when visualizing the dataset with MedVir, note that these patients are grouped 

uniquely and well differentiated from the other patients (blue spheres). Hence, in this 

case MedVir has correctly represented the original nature of the data. 

On the other hand, the difference in density appreciated in MedVir in AML 

patients can be also studied by M_stirew and P_stirew. Maybe, this difference in density 

could indicate the existence of sub-typologies inside AML type. In order to confirm the 

effectiveness of MedVir in this sense, one could make a further study by inspecting by 

M_stirew and P_stirew. 

 

Figure 13. Distance and Pearson Correlation matrix obtained in Matlab. Left: M matrix of 

Stirewalt’s dataset (M_stirew) . Right: P matrix of Stirewalt’s dataset (P_stirew). According to the 

labels in the original dataset, the two different classes (1: normal, and 2: AML patients) have 

been marked in the figure. Black circles indicate normal patients (1 to 18, and 45 to 64). White 

circles indicate AML patients (19-44).  

 

M_stirew and P_stirew  indicate that patients labeled as AML (19-44) does not show 

a distinguishable clear and homogenous color group between them (as occurs in 

normal patients). This fact could indicate the existence of sub-typologies inside AML 

type because of the difference between the gene expression profiles of these patients. 

This difference in density identified by MedVir has been successfully demonstrated by 

M_stirew and P_stirew.  Thus, MedVir does not fail when representing the data geometry.  

MedVir captures the original intrinsic geometric structure of the data and 

translates it to a tridimensional space. 
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5.2 - Van’t Veer’s dataset 

 
Figure 14 presents the Van't Veer dataset in three dimensions using MedVir. 

The red color symbolizes non-relapse patients while the blue represents those patients 
who suffered a breast cancer relapse. Here, the class separation is not completely 
obvious. There are a small number of patients that overlap between them. This fact 
confirms the 83% value of classification accuracy achieved by the author [49]. 

 
Figure 14. The Van't Veer dataset. Representation of the breast cancer disease, by using the 
Laura Van't Veer feature selection. The red spheres symbolize non-relapse patients in breast 
cancer. The blue spheres represent patients who do suffer a breast cancer relapse. Left: 
Visualization with the coordinate axes. Right: Representation without coordinate axes. 

 
In order to improve the current result, MedVir allows experts to modify the 

representation of the data. In this case, the shortest axes have minimal influence in the 
global representation of the data. Thus, if Laura Van't Veer could have used this tool, 
she would have seen that certain gene expressions do not provide information for the 
separation of the classes. So she probably would have erased these expressions from 
the gene profile.  

 
Figure 15 shows an example of this idea, where 15 gene expressions have been 

removed and the representation of data (geometry preservation) is more or less the 
same. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. The Van't Veer dataset. Example of representation of breast cancer, modified by an 
expert biologist. 
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Drawing conclusions… when representing the dataset by means of MedVir, we are 
struck by the fact that some patients who are labeled as non-relapse (in red) are 
overlapped with relapse patients (in blue). From now to the end, these patients will be 
called 'red Intruders'. [Let us briefly recall the nature of this dataset. When measuring 
the gene expression profiles for each patient (at time t = 0 of the chemotherapy 
treatment, once all the patients have contracted the disease) is not carried out a 
labeling process, but this was done within 5 years after this moment, thus checking 
whether the patient had relapsed or not in breast cancer. That is when the labeling 
process of patients was carried out].  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. The 'red Intruders'. They are patients labeled as non-relapse and they have similar 
gene expression profile to relapse patients. 

 
In order to confirm the veracity of this observation in MedVir, we use the M_veer 

and P_veer. One possible reason to justify the 'red Intruders' (patients number 41, 45, 
48, 49, 53, 57, 76, 77 and 95) could be the following: patients whose gene expression 
profiles were taken in t = 0, from the beginning had very similar profiles to patients 
who eventually relapsed in breast cancer disease (this is discussed in the next 
paragraph). However, what differentiated from one to another in relapse or not 
relapse in the disease was the chemotherapy treatment they received. Therefore, the 
chemotherapy effect toke effect on the 'red Intruders' and managed to save them 
from a relapse of the disease. 
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Figure 17. Pearson Correlation matrix obtained in Matlab (P_veer). According to the labels in the 

original dataset, the two different classes (0: non-relapse, and 1: relapse patients) have been 

marked in the figure. Black circles indicate non-relapse patients. White circles indicate relapse 

patients. The 'red Intruders' have been marked. 

If we take a look at P_veer, one could be able to corroborate this hypothesis by 
MedVir. In figure 17 the P matrix is shown and the 'red Intruders' have been indicated 
by black arrows. We see that, absolutely every one of the 'red Intruders' identified 
through MedVir fit in the matrices as patients who do not have the same typology as 
other patients who have been labeled with, as they have a different color in the 
matrix, therefore indicating dissimilarity (see patients marked with black arrows in the 
clusters formed in the main diagonal). This is an example of obtaining knowledge 
through MedVir, and the effectiveness of MedVir framework has been demonstrated 
by P_veer. 
 

Besides that, when visualizing with MedVir we can also guess a set of patients 
that are labeled as relapse patients (in blue) and yet are overlapping with non-relapse 
patients (in red). We call these patients the 'blue intruders' (1, 2, 7, 10, 14, 15, 16, 18, 
25, 28, 31, 32, 80, 81 and 84. Figure 18). This is the opposite case above, these are 
patients with gene expression profiles similar to patients who did not finally relapse in 
the disease, and nevertheless the 'blue intruders' relapsed in the disease. Here, the 
chemotherapy treatment may not take effect, or just those patients were exposed to 
environments that favored the relapse in the disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 18. The 'blue Intruders'. They are patients labeled as relapse and they have similar gene 

expression profile to non-relapse patients. 

 

 
The correlation matrix P_veer is shown again (see patients marked with black 

arrows in the clusters formed in the main diagonal). 
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Figure 19. Pearson Correlation matrix obtained in Matlab. The 'blue Intruders' have been 

marked in black arrows. 
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5.3 - Golub’s dataset 

 

Figure 20 shows the tridimensional visualization of the Golub’s dataset using 
MedVir. As said above, the colored spheres refer to the dataset samples (in this case, 
they are patients). The coordinate axes represent each of the gene expressions 
included in the study (50 selected features by Golub et al). The blue color represents 
ALL (Acute Lymphoblastic Leukemia) tissue samples while the red one represents 
cancer samples identified as type AML (Acute Myeloid Leukemia). Almost a complete 
discrimination between the two classes is appreciated, which suggests that the gene 
profile selection conducted by the author is correct [52]. 
 

 

 
 
Figure 20. Visualization of the Golub’s dataset. The blue spheres represent ALL tissue samples. 
Nevertheless, red spheres represent AML samples.  
 

 
 
Drawing conclusions… The first thing we can see when visualizing Golub’s dataset in 
MedVir is two groups clearly separated and distinct. At first sight, something that 
stands out is the difference in density in both clusters. The group of patients labeled as 
ALL patients (in blue) is much more compact and spatially delimited than AML patients 
(in red). The latter group is much more spatially dispersed, which a priori could be 
considered a greater variation in the differences between the gene expression profiles 
of these patients. 
 

This observation in MedVir could lead to the discovery that this group is likely 
to have sub-groups of patients. Although all patients in this cluster have been labeled 
by the expert as AML type, they may not have been taken into account possible sub-
types of AML patients. Let’s see the matrices M_golub and P_golub of this dataset. 
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Figure 21. Distance and Pearson Correlation matrix obtained in Matlab. Left: M matrix of 

Golub’s dataset (M_golub) . Right: P matrix of Golub’s dataset (P_golub). According to the labels in 

the original dataset, the two different classes (0: ALL, and 1: AML patients) have been marked 

in the figure. Black circles indicate ALL patients (1 to 27, and 39 to 58). White circles indicate 

AML patients (28-38, 59-72). 

As guessed, inside the group labeled as 1 (AML) there are significant differences 

between patients. Just take a look at the matrix P_golub to observe that patients number 

28-38 and 59-72 have a more heterogeneous nature than the other patients labeled as 

0 (ALL). This would explain the dispersion of this group that will result in greater spatial 

separation when representing the data in MedVir.  

The second assessment we conducted after running MedVir is that, at first 

glance, there are two AML patients ('red Intruders'. Figure 22) that are overlapped 

with ALL patients (blue ones). Intuition tells us that it could be that these two patients, 

having gene expression profiles similar to those of ALL type, could in fact belong to ALL 

leukemia instead of AML. Maybe the expert did not take into account this observation. 

Probably he considered these patients as AML patients while in fact the type of 

leukemia they were suffering was of ALL type.  

 

Figure 22. Red intruders found by MedVir. ID: patients number 29 and 69. 
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As said above, in many times we need to perform a further analysis in order to 

study this observation with detail. The DR process of a dataset of these characteristics 

(50 attributes) into a three-dimensional environment, always involves a minimal loss of 

information. This fact could be minimally causing distortions in the representation of 

the data and placing these two patients in these wrong positions. 

So, we make use again of the M_golub and P_golub in order to verify if MedVir is 

properly representing the data. 

 

Figure 23. Red intruders in M_golub and P_golub matrices (marked by black arrows, Matlab). ID: 

patients number 29 and 69. 

M_golub and P_golub matrices successfully confirm the hypothesis thrown by 

MedVir (Figure 23). In these matrices, the patients under analysis have been identified 

by black arrows (29 and 69). Observing the tonality distribution along the row it is 

obvious that both patients have a very similar nature to the rest of patients labeled as 

0 (ALL). As it can be seen, the distance between the 'red intruders' and ALL patients is 

minimal. This observation could lead us to conclude with a very high degree of 

probability that the 'red intruders', actually, are patients suffering from ALL leukemia 

type that have been misdiagnosed. In this case, it would be appropriate to report this 

fact to the expert in order for him to check again these two patients.  

In spite of everything, we need be aware of working with different set of 

attributes could lead to very different results. So, if we are working with the set of 

features selected by Golub et al, the conclusions we are drawing will be valid.  

This is another clear example where MedVir can be effectively and efficiently 

used to detect possible misclassified instances and obtaining underlying knowledge in 

the data in a quickly and visual way. M_golub and P_golub matrices are used to 

corroborate the geometry preservation capabilities of MedVir when representing 

multidimensional data.  
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6 - Conclusions and futures lines 

 

This research consists in the development of a tool for visualizing 

multidimensional biological data in a three-dimensional environment. The tool should 

allow, through interaction, the acquisition of underlying knowledge in the data.  

We have explored the local and global geometry preservation of data when a 

DR process is carried out. Our research also indicated that MedVir, a new approach of 

DR based on heuristic optimization and visualization techniques, can obtain a very 

effective geometry preservation compared with the best known DR algorithms.  

MedVir can visualize multidimensional data in 3D, so this allows conclusions to 

be obtained in a more simple, intuitive and quickly way. MedVir has been designed to 

provide a framework that makes easier the interaction of the expert with the data 

representation, for example, by asking for additional information about a instance, 

modifying the importance of an attribute from one specific study, removing the 

contribution of several attributes in the study, or even identifying a set of features that 

are supposed to have a great impact in the set of features.  

In the case of DNA Microarray Data, the application of MedVir framework on a 

particular genetics study provides valuable information to the expert biologist. 

Therefore, MedVir is presented as a quick diagnostic tool in order to help experts find 

an interesting gene profiles. For example, once the patients have been represented in 

3D according to their gene expression values, the classification of a new patient could 

be achieved by introducing its gene expression profile in MedVir and observing how its 

corresponding sphere is placed in the three dimensional space. The closer the new 

sphere is of a given existing cluster, the more likely that new patient will belong to that 

cluster.  

Besides, the expert will be able to draw some conclusions based on their visual 

skills and previous experience on the domain. MedVir allows the visualization of the 

quality of the gene profile of a study, and infer knowledge related to the classification 

of new patients and misclassified patients. These misclassified patients could suggest 

the urgent need for a re-diagnosis process by the oncologist. MedVir also provides the 

possibility of identify the set of attributes that have the greatest influence on the gene 

expression profile, as well as certain gene expressions that do not provide information 

for the separation of the classes.  

A specific sample belonging to a patient previously labeled as normal (absence 

of cancer), could suggests a carcinogenic intrinsic nature if that sample is very close 

spatially located to the rest of samples labeled as carcinogenic. Furthermore, MedVir 

could detect patients who have finished their treatment ahead of schedule or even 
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detect non-interesting genes of a particular gene profile. It is also possible to visualize 

and analyze relationships between genes by means of the interaction of the expert 

with the axes in the representation. In addition, because the data used in this research 

are about the classification of patients based on their gene profiles, MedVir allows 

these gene profiles to be analyzed using the 3D representation of data colored 

according to their class. 

However, the manipulation of data once they are represented in 3D can create 

some ambiguity in the interpretation and perception of the experts. It seems logical to 

think that an axis (gene expression) located far away from the origin of the coordinate 

system means that this has more influence on the representation of the samples. 

Translating this situation into the biological world, this gene expression has more 

importance in the study and should be selected in the gene profile. However, the 

movement of this axis in the 3D world, even, to place this axis close to other axes can 

create some confusion to experts. Thus, one of the future lines of this work is to create 

a set of rules that allows all of the possible interactions with the data to be better 

interpreted. 

Other future lines of research will be oriented towards improving the MedVir 

framework in terms of interaction. On one hand, the interaction of the expert with the 

3D visualizer using Kinect hardware in order to access to the data with a simple 

movement of a finger. In addition, several improvements in the usability and 

interaction between the expert and systems are necessary in order to be more useful 

and simple for the expert. 

Regarding data mining techniques, supervised and unsupervised algorithms 

could improve the final analysis. For example, clustering validation techniques can 

advise experts to take into account or not certain groups of samples. Feature Subset 

Selection (FSS) could complete the entire MedVir framework in order to be able to 

work directly with thousands of features. Sometimes, the gene profile selection 

conducted by the author is not the best. Furthermore, a more complex analysis of 

multiobjective (local-global) optimization could be interesting to study. 

 Another important aspect is related to the interpretation of the lengths of the 

axes in MedVir. Different experiments are being carried out in order to obtain a final 

ranking of the attributes that have a major influence in the representation of the data 

geometry, as well as those who have no influence. This could give an explanation of 

the importance of each attribute in a given study. Thus, in a very near future, MedVir 

will perform an underlying Feature Subset Selection process in order to obtain a 

ranking of the most important attributes. 
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In addition, this work is under the framework of Cajal Blue Brain project, where 

data from morphological features of neurons are being used. A possibility is to 

visualize multidimensional neuronal datasets and obtain knowledge of these 

representations. For example, a FSS process could be performed in order to select a 

subset of attributes that better segment typologies of neurons, and then visualize the 

data in MedVir to classify or re-label different types of neurons. Moreover, the aim is 

to apply MedVir to other fields such as magnetoencephalography data or, in a global 

scale, any set of biological and medical data.  

Another possibility of improving results could be the inclusion of a mechanism 

for integrating different sources, for example genomic and clinical data [62]. The final 

visualization could be enriched to a great extent. 
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