Influencia de los parámetros básicos del laser sobre la hidrodinámica de plasmas para microfusión (1)

por

JUNTA DE ENERGIA NUCLEAR

Sanmartin, Juan R. Barrero, Antonio.

J.E.N. 351

MADRID, 1976

CLASIFICACION INIS Y DESCRIPTORES

A14 COLD PLASMA HOMOGENEOUS PLASMA LASER IMPLOSIONS THERMAL CONDUCTIVITY FUEL PELLETS THERMONUCLEAR REACTIONS PULSED IRRADIATION HYDRODYNAMICS

.

•

Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Documentación Biblioteca y Publicaciones, Junta de Energía Nuclear, Ciudad Univers<u>i</u> taria, Madrid-3, ESPAÑA.

Las solicitudes de ejemplares deben dirigirse a este mismo Servicio.

Los descriptores se han seleccionado del Thesauro del INIS para describir las materias que contiene este infor me con vistas a su recuperación. Para más detalles consúl tese el informe IAEA-INIS-12 (INIS: Manual de Indización) y IAEA-INIS-13 (INIS: Thesauro) publicado por el Organismo Internacional de Energía Atómica.

Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación.

Este trabajo se ha recibido para su impresión en Septiembre de 1976.

Depósito legal nº M-40134-1976

INDICE.

•

•

1 INTRODUCCION	1
2 FORMULACION DEL PROBLEMA	5
3 ECUACIONES GENERALES EN VARIABLES DE SEMEJANZA	9
4 ANALISIS DE LAS ECUACIONES PARA EL CASO $\alpha <<1$	21
Solución interior	25
5 ANALISIS DE LAS ECUACIONES PARA EL CASO a>>1	29
Zona isentrôpica	33
Zona de conducción	36
6 DISCUSION DE RESULTADOS	41
APENDICE A (CAPA VISCOSA PARA EL CASO a<4)	47
APENDICE B (CAPA INTERMEDIA PARA EL CASO $\alpha >>1$)	51
REFERENCIAS	57
ILUSTRACIONES	61

.

·I.

Pág.

.

NOTA SOBRE LA ESTRUCTURACION DE LOS EQUIPOS DE TRABAJO EN EL SISTEMA LASER-FISION-FUSION.

Entre los programas que tiene encomendada la JEN en la presente década, se encuentra la investigación y desarrollo de los sistemas de fusión nuclear, para lo cual se seguirán dos métodos distintos, según que el confinamiento empleado sea magnético o inercial.

Dentro del subprograma de confinamiento magnético, se proyectará y cons truirá un Tokamak de tamaño medio, y dentro del subprograma de confinamiento inercial se realizarán los estudios del sistema laser-fisión-fusión (LFF).

El sistema LFF inicialmente estudiado, está constituído por una microes fera de $\1.4$ mm de radio conteniendo $\0.2$ g de Pu enriquecido al 95% en isótopos impares, rodeada por una capa de $\2$ mm de espesor conteniendo Li⁶D con impurezas de T para facilitar la ignición, y de nucleidos de elevado Z para facilitar la ablación.

Al incidir uniformemente sobre la superficie de la esfera un haz de rayos laser de $\sqrt{5}$ MJ, se produce por ablación, una onda de choque de implosión de $\sqrt{10}^{12}$ Kg.cm⁻², que comprime la capa de Li⁶D y la microesfera de Pu hasta unas densidades medias de $\sqrt{4000}$ y $\sqrt{200}$ veces sus densidades iniciales, respectivamente.

La microesfera de Pu así comprimida es supercrítica con una $K_{ef} \sim 1.3$. Debido a los neutrones de una fuente auxiliar, se inician las fisiones en ca dena, dando lugar a un destello de $\sim 7 \times 10^{20}$ neutrones, el 60% de los cuales son absorbidos en la capa de Li⁶D, produciéndose la reacción Li⁶(n, α)T, con la emisión de $\sim 4 \times 10^{20}$ átomos de T.

La energía producida en la fisión del Pu es de $\sqrt{7000}$ MJ, y la producida en la reacción Li⁶(n, α)T es de $\sqrt{400}$ MJ, suficiente para que la capa de D-T alcance la temperatura de fusión.

El tiempo de confinamiento es del orden de la razón entre el radio de la esfera después de la implosión y la velocidad del sonido en el medio comprimido, o sea $\tau \sim 1$ ns, y teniendo en cuenta la densidad alcanzada en la ca pa D-T, se obtiene un parámetro de Lawson superior al necesario para la fusión. Aparte de las incertidumbres en los parámetros de entrada y en los mé todos de cálculo empleados, los resultados obtenidos deben corregirse tenien do en cuenta los rendimientos de los procesos correspondientes.

Empleando inicialmente una capa de D-T, en vez de Li⁵D, puede reducirse la masa de Pu en un factor de 20, y la energía necesaria del laser en un fa<u>c</u> tor de 10. Sin embargo, todaviá se está muy lejos de conseguir lasers de estas características.

En el estudio teórico del sistema LFF aparecen tal cantidad de problemas, que solo pueden abordarse estableciendo diversos equipos de trabajo:

i) Interacción del laser con la materia y generación de ondas de choque (Contrato JEN - Cátedra de Física de la ETSIA, de la UPM).

ii) Propagación de ondas de choque en medios ultradensos (Contrato JEN -Cátedra de Mecánica de Fluidos de la ETSIA, de la UPM).

iii) Ecuación de estado de medios ultradensos (Div. Fusión y Reactores Experimentales de la JEN).

iv) Cinética de medios últradensos (Div. Teoría y Cálculo de Reactores de la JEN).

v) Cronometría y Técnicas de impulsos (Div. Instrumentación y Control de la JEN).

Habiéndose creado otros equipos de trabajo comunes a los proyectos del Tokamak y del sistema LFF, que se integrarán en un futuro próximo:

vi) Problemas físicos no lineales (Contrato JEN - Cátedra de Física Teórica de la UCM).

vii) Inestabilidades hidrodinámicas en plasmas (Contrato JEN - Cátedra de Mecánica y Termología de la UZ, y Agregaduría de Mecánica Estadística de la UAM).

viii) Diagnosis (Divs. Fusión e Instrumentación y Control, y Contrato JEN - Cátedra de Optica de la UVa).

Faltando todavía por constituirse los equipos de lasers de alta poten-

cia y los experimentales.

٠

El presente trabajo corresponde al Informe #1 del equipo i) Interacción del laser con la materia y generación de ondas de choque.

G. Velarde, Director

Dep. de Tecnología.

1.- INTRODUCCION.

La fusión nuclear a escala macroscópica es sólo posible en plasmas con muy alta temperatura iónica, a causa de la barrera de Coulomb; por ejemplo, para deuterio-tritio, caso que se considerará en lo que sigue en estimaciones numéricas, T_i debe ser del orden de 10 KeV (Glasstone, S. y Lovberg, R. H.; 1960). Se puede confinar un plasma a tales temperaturas mediante campos magnéticos; ahora bien, como la presión magnética debe exceder a la térmica, para un campo B dado existe una cota superior de la densidad del plasma,n: si kT_i = kT_a = 10 KeV, se tiene

$$n(cm^{-3}) < 10^{16} \left[B(gauss)/10^5 \right]^2$$
 (1.1)

En ausencia de campo magnético, el tiempo de vida inercial(t_1) de un plasma de DT a la temperatura indicada, en un reactor con una longitud caracteristica de 10 cm, es del orden de 10⁻⁸ s; en contraste, para B < 10⁵ gauss $[n < 10^{16} \text{ cm}^{-3} \text{ según (1.1)}]$, el criterio de Lawson (Lawson, J.D.; 1957) pa ra condiciones de quemado uniformes (1),

$$t_{\min}(s) = 10^{14}/n \ (cm^{-3})$$
, (1.2)

exige un tiempo minimo de vida, $t_{min} = 10^{-2}$ s. Es necesario por tanto un confinamiento muy eficaz.

⁽¹⁾ La condición (1.2) exige E_{fusión} = ^{2E} (E_{plasma}, y E_{plasma}, energias liberada y almacenada en el plasma respectivamente) y corresponde a una fracción de quemado no inferior al 0,5%. Un rendimiento energético global superior a la unidad exigirá fracciones de quemado substancialmente mayores.

El confinamiento se hace innecesario, sin embargo, a densidades suficientemente altas, cuando t_i, que no depende de n, excede a t_{min} [en ausencia de campo B, la condición (1.1) no es ya aplicable -confinamiento inercial-]. Por ejemplo, si se considera la densidad del DT sólido (n_s $\% 4,7x10^{22}$ cm⁻³) t_{min} vale $2x10^{-9}$ s, y si el plasma es una pequeña esfera de radio R, y se toma t_i %% R/4c_s siendo c_s $\% 10^{8}$ cm/s la velocidad del sonido en el plasma, se tiene t_i $\% 2x10^{9}$ s cuando R % 0,8 cm; por otra parte la densidad de energía en estas condiciones es del orden de 10^{9} atm. Aún cuando es posible obtener tales densida des de energía en tiempos de ese orden mediante laseres, la energía requerida del pulso parece prohibitivamente alta: En efecto para DT a 10 KeV se tiene

$$(\rho R)_{\min} \equiv m_{i} n t_{\min} 4c_{s} \gtrsim 0,2 \text{ g/cm}^{2};$$
 (1.3)

en consecuencia

$$E_{\text{plasma}} \stackrel{2}{\sim} \frac{4}{3} \pi R^{3} x 2 x \frac{3}{2} \text{ nkT}_{1} \stackrel{2}{\sim} 10^{3} (\frac{\rho_{s}}{\rho})^{2} \frac{(\rho R)^{3}}{(\rho R)^{3}} \text{ MJ}$$
(1.4)

siendo

$$\frac{E_{\text{fusion}}}{E_{\text{plasma}}} \sqrt[n]{2} \frac{pR}{(pR)_{\text{min}}}$$
(1.5)

Para $\rho = \rho_s$, la energía del laser mínima es $10^3 n_{LP}^{-1}$ MJ, donde n_{LP} , el rendimien to del acoplamiento energético laser-plasma, es probablemente del orden del 5% (Brueckner, K.A. y Jorna, S.; 1974).

La ecuación (1.4) sugiere sin embargo la idea de utilizar el mismo laser para comprimir el plasma, además de calentarlo (Nuckolls, J. y otros; 1972). Si la compresión produce un valor de ρ/ρ_s elevado, se puede tener una reducción substancial de $E_{\rm plasma}$, simultaneamente con un aumento del rendimiento $E_{\rm fusión}/E_{\rm plasma}$; por ejemplo, para p= 10⁴ ρ_s y pR = 10(pR)_{min} la energía del laser sería 10n_{LP}⁻¹ KJ. De hecho, si se consigue una distribución de temperatura apropiada, para un valor dado de ρ/ρ_s , parece posible aumentar notable mente E_{fusion}/E_{plasma} manteniendo E_{plasma} próximo a $10^3 (\rho_s/\rho)^2$ MJ: En efecto la longitud de penetración, λ_{α} , de las partículas a liberadas en la fusión, a la temperatura de 10 KeV, es próxima a $(\rho R)_{min}/\rho$ (Ribe, F.L.; 1975); es posible por tanto quemar un plasma esférico frio, de radio $R > (\rho R)_{min}/\rho$, ca lentando a 10 KeV una región central de radio $\lambda_{\alpha} \stackrel{<}{\sim} (\rho R)_{min}/\rho$, para iniciar una onda de quemado que se propaga hacia el exterior (Linhart, J.G.; 1970). La mínima energía por unidad de volumen en la región fria se tiene cuando $T_{i_12} \stackrel{<}{\sim} T_e \stackrel{<}{=} T_{eF}$ (temperatura de Fermi de los electrones), y es del orden de 10⁴ atm. cuando $\rho=10^4 \rho_s$ ($T_{eF} \stackrel{<}{\sim} 1$ KeV).

Para obtener el plasma denso y frío (baja entropía específica) deseado es preciso, por una parte, que la irradiación del laser no alcance el interior de la esfera, puesto que hay una deposición de entropía asociada a la absorción de energía del laser; de hecho la absorción de radiación se reali za en el exterior de la esfera (en una corona de plasma caliente y rarifica do que resulta de la ablación del DT sólido) si la frecuencia del laser, w, es menor que la frecuencia electrónica del plasma para n=n_ (de otro modo, si la densidad crítica del plasma a la frecuencia 40 es menor que n_). Por otra parte, es necesario que la energía fluya desde la corona al interior de la esfera, con una lev temporal adecuada que resulte en un trabajo de compresión lo más isentrópico posible. Es claro de lo anterior, que la hidrodinámica desempeña un papel fundamental en el proceso, y afecta en particular a la consecución de los objetivos siguientes: A) La energía perdida en la expansión de la corona hacia el exterior debe reducirse a un mínimo. B) El flujo de masa y energía hacia el interior de la esfera debe maximizar se para obtener la compresión y el aumento de densidad deseado. C) La entro pía (y por tanto su producción y flujo) debe mantenerse baja en el interior de la esfera.

La hidrodinámica de la interacción laser-plasma ha sido considerada en extensos cálculos numéricos que simulan la compleja física implicada (Clarke, J.C. y otros; 1973)(Nuckolls, J.H.; 1974) (Mason, R.J. y Morse, R.L.; 1975), y en análisis teóricos aproximados, generalmente para irradiación constante (Caruso, A. y Gratton, R.; 1968) (Babuel-Peyrissac, J.P. y otros; 1969) (Bobin, J.L.; 1971). No obstante, se carece de resultados exactos y conclusiones claras sobre el comportamiento hidrodinámico de la interacción. El trabajo presente es parte de un estudio encaminado a determinar como los objetivos A), B) y C) indicados, dependen de los parámetros básicos del pulso de laser: la irradiación máxima ϕ_0 , la energía del pulso (o su du ración τ) y su frecuencia ω o densidad crítica $n_{cr}(\omega)$. Se ha considerado el movimiento plano y cuasineutro de un plasma inicialmente frio (incluyendo conducción y viscosidad iónica y electrónica, intercambio energético entre iones y electrones, y limitador de flujo térmico) producido por la absorción anómala de la irradiación de un pulso de laser lineal en el tiempo; en estas condiciones, el problema admite solución de semejanza y es gobernado por ecua ciones diferenciales ordinarias. En el trabajo presente (I) se considera un plasma infinito de densidad inicial uniforme. En trabajos en curso, se cons<u>i</u> deran el caso de un plasma uniforme que inicialmente ocupa un semiespacio (III) y los efectos de la absorción, emisión y presión de radiación (III).

En la Sec. 2 se formulan las ecuaciones y se discute la física del proble ma. En la Sec. 3 se introducen las variables de semejanza y los parámetros adimensionales que gobiernan el fenómeno. Las Secs. 4 y 5 contienen el análisis detallado del sistema de ecuaciones considerado. En la Sec. 5 se resumen y discuten los resultados obtenidos. Finalmente los Apéndices A y B incluyen detalles matemáticos no esenciales al análisis efectuado en las Secs. 4 y 5.

2.- FORMULACIÓN DEL PROBLEMA.

Se considera el movimiento unidimensional de un plasma totalmente ioni zado, con densidad inicial uniforme en todo el espacio, n_0 , cuando se deposita en el plano x=0 una energía por unidad de área v tiempo $\phi(t)$ en el intervalo $0 < t \le \tau$. Las ecuaciones macroscópicas de continuidad, de la cantidad de movimiento y de la entropía para la especie l (electrones, e, y una espe cie de iones, i) son respectivamente

$$\frac{\partial n_{l}}{\partial t} + \frac{\partial}{\partial x} n_{l} v_{l} = 0$$
 (2.1)

$$m_{1} n_{1} \left(\frac{\partial v_{1}}{\partial t} + v_{1} \frac{\partial v_{1}}{\partial x} \right) = - \frac{\partial P_{1}}{\partial x} + \frac{4}{3} \frac{\partial}{\partial x} \mu_{1} \frac{\partial v_{1}}{\partial x} + q_{1} n_{1} E + R_{1}$$
(2.2)

$$n_{1} T_{1} \left(\frac{\partial S_{1}}{\partial t} + v_{1} \frac{\partial S_{1}}{\partial x} \right) = \frac{\partial}{\partial x} \chi_{1} K_{1} \frac{\partial T_{1}}{\partial x} + \frac{u_{1}}{3} \mu_{1} \left(\frac{\partial v_{1}}{\partial x} \right)^{2} + H_{1}$$
(2.3)

donde m, n, v y T son masa por partícula, densidad, velocidad macroscópica y temperatura.

Se ha supuesto en general, un plasma dominado por colisiones: en cada instante t, el camino libre medio y el tiempo entre colisiones de una u otra especie han de ser mucho menores que la extensión de plasma perturba do $x_f(t)$ y t respectivamente; en la Sec. 3 se señalan las condiciones bajo las que se cumple lo anterior. En (2.2) y (2.3) μ y K son los coeficien tes de viscosidad y conductividad térmica clásicos (Braginskii, S.; 1965)

$$\mu_1 = \overline{\mu}_1 T_1^{5/2}$$
, $K_1 = \overline{K}_1 T_1^{5/2}$ (2.4)

donde $\overline{\nu}$ y K dependen débilmente de T y n a través de los logaritmos de Coulomb, dependencia que no será tenida en cuenta; la presión y la entropía por partícula valen

$$P_1 = n_1 k T_1,$$
 $S_1 = k \ln(T_1^{3/2}/n_1) + cte$ (2.5)

Se ha introducido, no obstante, un limitador de flujo térmico en la conducción electrónica (Morse, R.L. y Nielson, C.W.; 1973),

$$\chi_{e} = \left[1 + \left(\frac{8\pi m_{e}}{9\kappa^{2}}\right)^{1/2} \frac{\overline{K}_{e}}{m_{e}} T_{e} \left|\frac{\partial T_{e}}{\partial x}\right|\right]^{-1}$$
(2.6)

para incluir en forma aproximada situaciones en que el plasma no esté enteramen te dominado por colisiones. En tales situaciones, como se verá en la Sec. 4 la temperatura iónica es muy inferior a la electrónica, y,debido a la dependencia del camino libre medio y el tiempo entre colisiones con la temperatura, se pue de poner

$$\chi_{1} = 1$$
 (2.7)

Por otra parte, aún cuando los efectos de viscosidad y conducción térmica de ca da especie son comparables si $m_1 v_1^2 \sim kT_1$, (difusitividades térmica y viscosa del mismo orden), como se verá a continuación se tiene aquí $v \sim v_1$ y por tanto $m_e v_e^2 \sim (m_e/m_1)kT_e$ (si $T_1 \sim T_e \ y \ m_i v_1^2 \sim kT_1$): la difusitividad térmica es mucho más importante que la viscosa. Además la difusitividad (térmica y viscosa) de los iones es menor que la electrónica en un factor del orden de $(m_e/m_1)^{1/2}$.

Se supone aquí que el movimiento es cuasineutro, $n_e \approx n_i \equiv n$ (se consideran iones con número de carga unidad); en la Sec. 3 se señala la condición necesaria para la validez de esta hipótesis. De (2.1) se sigue entonces que ($\partial/\partial x$)n. . $(v_e - v_i) \approx 0$, de donde $v_e \approx v_i \equiv v$ ya que $v_e y v_i$ son nulos en el plasma no per turbado; las ecuaciones (2.1) (l=e,i) se reducen a una ecuación única. Por otra parte, sumando las ecuaciones (2.2) para electrones e iones se tiene

$$m_{i}n(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x}) = -\frac{\partial}{\partial x}(P_{e}+P_{i}) + \frac{4}{3}\frac{\partial}{\partial x}\left[(\mu_{e}+\mu_{i})\frac{\partial v}{\partial x}\right]$$
(2.8)

donde se ha despreciado la inercia de los electrones, y se ha tenido en cuenta la cuasineutralidad y la condición $\sum_{R_1=0}^{R_1=0}$, que expresa que el incremento por colisiones de la cantidad de movimiento del plasma, por unidad de volumen y tiempo, es nulo. De esta forma, el campo eléctrico E creado por la separación de cargas en el plasma desaparece del problema.

No se consideran en el análisis la emisión o absorción de radiación, ni la fusión nuclear; la acción del laser se reduce a la deposición de energía en el plano x=0, que simula la absorción anómala del pulso (no se incluye por tanto el efecto de la presión de radiación). En tales condici<u>o</u> nes

$$H_{i} = \frac{3}{2} k n \frac{T_{e} T_{i}}{t_{ei}}, \quad H_{e} = -H_{i} + \phi(t) \delta(x) \quad (2.9)$$

donde t_{ei} es el tiempo de relajación entre las temperaturas iónica y elec trónica (Spitzer, L.; 1956)

$$t_{ei} = \overline{t}_{ei} T_{e}^{3/2}/n$$
 (2.10)

y tei depende de densidad y temperatura solo logaritmicamente.

Se ha supuesto, por otra parte, que el plasma existe ya en t=0. Realmente, el análisis presente tendría también validez en el caso en que inicialmente se tuviese una substancia (DT) sólida o liquida, siempre que la energía por partícula, resultante de la acción del laser, fuese del orden de 0,1 KeV o mayor (Caruso, A. y Gratton, R.; 1968). Por esta razón se puede considerar que T_e y T_i son inicialmente nulos. En ese caso, se encuentra que si el pulso del laser es lineal

$$\phi = \phi_0 t/\tau \qquad 0 < t \leq \tau \qquad (2.11)$$

el sistema de ecuaciones diferenciales para n, v, T_e y T_i admite solución de semejanza. Debe señalarse que los resultados que se obtengan del presente análisis, acerca de la influencia de los parámetros básicos (y no de la forma precisa) del pulso, sobre la hidrodinámica del plasma, tendrán validez para situaciones con simetría esférica -para la cual no exis tiría solución de semejanza de las ecuaciones.

3.- ECUACIONES GENERALES EN VARIABLES DE SEMEJANZA.

.

El sistema de ecuaciones que define el problema es:

$$\frac{\mathrm{Dn}}{\mathrm{Dt}} = -n \frac{\partial v}{\partial x}$$

$$m_{1}n \frac{\mathrm{Dv}}{\mathrm{Dt}} = -\frac{\partial}{\partial x} \left[\mathrm{kn}(\mathrm{T}_{e}^{+}\mathrm{T}_{1}^{-}) \right] + \frac{u}{3} \overline{\mu}_{1} \frac{\partial}{\partial x} (\mathrm{T}_{1}^{5/2} \frac{\partial v}{\partial x}) + \frac{u}{3} \overline{\mu}_{e} \frac{\partial}{\partial x} (\mathrm{T}_{e}^{5/2} \frac{\partial v}{\partial x})$$

$$\frac{3}{2} \mathrm{kn} \frac{\mathrm{DT}_{e}}{\mathrm{Dt}} + \mathrm{kn}\mathrm{T}_{e} \frac{\partial v}{\partial x} = \overline{\mathrm{K}}_{e} \frac{\partial}{\partial x} (x \mathrm{T}_{e}^{5/2} \frac{\partial \mathrm{T}_{e}}{\partial x}) + \phi(\mathrm{t}) \delta(\mathrm{x}) - \frac{3}{2} \mathrm{kn}^{2} \frac{\mathrm{T}_{e}^{-\mathrm{T}_{1}}}{\overline{\mathrm{T}_{e1}}\mathrm{T}_{e}^{3/2}} + \frac{u}{3} \overline{\mu}_{e} \mathrm{T}_{e}^{5/2} (\frac{\partial v}{\partial x})^{2}$$

$$\frac{3}{2} \mathrm{kn} \frac{\mathrm{DT}_{1}}{\mathrm{Dt}} + \mathrm{kn}\mathrm{T}_{1} \frac{\partial v}{\partial x} = \overline{\mathrm{K}}_{1} \frac{\partial}{\partial x} (\mathrm{T}_{1}^{5/2} \frac{\partial \mathrm{T}_{1}}{\partial x}) + \frac{3}{2} \mathrm{kn}^{2} \frac{\mathrm{T}_{e}^{-\mathrm{T}_{1}}}{\overline{\mathrm{T}_{e1}}\mathrm{T}_{e}^{3/2}} + \frac{u}{3} \overline{\mu}_{e} \mathrm{T}_{e}^{5/2} (\frac{\partial v}{\partial x})^{2}$$

$$\chi = \left[1 + (\frac{8\pi m_{e}}{9\mathrm{k}^{2}})^{1/2} \frac{\overline{\mathrm{K}}_{e}}{\mathrm{n}} \mathrm{T}_{e} \left[\frac{\partial \mathrm{T}_{e}}{\partial \mathrm{x}} \right] \right]^{-1} (\mathrm{Mason}, \mathrm{R.J. y Morse, R.L.; 1975})$$
domde:
$$\overline{\mathrm{T}_{e1}} = \frac{3m_{1}^{2} \mathrm{k}^{3/2}}{\overline{\mathrm{T}_{e1} \mathrm{T}_{e} \mathrm{T}_{e}^{2/2} \mathrm{D}_{e}^{-2} \mathrm{m}_{e}^{-1}}$$

$$\overline{t}_{ei} = \frac{1}{8(2\pi)^{1/2} m_e^{1/2} Z^2 e^4 \ln \Lambda}$$

$$\overline{K}_e = \frac{\epsilon \delta 20(2/\pi)^{3/2} k^{7/2}}{m_e^{1/2} e^4 Z \ln \Lambda}$$
(Spitzer, Jr., L., 1956)
(Z = 1: \epsilon = 0,419; \delta = 0,225)

-9-

$$\overline{\mu}_{i} = 0,96 \frac{\frac{1/2}{3m_{i}} \frac{5/2}{4\pi^{1/2} Z^{4} e^{4} \ln \Lambda}}{\frac{4\pi^{1/2} Z^{4} e^{4} \ln \Lambda}}$$

$$\overline{\mu}_{e} = \frac{0,733}{0,96 2^{1/2}} \left(\frac{\frac{m_{e}}{m_{i}}}{\frac{m_{i}}{1}}\right)^{1/2} \overline{\mu}_{i}}$$
(Braginskii, S.; 1965)
$$\overline{K}_{i} = \frac{3,91 2^{1/2}}{3,2} \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \overline{K}_{e}$$

Las condiciones iniciales y de contorno son:

$$T_{e}(x,0) = T_{i}(x,0) = v(x,0) = 0, \qquad n(x,0)=n_{0}$$

$$T_{e}(\infty,t) = T_{i}(\infty,t) = v(\infty,t) = 0, \qquad n(\infty,t)=n_{0}$$

$$v(0,t) = 0, \qquad \frac{\partial T_{i}}{\partial x} \bigg|_{x=0} = 0$$
(3.2)

Una última condición de contorno viene dada por la discontinuidad de $\partial T_e/\partial x$ en x=0, originada por la función $\delta(x)$; en efecto, integrando la ecuación de la entropía para los electrones entre 0⁻ y 0⁺ se tiene:

$$2X \ \overline{K}_{e} \left[T_{e}^{5/2} \ \frac{\partial T_{e}}{\partial x} \right]_{x=0} +\phi(t) = 0 \qquad (3.2')$$

El término $\phi(t)\delta(x)$ de la ecuación de la entropía de los electrones es equivalente a la condición de contorno (3.2'), pudiendo ser indistintamente usado cualquiera de ambos.

١

Conviene comprobar que, como se indicó anteriormente, el sistema de ecuaciones (3.1) sólo admite solución de semejanza, en el caso en que el pulso del laser sea lineal con el tiempo. Se definen las funciones ϕ , n, v, T_e y T_i de la forma:

$$\phi(t) = \phi_{0}(t/\tau)^{p}$$

$$n(x,t) = n_{0} \overline{n}(\xi)$$

$$v(x,t) = v_{0}(t/\tau)^{q} u(\xi)$$

$$T_{e}(x,t) = T_{0}(t/\tau)^{r} \theta_{e}(\xi)$$

$$T_{i}(x,t) = T_{0}(t/\tau)^{r} \theta_{i}(\xi).$$
(3;3)

donde

$$\xi = \frac{x}{wt(t/\tau)^{S}}$$

Introduciendo las nuevas variables en el sistema de ecuaciones (3.1), y teniendo en cuenta que para que exista solución de semejanza es necesario que los coeficientes de las ecuaciones no dependan del tiempo, se obtiene:

$$-(1+s)\xi \frac{d\overline{n}}{d\xi} + \frac{v_0}{v} \frac{d}{d\xi} (\overline{n} u) = 0$$

$$qu - (1+s)\xi \frac{du}{d\xi} + \frac{v_0}{w} u \frac{du}{d\xi} = -\frac{kT_0}{m_i v_0 w} \frac{1}{n} \frac{d}{d\xi} \left[\overline{n}(\theta_e + \theta_i) \right] + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{\overline{u}_1 \overline{n}^{5/2}}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{du}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{du}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{du}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{du}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{u}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{u}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{u}{d\xi} (\theta_i^{5/2} \frac{u}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{u}{d\xi} (\theta_i^{5/2} \frac{u}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{d\xi} (\theta_i^{5/2} \frac{u}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{n} \frac{u}{d\xi} (\theta_i^{5/2} \frac{u}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{u}{d\xi} (\theta_i^{5/2} \frac{u}{d\xi}) + \frac{u}{3} \frac{u}{m_i n_0 w^2 \tau} \frac{$$

$$+\frac{4}{3} \frac{\frac{1}{\mu_{e}T_{0}^{5/2}}}{m_{i}n_{0}w^{2}\tau} \frac{1}{n} \frac{d}{d\xi} \left(\theta_{e}^{5/2} \frac{du}{d\xi}\right)$$

$$\frac{3}{2} \overline{n} \left[r \theta_{e}^{-(1+s)\xi} \frac{d\theta_{e}}{d\xi} + \frac{v_{0}}{w} u \frac{d\theta_{e}}{d\xi} \right] + \frac{v_{0}}{w} \overline{n} \theta_{e} \frac{du}{d\xi} = \\ = \frac{\overline{K}}{e} \frac{T_{0}^{5/2} \tau^{2s-5r/2}}{k n_{0} w^{2}} \frac{d}{d\xi} \left(\chi \theta_{e}^{5/2} \frac{d\theta_{e}}{d\xi} \right) + \\ + \frac{\theta_{0} \tau^{s+r-p}}{w k n_{0} \tau_{0}} \delta(\xi) - \frac{3}{2} \frac{n_{0} \tau^{3r/2}}{\overline{\tau}_{ei} \tau_{0}^{3/2}} \overline{n}^{2} \frac{\theta_{e}^{-\theta} i}{\theta_{e}^{3/2}} + \frac{4}{3} \frac{\overline{u} \overline{r}_{0}^{70} \frac{v_{0}^{2}}{k n_{0} w^{2} \tau^{3r/2}} \theta_{e}^{5/2} \left(\frac{du}{d\xi} \right)^{2} \\ - \frac{3}{2} \overline{n} \left[r \theta_{1}^{-} (1+s)\xi - \frac{d\theta_{1}}{d\xi} + \frac{v_{0}}{w} u - \frac{d\theta_{1}}{d\xi} \right] + \frac{v_{0}}{w} \overline{n} \theta_{1} - \frac{du}{d\xi} = \\ = \frac{\overline{K}_{i} \tau_{0}^{5/2} \tau^{2s-5r/2}}{k n_{0} w^{2}} \frac{d}{d\xi} \left(\theta_{1}^{5/2} \frac{d\theta_{1}}{d\xi} \right) + \frac{3}{2} \frac{n_{0} \tau^{3r/2}}{\overline{\tau}_{ei} \tau_{0}^{3/2}} \overline{n}^{2} - \frac{\theta_{e}^{-\theta} i}{\theta_{e}^{3/2}} + \frac{4}{3} \frac{\overline{\mu}_{1} \overline{\tau}_{0}^{3/2} v_{0}^{2}}{\theta_{e}^{3/2} \tau^{3r/2}} \theta_{1}^{5/2} \left(\frac{du}{d\xi} \right)^{2} \\ = \frac{\overline{K}_{i} \tau_{0}^{5/2} \tau^{2s-5r/2}}{k n_{0} w^{2}} \frac{d}{d\xi} \left(\theta_{1}^{5/2} \frac{d\theta_{1}}{d\xi} \right) + \frac{3}{2} \frac{n_{0} \tau^{3r/2}}{\overline{\tau}_{ei} \tau_{0}^{3/2}} \overline{n}^{2} - \frac{\theta_{e}^{-\theta} i}{\theta_{e}^{3/2}} + \frac{4}{3} \frac{\overline{\mu}_{1} \overline{\tau}_{0}^{3/2} v_{0}^{2}}{k n_{0} w^{2} \tau^{3r/2}} \theta_{1}^{5/2} \left(\frac{du}{d\xi} \right)^{2} \\ = \frac{1}{2} \left[1 + \left(\frac{\theta \pi m_{e}}{\theta k^{3}} \right)^{1/2} - \frac{\overline{K}_{e} \tau_{0}^{2}}{n_{0} w^{2} \tau^{s-s-s}} - \frac{\theta_{e}}{\overline{n}} \right] \frac{d\theta_{e}}{d\xi} \left[- \frac{1}{2} \right]^{-1}$$

con las condiciones:

$$q = s$$

 $2q = r$
 $r-1 = \frac{7}{2}r-2(1+s) = p-(1+s) = -r/2$
 $2r = 1+s$

.

-12-

•

.

.

de donde

$$r = \frac{2}{3}$$
, $q = s = \frac{1}{3}$, $p = 1$

Debido a que al definir las variables de semejanza, fueron arbitraria mente introducidos los parámetros T_0 , v_0 y w, se pueden elegir libremente tres cualesquiera de los parámetros adimensionales de las ecuaciones en los que aparezca alguna combinación de T_0 , v_0 y w. Para simplificar del modo usual la ecuación de la continuidad se toma $v_0/w = 4/3$. Por otra parte, el fenómeno físico considerado se origina en la difusión, por conducción elec trónica, de la energía depositada en x=0; en consecuencia, en la ecuación de la entropía de los electrones, se hace:

$$\frac{\overline{K}_{e} T_{0}^{5/2}}{kn_{0}w^{2} \tau} = 1, \frac{\phi_{0}}{kwn_{0} T_{0}} = 1$$

Finalmente, definiendo $\alpha \equiv \frac{3kT_0}{m_1v_0w}$, los parámetros adimensionales de las ecuaciones quedan: $m_iv_0^w$

$$\frac{4\overline{\mu}_{i}T_{0}^{5/2}}{m_{i}n_{0}w^{2}\tau} = \frac{3.9\times10^{-2}}{A_{i}^{1/2}}, \quad \frac{4\overline{\mu}_{e}T_{0}^{5/2}}{m_{i}n_{0}w^{2}\tau} = \frac{4.9\times10^{-4}}{A_{i}}, \quad \frac{3n_{0}\tau}{2\overline{t}_{ei}T_{0}^{3/2}} = 4.3 \text{ m}$$

$$\frac{\frac{\mu}{\mu} - \frac{\overline{\mu} - \frac{3}{2} v_0^2}{k n_0 w^2 \tau} = \frac{4}{3} - \frac{4}{A_1 \alpha} + \frac{4}{9 \times 10^{-4}}{k n_0 w^2 \tau} = \frac{4}{4} - \frac{1 \times 10^{-2}}{k n_0 w^2 \tau} = \frac{4}{A_1^{1/2}}$$

$$\frac{4}{3} \frac{\overline{\mu}_{i} T_{0}^{3/2} v_{0}^{2}}{k n_{0} w^{2} \tau} = \frac{4}{3} \frac{3.9 \times 10^{-2}}{A_{i}^{1/2} \alpha}, \quad (\frac{8 \pi m_{e}}{9 k^{3}})^{1/2} \frac{\overline{k}_{e} T_{0}^{2}}{n_{0} w \tau} = (\frac{3.5 \times 10^{-3}}{\alpha A_{i}})^{1/2}$$

donde $A_i \equiv \frac{m_i}{m_p}$ (~ 2,5 para D-T), y los diversos logaritmos de Coulomb (ln A) se han tomado iguales a 10.

Las ecuaciones diferenciales y condiciones de contorno que definen el problema quedan entonces:

$$\frac{dn}{d\xi} = \frac{n}{\xi - u} \frac{du}{d\xi}$$

$$u+4(u-\xi) \frac{du}{d\xi} = -\frac{\alpha}{n} \frac{d}{d\xi} \left[\overline{n}(\theta_e+\theta_i) \right] + \frac{3,9\times10^{-2}}{A_i^{1/2}} \frac{1}{n} \frac{d}{d\xi} (\theta_i^{5/2} \frac{du}{d\xi}) + \frac{4,9\times10^{-4}}{A_i} \frac{1}{n} \frac{d}{d\xi} (\theta_e^{5/2} \frac{du}{d\xi})$$

$$\overline{n}\left[\theta_{e}\left(1+\frac{4}{3}\frac{du}{d\xi}\right)+2\left(u-\xi\right)\frac{d\theta_{e}}{d\xi}\right] = \frac{d}{d\xi}\left(\chi\theta_{e}^{5/2}\frac{d\theta_{e}}{d\xi}\right) - 4,3\frac{d\theta_{e}^{-\theta_{i}}}{\theta_{e}^{3/2}} + \frac{4}{3}\frac{4,9\times10^{-4}}{A_{i}\alpha}\theta_{e}^{5/2}\left(\frac{du}{d\xi}\right)^{2}$$

$$\overline{n} \left[\theta_{i} \left(1 + \frac{4}{3} - \frac{du}{d\xi} \right) + 2\left(u - \xi \right) - \frac{d\theta_{i}}{d\xi} \right] = \frac{4 \cdot 1 \times 10^{-2}}{A_{i}^{1/2}} - \frac{d}{d\xi} \left(\theta_{i}^{5/2} - \frac{d\theta_{i}}{d\xi} \right) + \frac{d\theta_{i}}{d\xi} + \frac{1}{2} \left(\theta_{i}^{5/2} - \frac{d\theta_{i}}{d\xi} \right) + \frac{1}{2} \left(\theta_{i}^{5/2} - \theta_{i}^{5/2} - \theta_{i}^{5/2} \right) + \frac{1}{2} \left(\theta_{i}^{5/2} - \theta_{i}^{5/2} - \theta_{i}^{5/2} - \theta_{i}^{5/2} \right) + \frac{1}{2} \left(\theta_{i}^{5/2} - \theta_{i}^{5$$

$$+4,3\alpha n^{2} \frac{\theta_{e}^{-\theta} i}{\theta_{e}^{3/2}} + \frac{4}{3} \frac{3,9 \times 10^{-2}}{A^{1/2} \alpha} \theta_{i}^{5/2} (\frac{du}{d\xi})^{2}$$

$$\chi = \left[1 + \left(\frac{3,5\times10^{-3}}{\alpha A_{i}}\right)^{1/2} - \frac{\theta_{e}}{n} + \left(\frac{d\theta_{e}}{d\xi}\right)^{-1}\right]^{-1}$$

$$\begin{array}{c} \overline{n}(\infty) = 1 , \quad u(\infty) = \theta_{e}(\infty) = \theta_{i}(\infty) = 0 \\ u(0) = 0 , \quad \frac{d\theta_{i}}{d\xi} \bigg|_{\xi=0} = 0 , \quad \chi \theta_{e}^{5/2}(0) \frac{d\theta_{e}}{d\xi} \bigg|_{\xi=0} = -\frac{1}{2} \end{array}$$

$$(3.5)$$

Como se puede observar, el sistema de ecuaciones incluyendo viscosidad y con ducción (iónica y electrónica), limitador de flujo térmico e intercambio energético entre iones y electrones, admite solución de semejanza siempre que el pulso del laser varie linealmente con el tiempo.

Es interesante notar, a la vista de los coeficientes que aparecen en las ecuaciones (3.4), que los términos de conducción y viscosidad de los iones son despreciables frente a los restantes términos de las ecuaciones, salvo en zonas de espesor muy pequeño (por ejemplo, ondas de choque) y pue den no ser tenidos en cuenta en el análisis. La viscosidad de los electrones es en general mucho menor que la de los iones, salvo en los casos en que la temperatura de los electrones sea mucho mayor que la de los iones (situa ción que se presenta, como se verá más adelante, en el caso $\alpha <<1$).

Además, el limitador de flujo térmico introducido en la conducción electrónica desaparece, $\chi = 1$, siempre que:

$$\left(\alpha \xrightarrow{m_{1}}{1}\right) >> \left|\frac{\theta_{e}}{\overline{n}} \frac{d\theta_{e}}{d\xi}\right| \qquad (3.6)$$

Como se verá más adelante, para $\alpha >>1$, la desigualdad (3.6) se cumple de for ma automática; por el contrario, para $\alpha <<1$, el lado derecho de la desigualdad (3.6) es del orden de la unidad y (3.6) es válida en tanto que

$$\alpha >> \frac{m_e}{e} (\sim \frac{1}{para D-T})$$

$$m_i \qquad 5000$$

Una condición similar a (3.6) se obtiene imponiendo la condición

 $\lambda \sim \frac{\overline{K} T_e^{5/2}}{kn} (\frac{m_e}{kT_e}) \ll x_f$, para todo instante t,

donde λ es el camino libre medio y $x_f(t)$ es la longitud de plasma perturb<u>a</u> do hasta el instante t. Introduciendo las variables de semejanza se obtiene, (2)

$$\left(\alpha \frac{m_{i}}{m_{e}}\right) >> \frac{\theta_{e}^{2}}{\overline{n} \xi_{f}}, \quad (\xi_{f} = \frac{x_{f}}{wt(t/\tau)^{1/3}})$$

Una forma alternativa del sistema de ecuaciones, se obtiene escribiendo (3.4) en forma de ecuaciones de conservación. La ecuación de la continui dad puede escribirse en la forma:

$$\overline{n} = \frac{d}{d\xi} \left[\overline{n}(\xi - u) \right]$$
(3.4⁺.a)

La ecuación de la cantidad de movimiento, teniendo en cuenta (3.4*.a) puede escribirse en la forma:

$$5\overline{n}u = \frac{d}{d\xi} \left[\overline{n} < 4(\xi - u)u - \alpha(\theta_e + \theta_i) > + \frac{3,9 \times 10^{-2}}{A_i^{1/2}} \theta_i^{5/2} \frac{du}{d\xi} + \frac{4,9 \times 10^{-4}}{A_i} \theta_e^{5/2} \frac{du}{d\xi} \right]$$

La ecuación de la energía total (suma de la de las dos especies) se obtiene sumando a la ecuación de la cantidad de movimiento multiplicada por 4/3 u, la suma de las ecuaciones de la entropía para ambas especies, y tenien-

⁽²⁾ Similarmente, la condición de tiempo entre colisiones para electrones mucho menor que t conduce a $\theta_e^{3/2}/n < \alpha m_i/m_e$. Condiciones análogas para iones son mucho menos restrictivas.

.

. ·

ł

$$3\overline{n} \left[\theta_{e}^{+} \theta_{i}^{-} + \frac{4}{3} \frac{u^{2}}{\alpha} \right] = \frac{d}{d\xi} \left[2\overline{n} (\theta_{e}^{+} \theta_{i}^{-} + \frac{4}{3} \frac{u^{2}}{\alpha}) (\xi - u) - \frac{4}{3} \frac{1}{3} \frac{u}{\alpha} (\theta_{e}^{+} \theta_{i}^{-}) + \frac{4}{3} \frac{3,9 \times 10^{-2}}{A_{i}^{1/2}} (\theta_{i}^{5/2} + \frac{1,3 \times 10^{-2}}{A_{i}^{1/2}} \theta_{e}^{5/2}) u \frac{du}{d\xi} + \frac{4}{3} \frac{3,9 \times 10^{-2}}{A_{i}^{1/2}} (\theta_{i}^{5/2} + \frac{1,3 \times 10^{-2}}{A_{i}^{1/2}} \theta_{e}^{5/2}) u \frac{du}{d\xi} + \chi \theta_{e}^{5/2} \frac{d\theta_{e}}{d\xi} + \frac{4,1 \times 10^{-2}}{A_{i}^{1/2}} \theta_{i}^{5/2} \frac{d\theta_{i}}{d\xi} \right] \qquad (3.4^{\circ}c)$$

Finalmente, integrando las ecuaciones (3.4') entre 0 y ξ_{f} , y teniendo en cuenta que

$$\overline{n}(\xi_{f}) = 1$$
, $\theta_{e}(\xi_{f}) = \theta_{i}(\xi_{f}) = u(\xi_{f}) = 0$,

se obtienen tambien las condiciones integrales

$$\int_{0}^{\xi} f = \xi_{f} \qquad (3.4".a)$$

$$\int_{0}^{\xi} f = \overline{\alpha} n(0) \left[\theta_{e}(0) + \theta_{i}(0) \right] \qquad (3.4".b)$$

$$\int_{0}^{\xi} f = \overline{\alpha} n\left[\theta_{e} + \theta_{i} + \frac{u}{3} - \frac{u^{2}}{\alpha} \right] d\xi = 1/2 \qquad (3.4".c)$$

En general, conviene adimensionalizar los parámetros externos ϕ_0, τ y n_0 con unos valores de referencia que sean razonables en el caso de la fusión producida con laser. Se definen los nuevos parámetros

$$\hat{\phi} = \frac{\phi_0}{\phi_r}$$
, $\hat{\tau} = \frac{\tau}{\tau_r}$, $\hat{n} = \frac{n_0}{n_r}$

donde

$$\phi_r = 10^{14} \frac{w}{cm^2}$$
, $\tau_r = 10^{-9}$ s, $n_r = n_s(D-T) = 4,7 \times 10^{22} cm^{-3}$

La energía por unidad de área depositada en el plasma, por el laser, en un tiempo t = τ es:

$$\int_{0}^{\phi_{0}} \frac{t}{\tau} dt = 50 \hat{\phi} \hat{\tau} k J/cm^{2}$$

En caso de que la energía se deposite en una esferita de radio 500 micras, la energía total es:

$$E = 50x4\pi(0,05)^2 \hat{\phi} \hat{\tau} = 1,57 \hat{\phi} \hat{\tau} kJ$$

En función de estos parámetros adimensionales, el número adimensional α y los valores de referencia v_0 , w y T_0 , se expresan:

$$\alpha = \frac{9}{4} \frac{k}{m_{i}} \left[\frac{(kn_{0})^{2} \tau}{\phi_{0} \overline{K}_{e}} \right]^{2/3} = \frac{15}{A_{i}} \left[\frac{n^{2} \tau}{\tau} \right]^{2/3}$$

$$\tau_{0} = \frac{4}{3} w = \frac{4}{3} \left[\frac{\phi_{0}^{5} \overline{K}_{e}^{2}}{(kn_{0})^{7} \tau^{2}} \right]^{1/9} = 1,65 \times 10^{7} \left[\frac{\phi_{0}^{5}}{n^{7} \tau^{2}} \right]^{1/9} \text{ cm s}^{-1}$$

$$T_{0} = \left[\frac{\phi_{0}^{2} \tau}{\overline{K}_{e} k n_{0}} \right]^{2/9} = 1,1 \left[\frac{\phi^{2} \tau}{n} \right]^{2/9} \text{ KeV}$$

Finalmente la hipótesis de cuasineutralidad exige que la longitud de Debye, $\lambda_{\rm D}^{},$ satisfaga la condición

,

.

$$\lambda_{\rm D} = (kT_{\rm e}/4\pi {\rm ne}^2)^{1/2} < x_{\rm f}$$

En variables de semejanza se tiene

•

.

-

$$\frac{\left(\theta_{e}\alpha\right)^{1/2}}{\xi_{f}} \ll \frac{t}{\tau} \left(\omega_{pi}\tau\right)$$
(3.8)

donde ω_{pi} es la frecuencia iónica del plasma. La condición (3.8) se cum ple fácilmente para \hat{n} y $\hat{\tau}$ del orden de la unidad.

4.- ANALISIS DE LAS ECUACIONES PARA EL CASO a << 1.

A la vista de las ecuaciones (3.4) se hace un desarrollo de las variables en potencias de α .

$$\overline{n} = 1 + \alpha n_1 + \dots$$

$$u = 0 + \alpha u_1 + \dots$$

$$\theta_e = \theta_{e1} + \alpha \theta_{e2} + \dots$$

$$\theta_i = 0 + \alpha \theta_{i1} + \dots$$

Sustituyendo este desarrollo en el sistema de ecuaciones y desprecian do los términos de la conducción de los iones y viscosidad de iones y electrones, se tiene en primera aproximación, suponiendo 1 >> α >> >> $m_e/m_i(\chi = 1)$

$$\frac{dn_1}{d\xi} = \frac{1}{\xi} \frac{du_1}{d\xi}$$
(4.1.a)

$$u_1 - 4\xi - \frac{du_1}{d\xi} = -\frac{d\theta_{e1}}{d\xi}$$
(4.1.b)

$$\theta_{e1} - 2\xi \frac{d\theta_{e1}}{d\xi} = \frac{d}{d\xi} \left(\theta_{e1}^{5/2} \frac{d\theta_{e1}}{d\xi} \right)$$
(4.1.c)

$$\theta_{i1} - 2\xi \frac{d\theta_{i1}}{d\xi} = \frac{4,3}{\theta_{e1}^{1/2}}$$
 (4.1.d)

con las condiciones de contorno:

$$n_1^{(\infty)} \simeq u_1^{(\infty)} = \theta_{i1}^{(\infty)} = 0 \qquad (4.2)$$

$$\theta_{e1}(\infty) = 0, \quad \theta_{e1}^{5/2}(0) \xrightarrow{d\theta_{e1}}{d\xi} = -1/2 \quad (4.3)$$

Al haber desaparecido algunas de las derivadas de mayor orden, el número de condiciones de contorno disminuve; se puede anticipar entonces que la solución del sistema (4.1) no será uniformemente valida en todo el espacio, existiendo una solución interior en una zona próxima al origen, en la que habrá que retener algunos de los términos ahora despreciados.

Para encontrar la solución de (4.1) con las condiciones de contor no (4.2) y (4.3), hay que integrar primero la ecuación (4.1.c) (en la cual entra exclusivamente θ_{e1}) con las condiciones de contorno (4.3) y posteriormente integrar las restantes ecuaciones del sistema (4.1).

Puede demostrarse facilmente que la solución de (4.1.c) con las condiciones de contorno (4.3), es tal que $\theta_{e1} = 0$ para $\xi \ge \xi_f$. El problema es equivalente entonces a:

$$\theta_{e1} - 2\xi \frac{d\theta_{e1}}{d\xi} = \frac{d}{d\xi} \left(\theta_{e1}^{5/2} - \frac{d\theta_{e1}}{d\xi} \right)$$
(4.1.c)

con las condiciones:

$$\theta_{e1}(\xi_{f}) = 0$$
, $\theta_{e1}^{5/2}(0) \frac{d\theta_{e1}}{d\xi} \bigg|_{\xi=0} = -\frac{1}{2}$, $\int_{0}^{\xi_{f}} \theta_{e1} d\xi = 1/6$,

donde la última condición se obtiene integrando (4.1.c) entre 0 y ξ_f , e imponiendo la condición de flujo térmico nulo en el punto ξ_f

$$\theta_{e}^{5/2}(\xi_{f}) \frac{d\theta_{e}}{d\xi} = 0$$

La ecuación (4.1.c) puede ser integrada numéricamente o por medio de un método analítico aproximado (Mjolsness, R.C. v Ruppel, H.M.;1972) ajustando los parámetros A,ξ_f v p de la expresión $\theta_{e1} = A(1-\xi/\xi_f)^p$, de forma que cumpla la condición de contorno en el origen, y dos integrales medias de la ecuación (4.1.c). En efecto, de la condición de conto<u>r</u> no en el origen, se tiene:

$$\frac{p A^{7/2}}{\xi_{f}} = 1/2$$

Integrando (4.1.c) entre O y ξ_f , e imponiendo la condición de flujo térmico nulo en $\xi = \xi_f$, resulta

$$\frac{\xi_{f}^{A}}{1+p} = \frac{1}{6}$$

Igualmente multiplicando (4.1.c) por θ_{e1} , integrando entre 0 y ξ_f , e imponiendo la condición de flujo térmico nulo en $\xi=\xi_f$

$$\frac{2\xi_{f}}{1+2p} = \frac{7p/2-1}{9p/2-1} \frac{p A^{5/2}}{\xi_{f}}$$

de donde:

$$p = 0,411$$
, $\xi_f = 0,311$, $A = 0,757$
 $\theta_{e1} = 0,757(1 - \frac{\xi}{0,311})^{0,411}$ (4.4)

En la Fig. 1 se representa (4.4) y la solución exacta de (4.1.c) obtenida numéricamente, en función de ξ . Las restantes ecuaciones del sistema (4.1) con las condiciones de contorno (4.2) pueden ahora ser integradas. Las soluciones son:

$$u_{1} = -\frac{\xi^{1/4}}{4} \int_{\xi}^{\xi_{f}} \frac{d\theta_{e1}}{d\xi} \xi^{-5/4} d\xi \qquad (4.5)$$

$$\theta_{11} = 4.3 \frac{\xi^{1/2}}{2} \int_{\xi}^{\xi_{f}} \theta_{e1}^{-1/2} \xi^{-3/2} d\xi \qquad (4.6)$$

$$u_{1} = \xi_{1}^{\xi_{f}} \frac{du_{1}}{\xi} \xi^{-1/2} \xi^{-3/2} d\xi \qquad (4.7)$$

$$\begin{bmatrix} n_1 \\ \xi \end{bmatrix}_{\xi} d\xi$$

En las Figuras. 2 a 4 se representan (4.5), (4.6) y (4.7) en función de ξ .

Mientras que θ_{e1} presenta un comportamiento regular en todo el es pacio, satisfaciendo las condiciones de contorno en 0 y ξ_{f} , no sucede así con u₁, θ_{i1} y n₁, ó sus derivadas, que además de no cumplir las con diciones de contorno en el origen presentan un comportamiento singular en él. En efecto, el comportamiento de dichas funciones en las proximidades del origen viene dado en la forma:

$$u_{1} \approx -\frac{d\theta}{d\xi} \bigg|_{\xi=0} - C\xi^{1/4} = -\theta_{e1}^{+}(0) - C\xi^{1/4} \cdot (\text{para } \xi <<1) \quad (4.8)$$

$$\theta_{11} \approx \frac{4.3}{\theta_{e1}^{1/2}(0)} - C^{+}\xi^{-1/2} \quad (\text{para } \xi <<1) \quad (4.9)$$

$$u_{1} \approx C^{*} \xi^{-3/4} \quad (\text{para } \xi <<1) \quad (4.10)$$

La forma de (4.8), (4.9) y (4.10) sugiere la existencia de una región interior muy próxima al origen en la que habrá que retener en el sistema de ecuaciones (3.4), algunos de los términos despreciados en el análisis ante rior, ya que en dicha zona se hacen tan importantes como los que fueron retenidos.

Solución interior.

Se definen en la región interior las nuevas variables:

$$s = \frac{\xi}{\theta_{e1}^{1/2}(0)\Delta}$$

$$w = \frac{u}{-\alpha \theta_{e1}^{*}(0)}$$
(

Introduciendo estas variables en la ecuación de la cantidad de movimiento de (3.4) y usando la ecuación de la continuidad se tiene:

$$-w + 4s \frac{dw}{ds} = -1 + \frac{\alpha}{\Delta^2} \frac{1}{s} \frac{dw}{ds}$$

Es fácil comprobar que en la aproximación usada, $\theta_{e1}(\xi)=\theta_{e1}(0)$, $\theta'_{e1}(\xi)=$ = $\theta'_{e1}(0)$, $\overline{n}(\xi)=1$ y los términos de viscosidad pueden ser despreciados. En una región de espesor $\Delta a^{1/2}$ se tiene entonces:

$$w-1+\frac{dw}{ds}(\frac{1}{s}-4s)=0$$
 (4.11)

cuya solución es

$$w = 1 - B \left| 1 - 4s^2 \right|^{1/8}$$
(4,12)

La solución de (4.11) dada por (4.12) es tal que presenta un punto de re- \pm roceso en s=1/2; por otra parte (4.12) debe de ser tal que cumpla la con dición de contorno en el origen y que acople con el comportamiento (4.8) de la solución exterior para $\xi <<1$. Esto implica que el valor de la constan te B de (4.12) debe ser distinto a la izquierda v derecha del punto de retroce so. En efecto, de la condición de contorno en el origen:

$$u = -\alpha \theta_{e1}^{\prime}(0)w = -\alpha \theta_{e1}^{\prime}(0) \left[1 - B \left| 1 - 4s^{2} \right|^{1/8} \right] = 0$$

B = 1

Por otra parte del acoplamiento con la solución exterior,

En la Fig. 2 se incluye una representación de $u(\xi)$ en la región interior $[\xi = 0(\alpha^{1/2})]$.

A la vista de lo anterior se observa que la solución obtenida presenta una discontinuidad en la derivada de la velocidad en el punto s=1/2; el pla no s=1/2 es por tanto una "superficie de discontinuidad débil" (Landau, L. y Lifshitz, E.M.; 1959). En efecto tales discontinuidades se mueven relativas al fluido, con la velocidad de propagación c de una pequeña perturbación [en el caso presente, debido a la conducción térmica, se tiene $c^2 \equiv (dp/dp)_T = kT_e/m_i$, dado que $T_i << T_e$], y es fácil comprobar que en el punto singular s=1/2,

$$4(\xi-u)^2 \overset{2}{\sim} 4\xi^2 = \alpha\theta_e ,$$

igualdad que en variables físicas se escribe:

$$\left(\frac{dx_{d}}{dt}-v\right)^{2} = \frac{kT_{e}}{m_{i}}$$

siendo x_d(t) la posición de la superficie de discontinuidad.

A causa del salto en la derivada de la velocidad, es claro que en torno al punto s=1/2, debe existir una capa viscosa (de espesor mucho menor que $\alpha^{1/2}$) donde los términos viscosos de la ecuación de la cantidad de movimiento de (3.4) se hacen importantes y eliminan el salto en la derivada de la velocidad. Un análisis detallado de esta capa viscosa será presentado en el Apéndice A.

Es fácil ver que la singularidad en la densidad desaparece simul táneamente con la singularidad en la derivada de la velocidad, como se ve en (4.1.a) (du/d $\xi \sim \xi$ para $\xi \rightarrow 0$). Por el contrario para que la temperatura de los iones cumpla la condición de contorno en el ori gen, d $\theta_i/d\xi \mid_{\xi=0}=0$, sería necesario retener el término de conducción iónica en una zona próxima al origen.

5.- ANALISIS DE LAS ECUACIONES PARA EL CASO $\alpha >> 1$.

La solución del sistema de ecuaciones (3.4) con las condiciones de contorno (3.5), depende del parámetro α , que determina esencialmente el proceso de flujo de energía en el plasma. La condición

$$\alpha \equiv \frac{9}{4} \frac{k}{m_{i}} \left[\frac{(kn_{0})^{2} \tau}{\phi_{0} \overline{K}_{e}} \right]^{2/3} << 1,$$

puede ser interpretada de dos diferentes maneras. Para un valor dado de ϕ_0/τ , esta condición implica que n_0 , y por tanto la capacidad térmica por unidad de volumen del plasma, son tan pequeños que la temperatura de los electrones, T_e , crece muy rapidamente; para un valor dado de n_0 , la condición a<<1, impli ca que ϕ_0/τ es tan grande que de nuevo se tiene un crecimiento muy rápido de T_e , (véase Sec. 6). En ambos casos, la inercia del plasma es tal que el gradiente de presión es incapaz de mover el plasma apreciablemente; por tanto $n \approx n_0$ y el transporte de energía por convección es despreciable frente al transporte por conducción. En el límite opuesto $\alpha>1$, (que corresponde a bajas temperaturas), el transporte de energía por convección debe ser dominante y da lugar a una onda de choque (si se desprecia la viscosidad) separando el plasma en movimiento del plasma en reposo (Zel'dovich, Ya. B., y Raizer, Yu. P.; 1966). No obstante como en $\xi = 0$ la convección es nula, debe existir una región englobando al origen donde el transporte de energía por conducción sea importante.

Debido a la existencia de una onda de choque separando el medio perturbado del no perturbado, además de las ecuaciones (3.4) y condiciones de contorno (3.5), hay que establecer las condiciones de salto en las magnitudes densidad, velocidad y temperatura de ambas especies a través de la onda. Para establecer las condiciones de salto, conviene utilizar las ecuaciones escritas en forma de ecuaciones de conservación (3.4'a), (3.4'.b) y (3.4'.c). Integrando estas ecuaciones a través de una zona de espesor $\Delta\xi$, centrada en la posición de la onda de choque, $\xi_{\rm f}$, tal que $\Delta\xi << \xi_{\rm f}$, y suponiendo que detrás de la onda de choque los términos de viscosidad y conducción son despre ciables y que las temperaturas de ambas especies (iones y electrones) son iguales, se tiene:

$$\begin{bmatrix} \overline{n} & (\xi - u) \end{bmatrix}_{f} = \begin{bmatrix} \overline{n} & (\xi - u) \end{bmatrix}_{d}$$

$$\begin{bmatrix} 4\overline{n}(\xi - u)u - 2\alpha\overline{n}\theta \end{bmatrix}_{f} = \begin{bmatrix} 4\overline{n}(\xi - u)u - 2\alpha\overline{n}\theta \end{bmatrix}_{d}$$

$$\begin{bmatrix} 4\overline{n}(\theta + \frac{2}{3}\frac{u^{2}}{\alpha})(\xi - u) - \frac{8}{3}\overline{n}u\theta \end{bmatrix}_{f} = \begin{bmatrix} 4\overline{n}(\theta + \frac{2}{3}\frac{u^{2}}{\alpha})(\xi - u) - \frac{8}{3}\overline{n}u\theta \end{bmatrix}_{d}$$

donde los subindices f y d indican detrás y delante de la onda respectivamente. Delante de la onda, se puede suponer el plasma no perturbado y se tiene (3)

$$\overline{n_d} = 1$$
, $u_d = \theta_d = 0$;

las condiciones de salto quedan entonces:

$$\overline{n}_{f}(\xi_{f}-u_{f}) = \xi_{f}$$

$$4\overline{n}_{f}u_{f}(\xi_{f}-u_{f})-2\alpha\overline{n}_{f}\theta_{f} = 0$$

$$4\overline{n}_{f}(\theta_{f}+\frac{2}{3}-\frac{u_{f}^{2}}{\alpha})(\xi_{f}-u_{f})-\frac{8}{3}\overline{n}_{f}-u_{f}-\theta_{f} = 0$$

⁽³⁾ En realidad, delante de la onda de choque, existe un precursor ó zona de precalentamiento de espesor ó, ($\delta < \xi_{\rm f}$) (véase Sec. 6); puede considerar se por tanto, embebida en la onda de choque y suponer no perturbado el estado del plasma delante de la onda (Zel'dovich; Ya. B.y Raizer, Yu. P.; (1966).

sistema de tres ecuaciones algébricas con tres incognitas cuva solución es:

$$\bar{n}_{f} = 4$$
, $u_{f} = \frac{3}{4}\xi_{f}$, $\theta_{f} = \frac{3}{8}\frac{\xi_{f}^{2}}{\alpha}$

Con objeto de fijar la posición de la onda de choque, conviene tomar, como nuevas variables, las anteriores divididas por los valores de dichas variables detrás de la onda de choque, Se definen entonces:

$$n = \frac{\xi}{\xi_{f}}, \quad y = \frac{u}{u_{f}}, \quad z = \frac{\theta}{\theta_{f}}, \quad v = \frac{\overline{n}}{\overline{n}_{f}}$$

Reescribiendo la expresión (3.4".c) en las nuevas variables:

$$\int_{0}^{1} 5v(z+y^{2}) dn = \frac{\alpha}{3\xi_{f}^{3}}$$
(5.1)

los valores de y, v, z, n, detrás de la onda de choque son de orden unidad; por tanto $\xi_f = \gamma \alpha^{1/3}$, donde γ es una constante desconocida de orden unidad que determina la posición de la onda.

El sistema de-ecuaciones (3.4) escrito en las nuevas variables es:

$$\frac{dv}{dn} = \frac{3v}{4n-3v} \frac{dv}{dn}$$

.

$$vy+v(3y-4\eta)\frac{dy}{d\eta} = -\frac{1}{2}\frac{d}{d\eta}\left[v(z_e+z_i)\right] + \frac{3.9x10^{-2}}{A_i^{1/2}}\left(\frac{3}{8}\right)^{5/2}\frac{\gamma^3}{4\alpha^{3/2}}\frac{d}{d\eta}\left(z_i^{5/2}\frac{dv}{d\eta}\right)$$

$$v \left[z_{e} (1 + \frac{dv}{dn}) + \frac{1}{2} (3v - 4n) \frac{dz_{e}}{dn} \right] = (\frac{3}{8})^{5/2} \frac{\gamma^{3}}{4\alpha^{3/2}} \frac{d}{dn} (x_{2} \frac{5/2}{e} - \frac{dz_{e}}{dn}) - \frac{4}{3} \frac{4}{(\frac{3}{8})^{3/2}} \frac{\alpha^{3/2}}{\gamma^{3}} v^{2} - \frac{\frac{z_{e} - z_{1}}{2}}{\frac{z_{e}^{3/2}}{e}}$$

,

$$v \left[z_{i} (1 + \frac{dy}{dn}) + \frac{1}{2} (3y - 4\eta) \frac{dz_{i}}{dn} \right] = \frac{4 \cdot 1 \pm 10^{-2}}{A_{i}^{1/2}} \left(\frac{3}{8} \right)^{5/2} - \frac{y^{3}}{4\alpha^{3/2}} \frac{d}{d\eta} \left(z_{i}^{5/2} - \frac{dz_{i}}{d\eta} \right) + + 4 \cdot 3 \frac{4}{\left(\frac{3}{8}\right)^{3/2}} \frac{\alpha^{3/2}}{y^{3}} v^{2} \frac{z_{e}^{-z_{i}}}{z_{e}^{3/2}} + \frac{3 \cdot 9 \times 10^{-2}}{A_{i}^{1/2}} \left(\frac{3}{8} \right)^{5/2} \frac{y^{3}}{2\alpha^{5/2}} z_{i}^{5/2} \left(\frac{dv}{d\eta} \right)^{2} X = \left[1 + \left(\frac{2\pi}{\alpha} - \frac{\pi}{m_{i}} \right)^{1/2} \left(\frac{3}{8} \right)^{2} - \frac{y^{3}}{4\alpha} - \frac{z_{e}}{v} + \frac{1}{dz_{e}} - \frac{dz_{e}}{d\eta} + \frac{1}{2} \right]^{-1}$$
(5.2)

con las condiciones de contorno:

.

.

$$v(1) = y(1) = z_e^{(1)} = \pi_i^{(1)} = 1$$

$$y(0) = 0, \qquad \frac{dz_i}{d\eta} \bigg|_{\eta=0}^{z=0} ,, \qquad \frac{(3)^{7/2}}{8} \frac{\gamma^6}{\alpha^{3/2}} \chi_z^{5/2}(0) \frac{dz_e}{d\eta} \bigg|_{\eta=0}^{z=-\frac{1}{2}}$$

.

.

Es fácil comprobar que se verifican las hipótesis hechas para la obtención de las condiciones de salto a través de la onda de choque. En efecto, a la vista del sistema de ecuaciones (5.2) v teniendo en cuenta que $\alpha >> 1$, se comprueba que en primera aproximación las temperaturas de iones v electrones son iguales y que los términos de conducción v viscosidad son despreciables.

Zona Isentrópica.

Sumando las dos últimas ecuaciones del sistema (5.2), teniendo en cuen ta que $z_i = z_i = z$, y haciendo el límite formal $\alpha + \infty$, se tiene

$$\frac{dv}{dn} = \frac{3v}{4\eta - 3y} \frac{dy}{d\eta}$$

$$vy - v(4\eta - 3y) \frac{dy}{d\eta} = -\frac{d}{d\eta} (vz)$$

$$2z(1 + \frac{dv}{d\eta}) - (4\eta - 3y) \frac{dz}{d\eta} = 0$$
(5.3)

con las condiciones de contorno

$$v(1) = v(1) = z(1) = 1$$
 (5.4)

Al haber despreciado las derivadas de orden superior al primero, no es posible imponer la totalidad de las condiciones de contorno, lo cual sugiere que la solución del sistema (5.3) no será uniformemente valida en todo el dominio; existirá por tanto, una región donde la conducción se hace tan im portante como los restantes términos.

Debido al caracterer isentrópico de (5.3) se puede derivar una integral adiabática, (Sedov, L.I.; 1957), y haciendo uso de la primera y terce ra de las ecuaciones de (5.3), se tiene:

$$\frac{v^{7/3}(4n-3v)}{z^2} = \text{const} = 1$$
 (5.5)

donde la constante ha sido determinada de las condiciones de contorno (5.4). Combinando adecuadamente las ecuaciones, el sistema (5.3) puede escribirse en la forma:

$$\frac{dy}{dn} = -\frac{y(4n-3y)+2z}{5z-(4n-3y)^2}$$

$$\frac{dz}{dn} = \frac{2z}{(4n-3y)} (1 + \frac{dy}{dn})$$
(5.6)

El sistema de ecuaciones (5.6) junto con las condiciones (5.4) determinan z e y, y la relación algébrica (5.5) permite entonces el cálculo de v como función de n.

Definiendo las variables:

$$Y = y/\eta$$

 $Z = z/\eta^2$

el sistema (5.6) puede escribirse:

$$\eta \frac{dY}{d\eta} = -Y - \frac{Y(4-3Y)+2Z}{5Z-(4-3Y)^2}$$
(5.7.a)

$$\frac{dZ}{dY} = \frac{2Z}{4-3Y} \frac{Z(17-15Y)+(4-3Y)[Y+3(Y-1)(4-3Y)]}{Z(2+5Y)+3Y(Y-1)(4-3Y)} (5.7.b)$$

A la vista del sistema de ecuaciones (5.7), se observa que en n=1 se tiene dY/dn < 0; Y aumenta cuando n disminuve. Por otra parte en el plano de las fases (Z, Y) (véase Fig. 5) (Zel'dovich, Ya. B. v Raizer, Yu. P.; 1966), de (5.7.b) se tiene dZ/dY = 6/7 > 0 en Y=1, Z=1, v por tanto Z aumenta cuando Y aumenta. Es fácil demostrar de (5.7.b) que dZ/dY es finita en tan to no cambia de signo, v que cambia de signo antes de llegar al punto Y=4/3. Se comprueba entonces facilmente que cuando (4-3Y) + 0, Z \sim (4-3Y)^{3/13}, y de (5.7.a) que dY/dn < 0 para todo n.

Denominando $\overline{\eta}$ al valor de η para el cual Y=4/3, se tiene para $\eta \rightarrow \overline{\eta}$:

$$z = n^{2} Z ~ c_{1} (n - \overline{n})^{3/13}$$

$$y = n Y ~ \frac{4}{3} - \frac{2}{5} (n - \overline{n})$$
(5.8)

y de (5.5)

$$v \& C_{2}(n - \overline{n})$$
 (5.9)

donde $\overline{n} \approx 0,82$, $C_1 \approx 1,70 \text{ y } C_2 \approx 0,78$, han sido obtenidos de la integración numérica de (5.7). Los resultados de dicha integración y de la ecua ción algébrica (5.5), son presentados en las Figs. 6 a 8.

Debido a su carácter isentrópico la solución hallada para la región n>n coincide con la solución al problema clásico de la compresión de un gas en reposo por un pistón plano que se mueve con velocidad U \sim tⁿ, para el caso particular n=1/3. Como es sabido, para ciertos valores de n el comportamiento de la solución en la superficie del pistón es análogo al obtenido aquí: la velocidad y la presión permanecen finitos, la tempe ratura tiende a cero y la densidad se hace infinita (Sedov, L.I.; 1957), (Wang, K.C.; 1964), (Helliwell, J.B.; 1969).

Zona de conducción.

Como puede apreciarse de los resultados obtenidos, la solución isentró pica deja de-ser válida en las proximidades del punto \overline{n} . La velocidad alcan za en \overline{n} un valor finito y por tanto a izquierda v derecha de \overline{n} , el orden de magnitud de la velocidad, \underline{v} , debe ser el mismo. De la condición de contorno en el origen

$$\frac{(\frac{3}{8})^{7/2}}{8} \frac{\gamma^{6}}{\alpha^{3/2}} \chi_{z}^{5/2}(0) \frac{dz}{dn} \bigg|_{n=0} = -1/2,$$

se deduce que la temperatura z es del orden de $\alpha^{3/7}$. De la expresión (3.4".a), se tiene

$$\int_{0}^{1} v d\eta = 1/4$$

y la solución isentrópica es tal que:

$$\int_{\frac{1}{n}}^{1} v dn = 1/4 ;$$

luego la densidad v, debe ser mucho menor que la unidad a la izquierda de $\overline{\eta}$. De (3.4".b),se tiene entonces:

$$\int_{\frac{1}{\eta}}^{1} 5vyd\eta = v(0) z(0) ,$$

lo que implica que v es del orden de $\alpha^{-3/7}$. Finalmente es fácil comprobar de (5.2) que las temperaturas de iones y electrones son iguales y X = 1.

Teniendo en cuenta lo anteriormente expuesto, se definen las variables:

$$n = n$$

$$y = v$$

$$N = \alpha^{3/7}v$$

$$\psi = \alpha^{-3/7}z_e = \alpha^{-3/7}z_i$$

Sustituvendo las nuevas variables en el sistema de ecuaciones (5.2), reteniendo los términos dominantes en el límite $\alpha + \infty$ y sumando las ecuaciones de la entropía para ambas especies, se tiene:

$$\frac{dN}{dn} = \frac{3N}{4n-3v} \frac{dv}{dn}$$
(5.10.a)

$$\frac{\mathrm{d}N\psi}{\mathrm{d}n} = 0 \tag{5.10.b}$$

$$2N\psi(1+\frac{dv}{dn}) - N(4n-3y) \frac{d\psi}{dn} = (\frac{3}{2})^{5/2} \frac{y^3}{2} \frac{d}{dn} (\psi^{5/2} \frac{d\psi}{dn})$$
(5.10.c)

Para resolver el sistema de ecuaciones (5.10) son necesarias cinco condiciones de contorno, una más de lo que indica el orden de las derivadas, debido a la constante γ desconocida. Se cuenta para ello con las condiciones de contorno en el origen, $\left[y(0) = 0, (3/8)^{5/2} \gamma^3 \psi^{5/2}(0) d\psi/dn\right]_{\eta=0} = -4/3\gamma^3$, mas tres condiciones de empalme con la solución isentrópica.

De (5.10.b), N ψ =constante, y teniendo en cuenta que dicho valor debe coincidir con el del límite de la solución isentrópica cuando $\eta \rightarrow \overline{\eta}$, se tie ne entonces de (5.8) y (5.9)

$$N\psi = C_1 C_2 \gtrsim 1.32$$
.

Con ayuda de las ecuaciones (5.10.a) y (5.10.b), la ecuación (5.10.c) puede ser integrada una vez; se tiene entonces:

1,32(2n+5y) =
$$\left(\frac{3}{8}\right)^{5/2} - \frac{\gamma^3}{4} \psi^{5/2} - \frac{d\psi}{dn} + A$$

donde la constante A se determina imponiendo las condiciones de contorno en el origen:

$$A = \frac{1}{3\gamma^3}$$

Las ecuaciones (5.10) quedan entonces:

$$\frac{d\psi}{dn} = \frac{3,96\gamma^{3}(2n+5\gamma)-1}{2(3/8)^{7/2}\gamma^{6}\psi^{5/2}}$$

$$\frac{dy}{dn} = -\frac{4n-3\gamma}{3\psi} \frac{d\psi}{dn}$$
(5.12)

con las condiciones de contorno:

$$y(0)=0$$
, $y(\overline{\eta}) = \frac{4}{3}\overline{\eta}$, $\psi(\overline{\eta}) = 0$.

Se puede analizar el comportamiento de la solución del sistema de ecuaciones (5.12) en las proximidades del punto \overline{n} , escribiendo:

$$\psi \sim D(\overline{n}-n)^P$$
, $y \sim \frac{4}{3}\overline{n} - E(\overline{n}-n)^Q$

donde:

,

Sustituyendo las anteriores expresiones en (5.12), se comprueba que el comportamiento de las soluciones es de la forma:

$$\psi \sim D(\overline{n}-n)^{2/5}$$
, $y \sim \frac{4}{3} \overline{n}-E(\overline{n}-n)^{2/5}$

Además, como $\psi^{5/2} \frac{d\psi}{d\eta} \rightarrow 0$ cuando $\eta \rightarrow \eta$, se tiene de (5.12)

$$3,96\gamma^3 \xrightarrow{26} \overline{n} - 1 = 0 \implies \gamma = 0,33$$

Los resultados de la integración numérica de (5.12) son presentados en las Figs. 9 a 11. Se observa que tanto a la derecha como a la izquierda del punto \overline{n} , la densidad se hace infinita, la temperatura se hace nula y la ve locidad alcanza un valor finito.

Es importante señalar que, para todo η , la expresión $v(4\eta-3v)$, debe ser función monótona creciente de η , (véase (3.4¹.a)) y que la solución obtenida aquí viola dicha condición en el punto $\overline{\eta}$. En efecto:

 $v(4n-3y) \sim (n-\overline{n})^{10/13} + 0$ cuando $n + \overline{n}^+$ (5.13) $v(4n-3y) \sim \alpha^{-3/7} (\overline{n-n})^{-2/5} (\overline{n-n})^{-3/7} \sim \alpha$ cuando $n + \overline{n}^-$ (5.14)

Por tanto, en \overline{n} , $\nu(4n-3y)$ (flujo másico relativo a la superficie $n=\overline{n}$) viola la condición de monotonicidad en un orden de magnitud $\alpha^{-3/7}$. Naturalmen te la solución de orden unidad obtenida anteriormente no es afectada, excep to en un cierto entorno del punto $n=\overline{n}$. Un análisis más refinado del compor tamiento de la solución en el entorno de dicho punto, presentado en el Apén dice B, demuestra que $\nu(4n-3y)$ es continua para todo n y que z y ν presentan respectivamente un mánimo (= $0,77\alpha^{-9/70}$) y un máximo (= $1,72 \alpha^{9/70}$) en un punto n_m , siendo $n_m - \overline{n} = 0,032 \alpha^{-39/70}$.

6.- DISCUSION DE RESULTADOS.

Cuando se deposita una energía por unidad de área v tiempo, ¢, en la forma

$$\phi = \phi_{\Omega} t / \tau$$

en un plano dado de un plasma, inicialmente frío y de densidad n_0 , se origina un movimiento cuasi-neutro de semejanza que depende exclusivamente del parámetro α definido en (3.7)

$$\alpha \sim (\frac{n_0^2 \tau}{\phi_0})^{2/3}$$

Para $\alpha <<1$, la energía fluye en forma de una onda térmica y en primera abroximación el plasma permanece en reposo con temperatura iónica nula. Se encuentra que el orden de magnitud de las variables de semejan za definidas en (3.3) y (3.7), es:

$$\xi_{\pm} \sim \theta_{\pm} = 0(1), \quad \theta_{\pm} \sim \overline{n-1} \sim u = 0(\alpha)$$

En ausencia de viscosidad y de conducción iónica, u y n presentan un má ximo, en una discontinuidad débil, en $\xi \sim O(\alpha^{1/2})$ y la derivada de θ_i es discontinua en $\xi=0$. Para α comparable o menor que m_e/m_i , el proceso de conducción no está dominado por colisiones y hay que considerar un limitador de flujo térmico (4).

(4) En el caso $1 > \alpha > \frac{m_e}{m_i}$ es necesario también introducir el limitador de flujo térmico en una zona estrecha muv próxima a ξ_f , donde

$$\frac{\theta_{e}}{\overline{n}} \mid \frac{d\theta_{e}}{d\xi} \mid >>1 .$$

Para $\alpha >>1$, las temperaturas iónica v electrónica son iguales en primera abro ximación. Existen dos zonas de extensión comparable, separadas por una capa estre cha, densa v fría v precedidas por una onda de choque (en ausencia de viscosidad) que delimita la región de plasma perturbado. En la zona situada detrás de la onda de choque la conducción es despreciable frente a la convección y las energías tér mica y cinética son del mismo orden. Entre esta zona isentrópica y el origen, la conducción (onda térmica) y la convección de energía térmica son comparables. El orden de magnitud de las variables de semejanza en las diferentes regiones es:

Zona de conducción,

$$\overline{n} = 0(\alpha^{-3/7}), \quad \theta_{\alpha} = \theta_{1} = 0(\alpha^{2/21}), \quad \Delta \xi = 0(\alpha^{1/3})$$

Zona isentrópica,

$$\overline{n} = 0(1), \quad \theta_e = \theta_i = 0(\alpha^{-1/3}), \quad \Delta \xi = 0(\alpha^{1/3})$$

Capa intermedia,

$$\overline{n} = O(\alpha^{9/70}), \quad \theta_e = \theta_i = O(\alpha^{-97/210}), \quad \Delta \xi = O(\alpha^{-47/210})$$

donde $\Delta\xi$ es el espesor de la región considerada, y en todo el plasma perturbado u=0($\alpha^{1/3}$), Debe señalarse además que existe un precursor, delante de la onda de choque, de extensión

$$(\Delta\xi)_{\text{precursor}} = O(\alpha^{-5/6})$$

Los resultados anteriores se representan esquemáticamente en la Fig. 12.

Aunque la solución numérica del sistema de ecuaciones (3.4) en el caso $\alpha=0(1)$ no ha sido considerada aquí, puede obtenerse información cualitativa de este caso, como situación intermedia de los comportamientos para $\alpha<<1$ ν $\alpha>>1$. En efecto, considerese el caso $\alpha>>1$, anteriormente tratado. A medida

oue a disminuye, la longitud del precursor que precede a la onda de choque aumenta, el máximo de la densidad y el mínimo de la temperatura disminuve y aumenta respectivamente y los espesores de las diversas regiones tienden a hacerse comparables. Por tanto, cuando a=0(1), la configuración de la solución es tal que existe todavía una onda de choque situa da en medio de una onda termica, a una distancia del origen del orden de la unidad (el espesor del precursor que precede a la onda de choque es también del orden unidad). En esta situación, el transporte de energía por convección es del mismo orden que el transporte de energía por conducción en todo el plasma perturbado; en consecuencia la temperatura de los electrones es continua a través de la onda de choque, aún cuando su derivada no lo sea (Zel'dovich, Ya. B. v Raizer, Yu. P.; 1966). Por otra parte, cabe decir que las variables de semejanza θ_e , θ_j , \overline{n} y u son de or den de la unidad en todo el espacio perturbado y el proceso de relajación entre las temperaturas iónica y electrónica es tal que $\theta_{p} \neq \theta_{1}$. A medida que a decrece la onda de choque colapsa hacia el origen (el precursor ocupa una fracción creciente de la onda térmica) y para un cierto va lor de a se transforma en la "superficie de discontinuidad débil" (salto en las derivadas de la velocidad) hallada en el caso a<<1.

Es interesante por último, representar a la vista de los resultados obtenidos la variación de las magnitudes físicas, longitud de plasma per turbado hasta el instante t, x_f , velocidad del plasma, v, v temperatura de iones y electrones, T, v T_e, como funciones del parámetro α . De (3.3),

$$x_{f} = \xi_{f}(\alpha) wt (t/\tau)^{1/3}$$

y para twr, teniendo en cuenta (3.7)

$$x_{f} \sim \xi_{f}(\alpha) w_{T} \qquad \frac{x_{f}}{\tau(n_{0}\tau)^{1/3}} \sim \frac{\xi_{f}(\alpha)}{\alpha^{5/6}} \qquad (6.1)$$

$$\frac{x_{f}}{\tau(\phi_{0}\tau)^{1/6}} \sim \frac{\xi_{f}(\alpha)}{\alpha^{7/12}} \qquad (6.2)$$

En las Figs. 13 a 16 se representan esquémáticamente como función de α las expresiones (6.1)-(6.6), para $n_0 \tau$ ő $\phi_0 \tau$ (cantidad proporcional a la energía depositada por unidad de área) dados.

Conviene señalar también la existencia de conclusiones cualitativas de gran generalidad que se siguen de los resultados anteriores:

a) De las Figs. 13 y 14 se deduce que la velocidad y por tanto la energia cinética comunicada al plasma, considerada comouna función de a, presenta un máximo para valores de a del orden de la unidad. Existe por tanto un valor óptimo de a, de ese orden, para la fusión con laser de una pequeña esfera de D-T, ya que como se apuntó anteriormente para minimizar la energía del laser es necesario producir un flujo intenso de masa y energía hacia el interior de la esfera.

- b) Por otra parte, el fluio v la producción de entropía en el interior de la esfera deben ser mínimos. Para $\alpha >>1$, se tiene $T_e^{=}T_i$ v por tan to la producción de entropía en el proceso de relaiación de tempera turas de iones v electrones es despreciable; por el contrario, para $\alpha <<1$, $T_e^{>>T_i}$ v la producción de entropía es apreciable. Además para $\alpha <<1$ la energía fluve exclusivamente por conducción, la cual transporta también entropía, mientras que para $\alpha >>1$, el proceso de trans ferencia de energía es isentrópico en la parte más avanzada del plas ma perturbado. Finalmente el limitador de flujo térmico no es impor tante salvo cue α sea del orden de m_e/m_i o menor.
- c) Debe ser señalado por último que si el pulso del laser ϕ no es lineal, un valor o valores característicos de d ϕ/dt pueden reemplazar a ϕ_0/τ en la expresión de α , manteniendo su validez los resultados cualitativos anteriormente reseñados. Por otra parte, pueden recupe rarse algunos resultados particulares de la literatura científica como caso límite de la solución presentada aquí. En particular si se considera fijado ϕ_0 v se hace 1°) torto ($\phi \approx \phi_0$, $\phi/\tau = \phi_0/\tau + 0$) y 2°) torto, ($\phi \approx \phi_0$, $\phi/\tau = \phi_0/\tau + \infty$), se tiene respectivamente:

1°) Como $\alpha \sqrt{(n_0^2 \tau/\phi_0)^{2/3}} + \infty$, resulta, $\xi_{f} \sqrt{u=0} (\alpha^{1/3}) y \theta_e^{-\theta_i = 0} (\alpha^{-1/3})$ (para la región más avanzada del plasma perturbado). Por tanto de (6.2), (6.4) y (6.6) se obtiene

$$\frac{x_{f}}{\tau} \sim v \sim \left(\frac{\phi_{0}}{n_{0}}\right)^{1/3}$$
$$T_{e} = T_{i} \sim \left(\frac{\phi_{0}}{n_{0}}\right)^{2/3}$$

Estos resultados coinciden con los obtenidos por Fauquignon y Floux (1970), Bobin (1971) y Puell (1970), en un análisis aproximado del caso en que un flujo de irradiación constante. $\phi=\phi_0$ incide sobre un semiespacio de plasma frio, para tiempos suficientemente grandes (de modo que el comportamiento transitorio desaparezca) y por tanto $\phi/t + 0$.

2°) Como $\alpha \neq 0$, se tiene $\xi_f \circ \theta_e \circ O(1)$. Por tanto de (6.2) y (6.6) resulta,

$$\left. \begin{array}{c} x_{f} \sim \frac{\phi_{0}^{5/9} \tau^{7/9}}{n_{0}^{7/9}} \\ T_{e} \sim \frac{\phi_{0}^{4/9} \tau^{2/9}}{n_{0}^{2/9}} \end{array} \right\}$$
(6.7)

Un resultado análogo al anterior se obtiene cuando sobre un plano de un plasma frio se deposita instantaneamente una energía por unidad de área \dot{w} , tal que $\dot{w} = \phi_0 \tau$; de (6.2) y (6.6) se obtiene entonces:

$$x_{f} \sim \frac{\frac{1}{W}^{5/9} \tau^{2/9}}{n_{\theta}^{7/9}}$$

$$T_{e} \sim \frac{\frac{1}{W}^{4/9}}{\tau^{2/9} n_{0}^{2/9}}$$

$$(6.8)$$

Los resultados (6.7) y (5.8) coinciden con los obtenidos por Zel'dovich y Raizer (1966), y Caruso y Gratton (1969) en los casos en que un flujo de irradiación constante, $\phi=\phi_0$, incide sobre un plano de un plasma frío, 5 él de una deposición instantánea de energía sobre dicho plano, ambos para tiem pos suficientemente pequeños $(\phi/t + \infty)$.

APENDICE A (CAPA VISCOSA PARA EL CASO $\alpha <<1$).

Como se vió anteriormente en el caso $\alpha <<1$, la solución interior (4.12) presenta una discontinuidad en la derivada de la velocidad en el punto $s=1/2(dv/ds \rightarrow \pm \infty$, a ambos lados de dicho punto). En torno a s=1/2 existirá por tanto una zona donde los términos viscosos de la ecuación de la cantidad de movimiento de (3.4) deben ser retenidos.

Se definen las variables

$$\overline{s} = \frac{s - 1/2}{\overline{\Delta}}$$
$$\overline{w} = \frac{u}{-\alpha \theta_{e1}'(0)}$$

Introduciendo estas variables en la ecuación de la cantidad de movimiento, se tiene:

$$-\overline{w}+4\left[\alpha\theta_{e1}^{\dagger}(0)+(\alpha\theta_{e1}(0))^{1/2}\overline{\Delta s}\right]\frac{1}{(\alpha\theta_{e1}(0))^{1/2}\overline{\Delta}}\frac{d\overline{w}}{d\overline{s}}=$$

$$= -1 - \left[\frac{4\overline{s}}{4\overline{s}} + \frac{\alpha^{1/2}}{\overline{\Delta}} \frac{\theta_{e1}^{\prime}(0)}{\theta_{e1}(0)} (4\overline{w}-1) \right] \frac{d\overline{w}}{d\overline{s}} - \frac{\sigma}{\alpha \theta_{e1}(0)\overline{\Delta}^2} \frac{d^2\overline{w}}{d\overline{s}^2}$$

donde

$$\sigma = \frac{3.9 \times 10^{-2}}{A_{i}^{1/2}} \theta_{i1}^{5/2}(0) \alpha^{5/2} + \frac{4.9 \times 10^{-4}}{A_{i}} \theta_{e1}^{5/2}(0)$$

En una región de espesor $\overline{\Delta} = \left[\frac{\sigma}{\alpha \theta_{e1}(0)}\right]^{1/2}$, se tiene:

$$1 - \overline{w} + 8 \left[\overline{s} + \frac{\alpha}{\sigma^{1/2}} \theta_{e1}^{*}(0)(\overline{w} - \frac{1}{8}) \right] \frac{d\overline{w}}{d\overline{s}} + \frac{d^{2}\overline{w}}{d\overline{s}^{2}} = 0 \qquad (A.1)$$

-47-

Se comprueba facilmente que el cociente $\alpha/\sigma^{1/2}$, tiene un máximo de valor 1,76 cuando $\alpha \approx 3,9 \times 10^{-2}$, si se toma A_i = 2,5.

Haciendo el cambio

$$\overline{\overline{w}} = 1 - \overline{w}$$

$$\overline{\overline{w}} = 8 \left[\overline{s} + \frac{\alpha}{\sigma^{1/2}} \theta_{e1}^{*}(0) \left(\frac{7}{8} - \overline{\overline{w}}\right) \right] \frac{d\overline{\overline{w}}}{d\overline{s}} - \frac{d^{2}\overline{\overline{w}}}{d\overline{s}^{2}} = 0 \qquad (A.2)$$

El comportamiento para $\overline{s} + \pm \infty$ de la solución de la ecuación (A.2), debe ser tal que acople con las dos ramas (a la derecha e izquierda del punto s=1/2) de la solución interior. En efecto:

$$\overline{\overline{w}} + a^{\pm} (\pm \overline{s})^{m} \qquad \text{para} \quad \overline{s} + \pm \infty$$

sustituyendo en la ecuación (A.2), se tiene

$$m = \frac{1}{8},$$

y por tanto

$$u = -\alpha \theta_{e1}^{\prime}(0)\overline{w} = -\alpha \theta_{e1}^{\prime}(0)(1-\overline{w}) = -\alpha \theta_{e1}^{\prime}(0)\left[1-a^{\pm}(\pm \overline{s})^{1/8}\right] \quad \text{para } \overline{s} \to \pm \infty \quad (A.3)$$

A la derecha del punto s=1/2, la solución interior es:

$$u = -\alpha \theta_{e1}^{\prime}(0) \left[1 + (\frac{\alpha \theta_{e1}^{\prime}(0)}{4}) - \frac{1}{8} - \frac{1}{8} - \frac{1}{8} - \frac{1}{8} \right] = 0$$

$$= -\alpha \theta_{e1}^{\dagger}(0) \left\{ 1 + \left(\frac{\alpha \theta_{e1}(0)}{4} \right) \frac{1/8}{\theta_{e1}^{\dagger}(0)} \left[(2s+1)(2s-1) \right]^{1/8} \right\}$$

y teniendo en cuenta oue para s+1/2

$$2s+1 \approx 2$$
 y $2s-1 = 2(\frac{\sigma}{\alpha \theta_{e1}(0)}) = (A.4)$

se tiene:

.

.

$$u = -\alpha \theta_{e1}^{\prime}(0) \left[1 + (\alpha \sigma \theta_{e1}^{\prime}(0)) \frac{1/16}{\theta_{e1}^{\prime}(0)} \frac{C}{\theta_{e1}^{\prime}(0)} \frac{1/8}{s} \right]$$
 (A.5)

A la izquierda del punto s=1/2, la solución interior es:

$$u = -\alpha \theta_{e1}^{*}(0) \left[1 - (1 - 4s^{2})^{1/8}\right];$$

para s+1/2, teniendo en cuenta (A.4)

$$u = -\alpha \theta_{e1}^{\prime}(0) \left[1 - \mu^{1/8} \left(\frac{\sigma}{\alpha \theta_{e1}^{\prime}(0)} \right)^{1/16} \left(-\overline{s} \right)^{1/8} \right]$$
 (A.6)

Del acoplamiento de (A.3) con (A.5), resulta

$$a^{\dagger} = -\left[\alpha\sigma\theta_{e1}(0)\right]^{1/16} \frac{c}{\theta_{e1}^{\dagger}(0)} , \qquad (A.7)$$

del acoplamiento de (A.3) con (A.6)

$$a^{-} = 4^{1/8} \begin{bmatrix} \sigma \\ \alpha \theta_{e1}(0) \end{bmatrix}^{1/16}$$
(A.8)

Las condiciones de empalme (A.7) y (A.8) pueden ser utilizadas ahora co mo condiciones de contorno para la integración numérica de la ecuación (A.2). Para el análisis de esta zona, conviene tomar como variables:

$$z = z$$

 $J = v(4n-3y)$
 $P = vz$

El sistema de ecuaciones (5.2) escrito en las nuevas variables, teniendo en cuenta que $z_z=z_z=z$ y despreciando la viscosidad, es:

Para evitar la discontinuidad en J, es necesario, según (5.14), que el término de conducción comience a contar a la derecha de \overline{n} , a una distan cia del orden de $\alpha^{-39/70}$. Se define un punto n^{\pm} , tal que

$$n^{*} - n = ba^{-39/70}$$

y una zona de espesor muy pequeño en torno al punto n*

$$\eta - \eta^{*} = \alpha^{-T} s$$
, $r > 39/70$

El comportamiento de la solución isentrópica en las proximidades del punto n* es:

١

donde C_1 . C_2 v C_3 se obtienen de la solución isentrópica. A la vista del compor tamiento de dicha solución, en las proximidades del punto n*, dado por (B.2), se hace un desarrollo de las variables en potencias de α de la forma:

$$z = \alpha^{-9/70} c_1 b^{3/13} + \alpha^{3/7} - r z_1 + \dots$$

$$J = \alpha^{-3/7} \frac{26}{5} c_2 b^{10/13} + \alpha^{9/70} - r J_1 + \dots$$

$$P = c_1 c_2 + \alpha^{-3/7} c_3 b^{10/13} + \dots$$
(B.3)

~ Introduciendo este desarrollo en el sistema de ecuaciones (B.1), se tiene:

$$4C_{2} = b^{3/13} \frac{dJ_{1}}{ds}$$

$$\frac{1}{2} (3/8)^{5/2} \gamma^{3} a^{r+3/7} - \frac{3/2}{2} - \frac{45/140}{5} c_{1}^{5/2} b^{15/26} \frac{d^{2}z_{1}}{ds^{2}} = 4C_{1}C_{2} - \frac{52}{3} c_{2} b^{10/13} \frac{dz_{1}}{ds}$$

y para que entre en juego la conducción

.

.

$$r = 39/28$$

Por tanto en una zona en torno a n^* de espesor $\alpha^{-39/28}$, las ecuaciones son:

$$4C_{2} = b^{3/13} \frac{dJ_{1}}{ds}$$

$$\frac{1}{2} \left(\frac{3}{8}\right)^{5/2} \gamma^{3} c_{1}^{5/2} b^{15/26} \frac{d^{2}z_{1}}{ds^{2}} = 4C_{1} c_{2} - \frac{52}{3} c_{2} b^{10/13} \frac{dz_{1}}{ds}$$

cuya solución es

,

$$J_{1} = \frac{4C_{2}}{b^{3/13}} s + F$$

$$z_{1} = G + H \exp\left[-\frac{52}{3} \left(\frac{8}{3}\right)^{5/2} \frac{2b^{5/26}C_{2}}{\gamma^{3}C_{1}^{5/2}} s\right] + \frac{3C_{1}}{13 b^{10/13}} s$$
(B.4)

1

Se observa de (B.4), que para s $\rightarrow\infty$, el comportamiento de (B.3) coincide con el de la solución isentrópica dado por (B.2) y que el desarrollo de z en potencias de α , deja de ser valido cuando

$$-s = 0$$
 (ln α)

Se define entonces:

$$z = \alpha^{-9/70} \hat{z}_{1}$$
$$s = \frac{n - n^{*}}{\alpha^{-39/28}}$$

Introduciendo estas variables en la tercera de las ecuaciones del sistema (B.1), se tiene:

$$\frac{1}{7} (3/8)^{5/2} \gamma^3 \frac{d^2 \hat{z}_1^{7/2}}{ds^2} = \alpha^{-117/140} 4c_1 c_2 - \frac{52}{3} c_2 b^{10/13} \frac{d \hat{z}_1}{ds}$$
(B.5)

Para s positivo o estrictamente del orden de la unidad (-s<<ln α), (B.5) se linealiza y se recobra (B.4). Tomando ahora términos dominantes en (B.5) e integrando una vez, se tiene

$$\frac{1}{7} (3/8)^{5/2} \gamma^3 \hat{z}_1^{5/2} \frac{d\hat{z}_1}{ds} = -\frac{52}{3} c_2 b^{10/13} (\hat{z}_1 - c_1 b^{3/13})$$

,

cuya solución es:

.

$$-s = \frac{(2/7)(3/8)^{5/2} r^3}{(52/3) c_2 b^{10/13}} \left[\frac{\hat{z}_1^{5/2}}{5} + c_1 b^{3/13} \frac{\hat{z}_1^{3/2}}{3} + c_1^2 b^{6/13} \hat{z}_1^{1/2} + \frac{c_1^{5/2} b^{15/26}}{2} + \frac{c_1^{5/2} b^{15/26}}{2} \ln \frac{\hat{z}_1^{1/2} - (c_1 b^{3/13})^{1/2}}{\hat{z}_1^{1/2} + (c_1 b^{3/13})^{1/2}} \right]$$
(B.6)

De (B.6)

$$s \rightarrow +\infty$$
, $\hat{z}_1 \rightarrow C_1 b^{3/13}$
 $s \rightarrow -\infty$, $\hat{z}_1 \rightarrow (-5 \frac{(52/3)C_2 b^{10/13}}{(2/7)(3/8)^{5/2} \gamma^3} s)^{2/5}$

De donde, para s $\rightarrow -\infty$,

-54-

$$z = \alpha^{-9/70} \hat{z}_{1} \approx \alpha^{-9/70} (-5 \frac{(52/3) c_{2} b^{10/13}}{(2/7)(3/8)^{5/2} 3} s)^{2/5}$$

$$J \approx \alpha^{-3/7} \frac{26}{5} c_{2} b^{10/13}$$

$$P \approx c_{1} c_{2}$$
(B.7)

El comportamiento de la solución de la zona de conducción cuando $\overline{n}-n+0^+$, y $n^+-n>>|\overline{n}-n^+|$, teniendo en cuenta (5.13), es

١

1

$$z \approx \alpha^{3/7} D(n = n)^{2/5} = \alpha^{-9/70} D(-s)^{2/5}$$

$$J \approx \alpha^{-3/7} \frac{3EC_1C_2}{D}$$

$$P \approx C_1 C_2$$
(B.8)

donde, D y E se obtienen de la integración numérica de la zona de conducción. Del acoplamiento de (B.7) y (B.8) se tiene:

$$b = (\frac{15 \text{ E C}_1 13/10}{26D} \quad & 3,2\times 10^{-2};$$

۰.

Por tanto en n=n+3,2x10⁻² $a^{-39/70}$ hay un mínimo en la temperatura y un máximo en la densidad que valen:

$$z_{\min} = \alpha^{-9/70} C_1 b^{3/13} = 0,77 \alpha^{-9/70}$$
$$v_{\max} = \alpha^{9/70} \frac{C_2}{b^{3/13}} = 1,72\alpha^{9/70}$$

REFERENCIAS. -

AFANASYEV, Yu. V., KROKHIN, O.N. y SKLIZKOV, G.V., IEEE J. Quantum Electron., 2, 9, (1966), 483-86.

BABUEL-PEYRISSAC, J.P., FAUQUIGNON, C. y FLOUX, F., Phys. Lett., 30A, (1969), 290-1.

BASOV, N.G. y KROKHIN, O.N., en "3rd International Conference on Quantum Electronics, <u>2</u>, Grivet, P.y Bloembergen, N.,Eds., Dunod, Paris, (1964), 1373-77.

BOBIN, J.L., Phys. Fluids, 14, 11, (1971), 2341-54.

BOBIN, J.L. y REISSE, J.M., "Seventh European Conference on Controlled Fusion and Plasma Physics", <u>II</u>, Lausanne, (1975), 196-210.

BRAGINSKII, S., en "Reviews of Plasma Physics", 1, Leontovich, M.A., Ed., Consultants Bureau, New York (1965), 205-311.

BRUECKNER, K.A., en "Laser Interaction and Related Plasma Phenomena", 3B, Schwarz, H. y Hora, H., Eds., Plenum, New York, (1974), 427-47.

BRUECKNER, K.A. y JORNA, S., Rev. Mod. Phys., 46, 2, (1974), 325-67.

CARUSO, A., BERTOTTI, B. y GUIPPONI, P., Nuovo Cimento, <u>45B</u>, (1966), 176-89.

CARUSO, A. y GRATTON, R., Plasma Phys., 10, (1968), 867-77.

CARUSO, A. y GRATTON, R., Plasma Phys., 11, (1969), 839-47.

CARUSO, A., en "Laser Interaction and Related Plasma Phenomena", <u>1</u>, Schwarz, H. y Hora, H., Eds., Plenum, New York, (1971), 289-305.

CHU, M.S., Phys. Fluids, 15, 3 (1972), 413-22.

CLARKE, J.S., FISHER, H.N. y MASON, R.J., Phys. Rev. Lett., 30, (1973), 89-92.

DAIBER, J.W., HERTZBERG, A. y WITTLIFF, C.E., Phys. Fluids, <u>9</u>, (1966), 617-19.

DAWSON, J.M., Phys. Fluids, 7, 7,(1964), 981-87.

FADER, W.J., Phys. Fluids, 11, 10, (1968), 2200-09.

FAUQUIGNON, C. y FLOUX, F., Phys. Fluids, <u>13</u>, 2, (1970), 385-91.

GLASSTONE, S. y LOVBERG, R.H., "Controlled Thermonuclear Reactions". (Cap. 2), Ed. D. Van Nostrand, Princeton, (1960).

GOLDMAN, E.B., Plasma Phys., 15,(1973), 289-310.

GUDERLEY, G., Luftfahrtforschung, 19, (1942), 302-12.

. HAUGHT, A.F. y POLK, B.H., Phys. Fluids, 9, (1966), 2047-56.

HAUGHT, A.F. y POLK, B.H., Phys. Fluids, 13, 11, (1970), 2825-41.

HELLIWELL, J.B., J. Fluid Mech., <u>37</u>, 3, (1969), 497-512.

KIDDER, R.E., Nucl. Fusion, 8, (1968), 3-12.

KIDDER, R.E. y ZINK, J.W., Nucl. Fusion, 12, (1972), 325-28.

KIDDER, R.E., en "Laser Interaction and Related Plasma Phenomena", <u>3B</u>, Schwarz, H. y Hora, H., Eds., Plenum, New York, (1974), 449-64.

KROKHIN, O.N., Z. Angew. Math. Phys., 16, (1965), 123-24.

LANDAU, L.D. y LIFSHITZ, E.M., "Fluid Mechanics" (Cap. 9), Ed. Pergamon, London, (1959).

LAWSON, J.D., Proc. Phys. Soc., B70, (1957), 6-10.

LENGYEL, L.L., AIAA Journal, 11, (1973), 1347-49.

LINHART, J.G., Nucl. Fusion, 10, (1970), 211-34.

MASON, R.J. y MORSE, R.L., Phys. Fluids, 18, 7, (1975), 814-28.

MJOLSNESS, R.C. y RUPPEL, H.M., Phys. Fluids, 15, 9, (1972), 1620-29.

MORSE, R.L. y NIELSON, C.W., Phys. Fluids, 16, 6, (1973), 909-20.

MULSER, P., Z. Naturforsch., 25A, (1970), 282-95.

NUCKOLLS, J.H., WOOD, L., THIESSEN, A. y ZIMMERMAN, G., Nature, 239, (1972), 139-42.

NUCKOLLS, J.H., en "Laser Interaction and Related Plasma Phenomena", 3B, Schwarz, H. y HORA, H., Eds., Plenum, New York, (1974), 399-425.

PUELL, H., Z. Naturforsch., 25A, (1970), 1807-15.

PUELL, H., NEUSSER, H.J. y KAISER, W., Z. Naturforsch., <u>25A</u>, (1970), 1815-22.

PERT, G.J., Plasma Phys. 16, (1974), 1019-33.

PERT, G.J., Plasma Phys., 16, (1974), 1035-49.

PERT, G.J., Plasma Phys., 16, (1974), 1051-68.

REHM, R.G., Phys. Fluids, 13, 4, (1970), 921-34.

RIBE, F.L., Rev. Mod. Phys., 47, 1, (1975), 7-41.

SHEARER, J.W. y BARNES, W.S., en "Laser Interaction and Related Plasma Phenomena", <u>1</u>, Schwarz, H.y Hora, H. Eds., Plenum, New York, (1971), 307-37.

SEDOV, L.I., "Similarity and Dimensional Methods in Mechanics", (Cap. 4) Ed. Academic Press, New York, (1959). SPITZER, Jr., L., "Physics of Fully Ionized Gases", (Cap. 5), Ed. John Wiley and Sons, New York, (1962).

TUCK, J.L., Nucl. Fusion, 1, (1961), 201-02.

WANG, K.C., J. Fluid Mech., 20, 3, (1964), 447-55.

ZEL'DOVICH, Ya. B. y RAIZER, YU.P., "Physics of Shock Waves and High-Tempera ture Hydrodynamic Phenomena", (Cap. 12), Ed. Academic Press, New York, (1966), Vol. 2.

,

Fig. 1. Temperatura electrónica adimensional, θ_{el}, en función de la distancia adimensional, ξ, para e<<1.

Fig. 2. Velocidad adimensional, u/u, en función de la distancia adimensional, ξ , para $\ll 1$. En el recuadro se representa. $\frac{u}{-u}$; [0, 1] 1 para - $\xi = 0(u^{1/2})$.

Fig. 3. Temperatura iónica adimensional, ϑ_1/α_2 , en función de la distancia adimensional, ξ_1/α_2 , en función de la distancia adimensional, ϑ_1/α_2 , en función de la

Fig. 4. Perturbación en la densidad adimensional, $m_j \equiv \frac{n-1}{2}$, en función de la distancia adimensional, ξ , para e<1.

Fig. 5. Comportamiento esquemático de la curva integral de (5.7.b) -----en el plano de las fases.

.

Fig. 5. Temperatura adimensional de iones y electrones, $z \equiv \theta/\theta_f$, en función de la posición relativa a la onda de choque, $\eta \equiv \xi/\xi_f$. (Zona isentrôpica; u >> 1).

Fig. 8. Velocidad adimensional, ysu/ug, en función de wat/tg. (Zona isentrôpica, s>>1).

Fig. 10. Densidad adimensional, $v=n/n_f$, en función de $\eta=\xi/\xi_f$. (Zona de conducción, a>>1).

Fig. 11. Velocided adimensional, $y=u/u_{g}$ en función de $\eta=\xi/\xi_{g}$. (Zona de conducción, -#>>1).

Tig. 12. Representación esquenática del comportamiento de la densidad, temperatura y velocidad adimensionales en todo el plasma en función de la posición relativa a la onde de choque, $\eta \equiv \xi/\xi_{gs}$ para $\gg>1$.

Tig. 14. Variación esquemática de π_{f}/τ y π con u, para 40 τ dado.

Fig. 15. Variación esquemática de la temperatura (iónica y electrónica) con #, para n_ot dado.

Fig. 16. Variación esquenática de la temperatura (idnica y electrónica)con a, para \$0^T dado.