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Abstract

Sequential estimation of the success probability p in inverse binomial sam-
pling is considered in this paper. For any estimator p̂, its quality is measured by
the risk associated with normalized loss functions of linear-linear or inverse-linear
form. These functions are possibly asymmetric, with arbitrary slope parameters
a and b for p̂ < p and p̂ > p respectively. Interest in these functions is motivated
by their significance and potential uses, which are briefly discussed. Estimators
are given for which the risk has an asymptotic value as p → 0, and which guar-
antee that, for any p ∈ (0, 1), the risk is lower than its asymptotic value. This
allows selecting the required number of successes, r, to meet a prescribed quality
irrespective of the unknown p. In addition, the proposed estimators are shown
to be approximately minimax when a/b does not deviate too much from 1, and
asymptotically minimax as r → ∞ when a = b.

Keywords: Sequential estimation, Point estimator, Inverse binomial sampling,
Asymmetric loss function.

1 Motivation and considered loss functions

The estimation of the success probability p of a sequence of Bernoulli trials is a re-
curring problem, arising in many branches of science and engineering. The quality of
a point estimator of p, denoted as p̂, can be measured in terms of its risk, or average
loss associated with a certain loss function L. Since a given error is most meaningful
when compared with the true value p, quality measures used in practice are most of-
ten normalized ones (Mendo, 2012). This corresponds to L being a function of p̂/p,
rather than of p̂. Common loss functions include normalized squared error (p̂/p− 1)2

and normalized absolute error |p̂/p − 1|. Interval estimation can also be analyzed in
terms of a certain loss function (Berger, 1985, p. 64) such that the resulting risk is the
confidence level associated with an estimation interval.

Fixed-sample approaches to this problem suffer from the drawback that the re-
quired size depends on the unknown parameter p, and thus cannot be determined in
advance. Therefore a sequential procedure is required, consisting of a stopping rule,
which yields a random sample size, and an estimator based on the observed sample.

Sequential estimation in Bernoulli trials has been studied by many authors. Gir-
shick et al (1946) introduce and analyze a general class of sequential procedures for
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the unbiased estimation of p. Using a similar approach, DeGroot (1959) gives criteria
for the selection of appropriate sampling plans for unbiased estimation of functions of
p, with estimator performance measured by variance. His work shows that the fixed-
size and inverse procedures are the only efficient sampling plans, i.e. the only ones
for which the Cramer-Rao bound (or information inequality) holds with equal sign.
Hubert and Pyke (2000) focus on the asymptotic behaviour as p→ 0. In this setting,
they consider estimation of powers of p, with a loss function given as squared error
loss multiplied by another power of p. Baran and Magiera (2010) carry out a similar
asymptotic analysis for a different loss function. Using a Bayesian approach, Cabilio
and Robbins (1975) and Cabilio (1977) consider symmetrized relative squared error
loss (given as [(p̂−p)/(p(1−p))]2) plus a fixed cost per observation, and find sequential
procedures which minimize the Bayes risk in the estimation of p. Alvo (1977) studies
sequential Bayes estimation from a more general point of view, where the observations
are not necessarily Bernoulli variables, and considering squared error loss.

A particularly appealing stopping rule, first discussed by Haldane (1945), is inverse
binomial sampling (also known as negative binomial sampling). Given r ∈ N, this rule
consists of taking as many observations as necessary to obtain exactly r successes.
The random number of observations, N , is a sufficient statistic for p (Lehmann and
Casella, 1998, p. 101). The interest in this stopping rule is motivated by the useful
properties of the obtained estimators. Namely, it has been shown that for an estimator
p̂ = g(N) such that limn→∞ ng(n) exists and is positive, and for a general class of loss
functions defined by certain regularity conditions, the risk has an asymptotic value
as p → 0 (Mendo, 2012). Moreover, estimators have been found whose risk for p
arbitrary is guaranteed not to exceed its asymptotic value, for the specific cases of
normalized mean squared error (Mikulski and Smith, 1976) (Sathe, 1977), normalized
mean absolute error (Mendo, 2009) and confidence associated with a relative interval
(Mendo and Hernando, 2006) (Mendo and Hernando, 2008) (Mendo and Hernando,
2010). This allows selecting an appropriate value of r that meets a prescribed risk
irrespective of the unknown p.

In all cases mentioned in the preceding paragraph, the loss incurred by a negative
error equals that of the corresponding positive error. In practice, however, situation-
specific factors may render underestimation more or less costly than overestimation
(Christoffersen and Diebold, 1997) (Akdeniz, 2004). Consider for example p = 0.01
and two possible values of p̂, namely 0.019 and 0.001. The absolute error (normalized
or otherwise) is the same for both values of the estimator, as is the squared error.
Nevertheless, with the first estimate p̂ is 1.9 times p, whereas with the second p is 10
times p̂. In many applications it may be advisable to assign a higher loss to the second
estimate. With absolute error, this could be accomplished by generalizing the loss
function to one with a different slope on each side. Denoting x = p̂/p, this generalized
loss is given by

L(x) =

{
a(1− x) if x ≤ 1,

b(x− 1) if x > 1,
(1)

with parameters a, b ≥ 0, (a, b) 6= (0, 0). This function, known as (normalized)
linear-linear loss, frequently arises in applications; see for example Granger (1969)
and Christoffersen and Diebold (1997). Another proposed function (not considered in
this paper) which gives different weights to positive and negative errors is the linear-
exponential loss, whose normalized version is L(x) = b[exp(a(x − 1)) − a(x − 1) − 1],
with parameters a 6= 0, b > 0 (Akdeniz, 2004). The ratio a/b, in the linear-linear
loss, or the parameter a, in the linear-exponential, control the relative importance
given to underestimation and overestimation. Note that in both cases the loss due to
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underestimation is bounded, unlike that of overestimation, which may be arbitrarily
large.

In certain situations it may be meaningful to define loss as proportional to p̂/p
or p/p̂, whichever is largest. Thus with the values in the previous example, the
loss would be proportional to 1.9 and 10 respectively. In the following, the func-
tion s(p̂, p) = max{p̂/p, p/p̂} will be referred to as the symmetric ratio of p̂ and p
(the name is motivated by the fact that s(p̂, p) = s(p, p̂)). The loss thus defined is
inherently normalized, because it only depends on p̂ and p through x = p̂/p. Sub-
tracting 1 in order to have a minimum loss equal to 0, the loss function is expressed as
L(x) = max{x, 1/x} − 1. This function is unbounded for underestimation as well as
for overestimation errors. In fact, its graph is symmetric about x = 1 if p̂, or x, is rep-
resented in logarithmic scale (this is obvious if L(x) is written as exp | log x| − 1). The
risk corresponding to this loss is the mean symmetric ratio minus 1, and represents a
normalized measure of dissimilarity between p̂ and p, with smaller values correspond-
ing to better estimators. A generalization is obtained, as before, by allowing different
multiplicative parameters a, b ≥ 0, (a, b) 6= (0, 0) on each side of the function:

L(x) =

{
a(1/x− 1) if x ≤ 1,

b(x− 1) if x > 1.
(2)

This will be referred to as inverse-linear loss.
The loss function (2), in addition to providing a natural measure of estimation

quality, namely generalized mean symmetric ratio, can be representative of incurred
cost in specific applications. In spite of this, it has not been used previously in the
context of estimation problems, to the author’s knowledge. As an example of appli-
cation, consider the production of a certain device which is subject to manufacturing
defects, such as image sensors for digital cameras. Several factors in the production
process (such as the presence of dust particles) may result in a sensor with specific
pixels systematically showing incorrect information. Since it would be too expensive to
discard all sensors that have some defect, the commonly adopted solution is as follows.
Each produced sensor is tested, and if the number of defective pixels is not too large it
is accepted. The location of such pixels is permanently recorded in the camera, so that
they can be corrected as a part of the processing applied by the camera to generate
the image.

In high-quality camera models, however, it may be desirable to use sensors with
an extremely low number of defects. A possible procedure is to classify each produced
sensor as “premium” or “standard”, depending on whether the number of pixel defects
is extremely low or merely acceptable. Premium sensors are reserved for advanced
cameras, which incorporate high-quality lenses, whereas standard sensors are mounted
in consumer-level cameras with average-quality lenses. For ease of explanation, these
two types of lenses will also be referred to as premium and standard, respectively. The
production of each type of lens is a more deterministic process than that of sensors,
and thus the number of produced lenses of each type is easily controlled.

It will be assumed that the manufacturer is primarily interested in its premium
line of cameras. A number S of sensors is to be produced, and the amount of premium
lenses that will be required needs to be planned in advance. To this end, an estimate
p̂ is made of the proportion p of sensors that will turn out to be of the premium type
(this can be done using inverse binomial sampling); and Sp̂ premium lenses are made
available. The actual proportion of premium sensors, p, may be lower than p̂, in which
case some of the premium lenses will be left unused; or it may be greater, and then
some of the premium sensors will not be used. In either case, some resources are
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wasted. If the cost associated with each unused part is a for a sensor and b for a lens,
the risk computed from the loss function (2) is the average cost of wasted resources
per assembled premium camera unit.

The rest of the paper analyzes inverse binomial sampling under the loss functions
(1) and (2). The first has already been analyzed for the particular case a = b by Mendo
(2009), and the generalization to a 6= b will be seen to be rather straightforward. The
second function has not been dealt with before, to the author’s knowledge, and its
analysis turns out to be more difficult. Although the main focus of the paper is on the
second, results for the first are also interesting by themselves. In each case, estimators
are given in Section 2 such that the risk for p ∈ (0, 1) is guaranteed to be lower than its
asymptotic value. Section 3 discusses these results and makes a comparison with the
optimum performance that could be achieved by using other estimators. It is shown
that the proposed estimators are approximately minimax if a/b is close to 1; and for
a = b they are asymptotically minimax as r →∞. Section 4 contains the proofs to all
results.

2 Main results

Consider a sequence of Bernoulli trials with probability of success p, and a random
stopping time N given by inverse binomial sampling with r ∈ N. Let x(i) denote
x(x − 1) · · · (x − i + 1), for x ∈ R, i ∈ N; and x(0) = 1. The normalized lower
incomplete gamma function is defined as

γ(t, u) =
1

Γ(t)

∫ u

0

st−1 exp(−s) ds, (3)

and satisfies the following well-known relationship (Abramowitz and Stegun, 1970,
eq. (6.5.21)), which will be used throughout the paper:

γ(t− 1, u) = γ(t, u) +
ut−1 exp(−u)

Γ(t)
. (4)

The random variable N has a negative binomial distribution, with probability function
fr(n) = P [N = n] given by fr(n) = (n − 1)(r−1)pr(1 − p)n−r/(r − 1)!, n ≥ r. The
corresponding distribution function will be denoted as Fr(n). Similarly, the probability
function of a binomial random variable with parameters n and p is denoted as bn,p(i) =
n(i)pi(1 − p)n−i/i!, 0 ≤ i ≤ r. For an arbitrary nonrandomized estimator p̂ = g(N)
and a loss function L(p̂/p), the risk η(p) is

η(p) = E[L(p̂/p)] =

∞∑
n=r

fr(n)L(g(n)/p). (5)

For r ≥ 2 and a, b ≥ 0, the loss functions (1) and (2) satisfy the sufficient conditions
of Mendo (2012, theorem 1), and thus any estimator p̂ = g(N) with limn→∞ ng(n) =
Ω > 0 has an asymptotic risk as p→ 0, which can be computed as

lim
p→0

η(p) =
1

(r − 1)!

∫ ∞
0

νr−1 exp(−ν)L(Ω/ν) dν. (6)

In particular, this holds for any estimator that can be expressed as

p̂ =
Ω

N + d
(7)
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with Ω > 0, d > −r.
Consider a generic estimator of the form (7). Denoting m = bΩ/p − dc, the risk

associated with the loss function (1) can be written as

η(p) = a

∞∑
n=m+1

(
1− Ω

(n+ d)p

)
fr(n) + b

m∑
n=r

(
Ω

(n+ d)p
− 1

)
fr(n)

= −a
∞∑
n=r

(
Ω

(n+ d)p
− 1

)
fr(n) + (a+ b)

m∑
n=r

(
Ω

(n+ d)p
− 1

)
fr(n).

(8)

Particularizing to Ω = r−1 and d = −1, which yields the uniformly minimum variance
unbiased (UMVU) estimator (Mikulski and Smith, 1976), and taking into account the
identities (Mendo, 2009)

fr−1(n− 1) =
(r − 1)fr(n)

(n− 1)p
for r ≥ 2, n ≥ r, (9)

Fr−1(n− 1) = Fr(n) + (1− p)bn−1,p(r − 1) for r ≥ 2, n ≥ r, (10)

it is seen that, for r ≥ 2, the first summand in (8) becomes 0, and

η(p) = (a+ b)

m∑
n=r

(fr−1(n− 1)− fr(n)) = (a+ b)(Fr−1(m− 1)− Fr(m))

= (a+ b)(1− p)bm−1,p(r − 1).

(11)

The case a = b = 1 is analyzed in Mendo (2009). Comparing (11) with Mendo (2009,
eq. (12)), the expression of the risk for a, b arbitrary is seen to be a straightforward
generalization of that for a = b = 1. As a consequence, the following result holds.

Theorem 1. Consider the loss function given by (1) with a, b ≥ 0, (a, b) 6= (0, 0). For
r ≥ 2, the risk η(p) associated with the estimator p̂ = (r − 1)/(N − 1) satisfies

η(p) < lim
p→0

η(p) for any p ∈ (0, 1), (12)

with

lim
p→0

η(p) =
(a+ b)(r − 1)r−2 exp(−r + 1)

(r − 2)!
. (13)

In addition, as will be seen in Section 3, under certain conditions this estimator
approaches the asymptotically optimum estimator discussed in Mendo (2012).

For the loss function (2), the risk associated with an estimator of the form (7) can
be decomposed in a similar way as for (1). Namely, η(p) = η1(p) + η2(p) with

η1(p) = a

∞∑
n=m+1

(
(n+ d)p

Ω
− 1

)
fr(n), (14)

η2(p) = b

m∑
n=r

(
Ω

(n+ d)p
− 1

)
fr(n). (15)

Assuming d ≤ 0 in (14) and taking into account that, as per (9), npfr(n) = rfr+1(n+
1), it follows that

η1(p) ≤ a
∞∑

n=m+1

(np
Ω
− 1
)
fr(n) =

ar

Ω
(1− Fr+1(m+ 1)) + a(Fr(m)− 1), (16)
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with strict inequality if d < 0. As for η2(p), assuming d ≥ −1, it stems from (9) and
(15) that

η2(p) ≤ b
m∑
n=r

(
Ω

(n− 1)p
− 1

)
fr(n) =

bΩ

r − 1
Fr−1(m− 1)− bFr(m), (17)

with strict inequality if d > −1 and m ≥ r. As a result of (16) and (17), for any
d ∈ [−1, 0] the risk satisfies

η(p) ≤ bΩ

r − 1
Fr−1(m− 1) + (a− b)Fr(m)− ar

Ω
Fr+1(m+ 1) + a

( r
Ω
− 1
)
. (18)

The right-hand side of (18) is greatly simplified if Ω is chosen as any value Ω̃ > 0 such
that

ar

Ω̃
− bΩ̃

r − 1
= a− b, (19)

for in that case, applying the identity (10),

η(p) ≤ bΩ̃

r − 1
(Fr−1(m− 1)− Fr(m)) +

ar

Ω̃
(Fr(m)− Fr+1(m+ 1)) + a

(
r

Ω̃
− 1

)
=

bΩ̃

r − 1
(1− p)bm−1,p(r − 1) +

ar

Ω̃
(1− p)bm,p(r) + a

(
r

Ω̃
− 1

)
.

(20)

The advantage of this expression is that the terms (1−p)bm−1,p(r−1) and (1−p)bm,p(r)
lend themselves to analysis more easily than the distribution functions in (18).

The condition (19) on Ω̃ has a single positive solution for a, b ≥ 0, (a, b) 6= (0, 0),
namely

Ω̃ =


(r − 1)

(
1 + a+b

2b

(√
1 + 4ab

(r−1)(a+b)2 − 1
))

for a, b > 0,

r − 1 for a = 0, b > 0,

r for b = 0, a > 0.

(21)

It is easily seen that this reduces to
√
r(r − 1) for a = b > 0. In addition, the following

holds.

Proposition 1. The value of Ω̃ given by (21) lies in the interval (r−1, r) for a, b > 0.

As a consequence of Proposition 1, for any a, b ≥ 0, (a, b) 6= (0, 0), the value Ω̃
defined by (21) satisfies Ω̃ ∈ [r−1, r] . Taking into account that p̂umvu = (r−1)/(N−1)
is the UMVU estimator and that p̂ml = r/N is the maximum likelihood (ML) estimator
(Best, 1974), the estimator p̂ given by (7) with Ω ∈ [r− 1, r] and d ∈ [−1, 0] is seen to
be a “reasonable” one, in the sense that it is “close” to the UMVU and ML estimators.
As will be seen in Section 3, in certain cases the proposed estimator is also close to
the asymptotically optimum estimator in the sense of Mendo (2012).

The preceding arguments justify that the estimator given by (7) with Ω ∈ [r− 1, r]
and d ∈ [−1, 0] is worth considering. In fact, for adequate choices of Ω and d, it satisfies
the important property that the risk is guaranteed not to exceed its asymptotic value,
as established by the next theorem.
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Figure 1: Risk guaranteed not to be exceeded for inverse-linear loss (2) with a = b = 1

Theorem 2. Consider the loss function given by (2) with a, b ≥ 0, (a, b) 6= (0, 0). For
r ≥ 2, the estimator p̂ = Ω̃/N with Ω̃ given by (21) satisfies

η(p) < lim
p→0

η(p) for any p ∈ (0, 1), (22)

with

lim
p→0

η(p) = a

(
r

Ω̃
− 1

)
+

(
ar

Ω̃
+ b

)
Ω̃r−1 exp(−Ω̃)

(r − 1)!
. (23)

3 Discussion and additional properties

3.1 Significance of the results

It has been shown in Section 2 that similar results to those already known for mean
absolute error, mean squared error and confidence level also hold for generalized
mean absolute error (Theorem 1) and generalized mean symmetric ratio (Theorem 2).
Specifically, it has been proved that, for the proposed estimators, supp∈(0,1) η(p) =
limp→0 η(p). In the following, η̄ will denote the value of limp→0 η(p), or equivalently
supp∈(0,1) η(p), for the estimators in Theorems 1 and 2.

The importance of these results lies in the fact that no knowledge is required about
p. Thus, given any desired value λ for the risk, an adequate r can be selected such
that the risk is guaranteed not to exceed λ, irrespective of p. Namely, it suffices to
choose r as the minimum value for which η̄, computed from (13) or from (23), is less
than or equal to λ. As an illustration, Figure 1 depicts η̄ as a function of r for the loss
given by (2) with a = b = 1. It is seen, for example, that r = 75 suffices to guarantee
a risk lower than 0.1, that is, a mean symmetric ratio lower than 1.1.

3.2 Comparison with minimax estimators

The presented results are valid for specific estimators, given by (7) with certain fixed
values for Ω and d. It is natural to ask to what extent the results could be improved
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by considering other estimators, i.e. how much lower risks could be guaranteed not to
be exceeded (or equivalently how much supp∈(0,1) η(p) could be reduced). By defini-
tion, an estimator that is optimum according to this criterion (i.e. which minimizes
supp∈(0,1) η(p) over all possible estimators), if it exists, is a minimax estimator.

This question can be addressed on the basis of the analysis in Mendo (2012).
For a, b > 0, both (1) and (2) satisfy the assumptions of Mendo (2012, theorem 3).
This implies that there exists a value of Ω, denoted as Ω∗, such that any estimator
p̂ = g(N) with limn→∞ ng(n) = Ω∗ minimizes lim supp→0 η(p) over all estimators,
including randomized ones. Thus any such estimator is asymptotically optimum, in
the sense of achieving the minimum possible lim supp→0 η(p). This minimum, which
will be denoted as η∗, restricts the values λ that the risk can be guaranteed not to
exceed for p arbitrary. Namely, if an estimator guarantees that η(p) ≤ λ for a given
λ, then necessarily λ ≥ η∗. As a consequence, the risk η̄ that is guaranteed not to
be exceeded by the specific estimators considered in Section 2 is at most η̄/η∗ times
larger than what could be achieved by a minimax estimator.

The value η∗ is obtained as follows. Consider the loss function (1) first. For Ω
arbitrary, (6) gives

lim
p→0

η(p) =
(a+ b)Ωγ(r − 1,Ω)

r − 1
− (a+ b)γ(r,Ω) + a

(
1− Ω

r − 1

)
. (24)

Its derivative
d

dΩ
lim
p→0

η(p) =
(a+ b)γ(r − 1,Ω)− a

r − 1
(25)

is seen to be monotone increasing. Therefore the minimizing value Ω∗ is unique, and
is determined by the condition d(limp→0 η(p))/dΩ = 0, that is,

γ(r − 1,Ω∗) =
a

a+ b
. (26)

Setting Ω = Ω∗ in (24), substituting (26) and making use of (4),

η∗ =
(a+ b)Ω∗r−1 exp(−Ω∗)

(r − 1)!
. (27)

The value Ω∗ can be computed numerically from (26), and η∗ is then obtained by
means of (27).

Regarding the loss function (2), for Ω arbitrary (6) gives

lim
p→0

η(p) =
bΩγ(r − 1,Ω)

r − 1
+ (a− b)γ(r,Ω)− arγ(r + 1,Ω)

Ω
+ a

( r
Ω
− 1
)
. (28)

Again, it is easily seen that

d

dΩ
lim
p→0

η(p) =
bγ(r − 1,Ω)

r − 1
− ar(1− γ(r + 1,Ω))

Ω2
(29)

is monotone increasing, and thus there is a single minimizing value Ω∗, which satisfies

Ω∗2

r(r − 1)
=
a(1− γ(r + 1,Ω∗))
bγ(r − 1,Ω∗)

. (30)

From (4), (28) and (30),

η∗ =

(
a+

(
2Ω∗

r − 1
− 1

)
b

)
γ(r − 1,Ω∗) +

(b− a)Ω∗r−1 exp(−Ω∗)
(r − 1)!

− a. (31)
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Figure 2: Degradation factor η̄/η∗ as a function of a/b and r

The expressions (30) and (31) allow numerically computing η∗.
Figure 2 shows, for the loss functions and estimators considered in Theorems 1 and

2, the degradation factor η̄/η∗ as a function of a/b, with r as a parameter. As is seen,
for a/b not too far from 1 the degradation factor is close to 1, that is, the considered
estimators are nearly optimum. Furthermore, there is a value of a/b for which each
estimator is precisely optimum, i.e. minimax, as established by the following.

Proposition 2. For each of the loss functions (1) and (2), there exists a unique value
of the ratio a/b for which the estimator considered in Theorem 1 or 2 respectively is
minimax, that is, minimizes supp∈(0,1) η(p) over all (possibly randomized) estimators.
For the loss function (1) this value is given by

a

b
=

γ(r − 1, r − 1)

1− γ(r − 1, r − 1)
, (32)

and for (2) it is determined by the condition

γ(r − 1, Ω̃)

1− γ(r + 1, Ω̃)
=
r(Ω̃− r + 1)

Ω̃(r − Ω̃)
(33)

with Ω̃ as in (21).

3.3 Minimaxity for asymptotically large r in the case a = b

The specific values of the ratio a/b determined by Proposition 2 can be shown to tend
to 1 as r →∞. Related to this, the following establishes that for a = b the proposed
estimators are asymptotically minimax as r →∞.

Proposition 3. For the loss functions (1) and (2) with a = b, each of the estima-
tors considered in Theorems 1 and 2, respectively, approaches a minimax estimator
asymptotically as r →∞, in the sense that limr→∞ η̄/η∗ = 1.

As a consequence of this result, for a = b and large r the considered estimators are
approximately optimum in the minimax sense. This is illustrated in Figure 3, which
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Figure 3: Degradation factor η̄/η∗ for a = b as a function of r

shows the degradation factor η̄/η∗ as a function of r. In fact, η̄/η∗ is seen to be very
low even for small r, and in particular for the range of values of r that are commonly
used in practice. Thus, for example, the mean absolute error (loss function (1) with
a = b = 1) that is guaranteed not to be exceeded according to Theorem 1 is within 1%
of the minimax mean absolute error for 7 ≤ r ≤ 1000. Similarly, defining risk as mean
symmetric ratio minus 1 (loss function (2) with a = b = 1), the risk that is guaranteed
not to be exceeded as per Theorem 2 is within 0.1% of the minimax risk for the same
range of values of r.

4 Proofs

For ρ ∈ N, ρ ≥ 2; µ ≥ ρ− 1; and t ∈ (0, 1), let Yρ(µ, t) be defined as

Yρ(µ, t) =
(µ− 1)(ρ−1)tρ−1(1− t)µ−ρ+1

(ρ− 1)!
. (34)

Proof of Theorem 1. The result immediately stems from (11) and the analysis in Mendo
(2009).

Lemma 1. The following inequality holds for r ≥ 2, d ∈ [−1, 0], j ≥ 2.

r−1∑
i=1

(i+ d+ 1)j >
(r + d)j+1

j + 1
. (35)

Proof. The sum in (35) can be expressed as the area covered by the r − 1 rectangles
of width 1 and height (i+ d+ 1)j , i = 1, . . . , r − 1 in Figure 4, or equivalently as the
shaded area comprised by r − 2 unit-width trapezoids plus two half-width rectangles.
Since the curve (x + d + 3/2)j touches the upper vertices of the trapezoids and is
convex, the following inequality can be written:

r−1∑
i=1

(i+ d+ 1)j ≥
∫ r−3/2

1/2

(
x+ d+

3

2

)j
dx+

(d+ 2)j

2
+

(r + d)j

2

=
(r + d)j+1

j + 1
+

(r + d)j

2
+ (d+ 2)j

(
1

2
− d+ 2

j + 1

)
.

(36)
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Figure 4: Illustration of (36)

For j ≥ 3 the term 1/2 − (d + 2)/(j + 1) in (36) is nonnegative, which ensures that
(35) holds. For j = 2, (36) reduces to

r−1∑
i=1

(i+ d+ 1)j ≥ (r + d)3

3
+
−2d3 − 6d2 + 6(r − 2)d+ 3r2 − 4

6
. (37)

The second summand in (37) has a derivative with respect to d equal to −d2−2d+r−2,
which is nonnegative for d ∈ [−1, 0], r ≥ 2. Thus this summand is lower bounded by
its value at d = −1, i.e. (3r2 − 6r + 4)/6, which is positive. Therefore (35) also holds
for j = 2.

Lemma 2. Given ρ, µ, Ω and δ such that (i) ρ ∈ N, ρ ≥ 2; (ii) Ω ∈ [ρ − 1, ρ]; (iii)
δ ∈ [−1, 0]; (iv) µ > ρ− 1; and (v) µ > Ω− δ − 1, the following hold:

(a) Yρ(µ,Ω/(µ+ δ + 1)) is a strictly increasing function of µ, with

lim
µ→∞

Yρ(µ,Ω/(µ+ δ + 1)) = Ωρ−1 exp(−Ω)/(ρ− 1)!. (38)

(b) Yρ+1(µ+ 1,Ω/(µ+ δ + 1)) is a strictly increasing function of µ, with

lim
µ→∞

Yρ+1(µ+ 1,Ω/(µ+ δ + 1)) = Ωρ exp(−Ω)/ρ!. (39)

Proof. According to hypotheses (iv) and (v), it holds that µ > ρ−1 and Ω/(µ+δ+1) <
1, and thus Yρ(µ,Ω/(µ+ δ + 1)) and Yρ+1(µ+ 1,Ω/(µ+ δ + 1)) are well defined from
(34).

The proof will be carried out separately for parts (a) and (b) of the Lemma.
(a) It is convenient to make the change of variable t = Ω/(µ + δ + 1), by which

Yρ(µ,Ω/(µ+ δ + 1)) is expressed as Yρ(Ω/t− δ − 1, t). It will be shown that

lim
t→0

Yρ(Ω/t− δ − 1, t) = Ωρ−1 exp(−Ω)/(ρ− 1)!, (40)

which is equivalent to (38); and that Yρ(Ω/t− δ− 1, t) is a strictly decreasing function
of t, which will imply that Yρ(µ,Ω/(µ+ δ + 1)) strictly increases with µ. From (34),

log Yρ(µ, t) =

ρ−1∑
i=1

log
(µ− i)t

Ω
+

ρ−1∑
i=1

log
Ω

i
+ (µ− ρ+ 1) log(1− t), (41)
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and thus

log Yρ

(
Ω

t
− δ − 1, t

)
=

ρ−1∑
i=1

log

(
1− (i+ δ + 1)t

Ω

)

+

ρ−1∑
i=1

log
Ω

i
+

(
Ω

t
− ρ− δ

)
log(1− t).

(42)

Taking into account that (ρ+ δ)t/Ω = (ρ+ δ)/(µ+ δ + 1) < 1 as a result of (iv), and
that t < 1, the Taylor expansion log(1− t) = −

∑∞
j=1 t

j/j, |t| < 1 can be used in (42)
to yield

log Yρ

(
Ω

t
− δ − 1, t

)
= −

∞∑
j=0

cjt
j , (43)

c0 = Ω +

ρ−1∑
i=1

log
i

Ω
, (44)

cj =
Ω

j + 1
− ρ+ δ

j
+

1

jΩj

ρ−1∑
i=1

(i+ δ + 1)j for j ≥ 1. (45)

The equalities (43) and (44) imply (40), and thus (38).
To prove that Yρ(Ω/t − δ − 1, t) strictly decreases with t, it suffices to show that

the coefficients cj satisfy cj ≥ 0, j ≥ 1, with strict inequality for some j. For j ≥ 2,
(45) and Lemma 1 yield

j(j + 1)cj > jΩ− (j + 1)(ρ+ δ) + (ρ+ δ)

(
ρ+ δ

Ω

)j
= −j(ρ+ δ − Ω) + (ρ+ δ)

((
ρ+ δ

Ω

)j
− 1

)
.

(46)

Taking into account that ρ+ δ ≥ 0 by hypothesis (iii), and using the inequality(
ρ+ δ

Ω

)j
=

(
1 +

ρ+ δ − Ω

Ω

)j
≥ 1 +

j(ρ+ δ − Ω)

Ω
, (47)

it follows from (46) that

cj >
(ρ+ δ − Ω)2

(j + 1)Ω
≥ 0. (48)

For j = 1, (45) gives

c1 =
Ω2 − 2ρΩ + (ρ− 1)(ρ+ 2)

2Ω
+
δ(ρ− Ω− 1)

Ω
. (49)

Consider the first summand in (49). The minimum of its numerator with respect to
Ω is attained at Ω = ρ and equals ρ − 2. Thus, according to hypothesis (i), this
summand is nonnegative. By (ii) and (iii), the second summand is also nonnegative;
and therefore c1 ≥ 0. Consequently Yρ(Ω/t − δ − 1, t) strictly decreases with t, and
thus Yρ(µ,Ω/(µ+ δ + 1)) strictly increases with µ.
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(b) Making the same change of variable as in part (a), and taking into account
(43)–(45),

log Yρ+1

(
µ+ 1,

Ω

µ+ δ + 1

)
= log Yρ+1

(
Ω

t
− δ, t

)
= −

∞∑
j=0

c′jt
j , (50)

c′0 = Ω +

ρ∑
i=1

log
i

Ω
, (51)

c′j =
Ω

j + 1
− ρ+ δ

j
+

1

jΩj

ρ−1∑
i=0

(i+ δ + 1)j ≥ cj for j ≥ 1. (52)

From (52) it follows that c′1 ≥ 0 and c′j > 0 for j ≥ 2. Together with (50) and (51),
this establishes part (b) of the Lemma.

Proof of Theorem 2. As the case a = 0, b > 0 is already covered by Theorem 1, it will
be assumed that a > 0. This implies, according to Proposition 1, that Ω̃ > r − 1.

The equality (23) is obtained substituting the loss function (2) into (6) with Ω = Ω̃,
and making use of (4) and (19).

The inequality (20) can be expressed as

η(p) ≤ bΩ̃Yr(m, p)

r − 1
+
arYr+1(m+ 1, p)

Ω̃
+ a

(
r

Ω̃
− 1

)
, (53)

m = bΩ̃/pc. (54)

From (54) it stems that m ≥ r − 1. Each value of m has an associated interval
Im ⊆ (0, 1) such that (54) holds if and only if p ∈ Im. Namely, Im = (pl, pu] with
pl = Ω̃/(m+ 1), pu = Ω̃/m, except if m = r − 1, in which case Ω̃ < r and thus pl < 1,
pu > 1; or if m = r and Ω̃ = r, which gives pl < 1, pu = 1; in either case Im = (pl, 1).
According to (53), and taking into account (19), to establish (22) it suffices to show
that, for p ∈ (0, 1) and m given by (54),

Yr(m, p) < Ω̃r−1 exp(−Ω̃)/(r − 1)!, (55)

Yr+1(m+ 1, p) < Ω̃r exp(−Ω̃)/r!. (56)

If m = r − 1 the left-hand sides of (55) and (56) are zero, and the inequalities are
clearly satisfied. Thus in the following it will be assumed that m ≥ r.

As a step in the proof of (55) and (56), it will be shown that for p ∈ (0, 1) and
m ≥ r related by (54), or equivalently for m ≥ r and p ∈ Im, the following inequalities
hold:

Yr(m, p) ≤

{
Yr(m, (r − 1)/m) if (Ω̃− r + 1)m ≤ r − 1,

Yr(m, Ω̃/(m+ 1)) if (Ω̃− r + 1)m > r − 1.
(57)

Yr+1(m+ 1, p) ≤

{
Yr+1(m+ 1, r/(m+ 1)) if (r − Ω̃)m ≤ Ω̃,

Yr+1(m+ 1, Ω̃/m) if (r − Ω̃)m > Ω̃.
(58)

For m ≥ r, it follows from (34) that Yr(m, p) considered as a function of p ∈ (0, 1) is
maximum at pmax = (r− 1)/m < 1, monotone increasing for p < pmax, and monotone
decreasing for p > pmax. As Ω̃ > r − 1, it is seen that pmax < pu ≤ 1, and that
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pmax < pl if and only if (Ω̃− r + 1)m > r − 1. This implies that Yr(m, p) is bounded
as given by (57). Regarding (58), the maximum of Yr+1(m + 1, p) with respect to
p ∈ (0, 1) is attained at p′max = r/(m+ 1) < 1. As m ≥ r, it stems that pl ≤ p′max < 1,
and that pu < p′max if and only if (r − Ω̃)m > Ω̃. This establishes (58).

The proof of (55) will be based on (57). Since Ω̃ > r − 1, the following definition
can be made: µ1 = (r − 1)/(Ω̃− r + 1). The fact that Ω̃ ≤ r implies that µ1 ≥ r − 1.
The upper condition in (57) is equivalent to m ≤ µ1, whereas the lower corresponds
to m > µ1. As m cannot be smaller than r, the condition m ≤ µ1 can only be met
for some m if µ1 ≥ r, i.e. if Ω̃ ≤ r − 1/r. On the other hand, the condition m > µ1

can always be satisfied by taking m sufficiently large. Thus, (55) will be established
in two steps. First, it will be shown that Yr(m, Ω̃/(m + 1)) monotonically increases
with m > µ1 and tends to Ω̃r−1 exp(−Ω̃)/(r − 1)! as m → ∞. This will prove that
(55) holds for all m > µ1. Second, it will be shown, for µ1 ≥ r, that Yr(m, (r− 1)/m)
monotonically increases with m ≥ r and is smaller than Ω̃r−1 exp(−Ω̃)/(r − 1)! for
m = µ1. This will establish (55) for all m such that r ≤ m ≤ µ1.

Regarding the first case, m > µ1, consider Lemma 2(a) with values r, m, Ω̃, 0
respectively for ρ, µ, Ω, δ. These values satisfy the hypotheses of the Lemma (it is
obvious that (i)–(iii) hold; (iv) and (v) are satisfied as well because m > µ1 ≥ r− 1 ≥
Ω̃−1). According to this, Yr(m, Ω̃/(m+1)) monotonically increases with m and tends
to Ω̃r−1 exp(−Ω̃)/(r − 1)! as m→∞. Therefore (55) holds for m > µ1.

For the case r ≤ m ≤ µ1, µ1 ≥ r, using Lemma 2(a) (with values r, m, r − 1,
−1 respectively for ρ, µ, Ω, δ; (iv) and (v) hold because m ≥ r) it is seen that
Yr(m, (r − 1)/m) increases with m. The definition of µ1 implies that (r − 1)/µ1 =
Ω̃/(µ1 + 1), and thus

Yr(µ1, (r − 1)/µ1) = Yr(µ1, Ω̃/(µ1 + 1)). (59)

Applying Lemma 2(a) again (with values r, µ1, Ω̃, 0; note that (v) is satisfied because
µ1 ≥ r ≥ Ω̃ > Ω̃− 1) to the right-hand side of this equality shows that (59) is smaller
than Ω̃r−1 exp(−Ω̃)/(r − 1)!. Therefore (55) holds for r ≤ m ≤ µ1.

As for (56), it is seen that the lower condition in (58) is not met for any m if Ω̃ = r,
whereas if Ω̃ < r there exist values of m which satisfy each of the conditions. These
two cases will be treated separately.

In the case Ω̃ < r, the proof proceeds along the same lines as that of (55). Let
µ2 = Ω̃/(r − Ω̃). The fact that Ω̃ > r − 1 implies that µ2 > r − 1. In addition,
since m ≥ r, the upper condition in (58) can only be met if µ2 ≥ r. Thus it suffices
to show first that Yr+1(m + 1, Ω̃/m) monotonically increases with m > µ2 and tends
to Ω̃r exp(−Ω̃)/r! as m → ∞; and second that, if µ2 ≥ r, Yr+1(m + 1, r/(m + 1))
monotonically increases with m ≥ r and is smaller than Ω̃r exp(−Ω̃)/r! for m = µ2.
The first part directly stems from Lemma 2(b) (with values r, m, Ω̃, −1). As for the
second, the increasing character of Yr+1(m+ 1, r/(m+ 1)) with m is also established
by Lemma 2(b) (with values r, m, r, 0). The definition of µ2 implies that r/(µ2 +1) =
Ω̃/µ2, from which

Yr+1(µ2 + 1, r/(µ2 + 1)) = Yr+1(µ2 + 1, Ω̃/µ2), (60)

and applying Lemma 2(b) (with values r, µ2, Ω̃, −1; (iv) and (v) hold because µ2 =
Ω̃/(r − Ω̃) > Ω̃ > r − 1) to the right-hand side of (60) establishes that it is smaller
than Ω̃r exp(−Ω̃)/r!.

In the case Ω̃ = r, the expression (58) reduces to its upper part, and (56) follows
from Lemma 2(b) (with values r, m, r, 0). This completes the proof.
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Proof of Proposition 2. For L as in (1), equating d(limp→0 η(p))/dΩ given by (25) to
0, solving for a/b and particularizing to Ω = r − 1 yields (32).

As for L given by (2), from (19) it is seen that

a

b
=

(Ω̃− r + 1)Ω̃

(r − 1)(r − Ω̃)
. (61)

Setting Ω∗ = Ω̃ in (30) and combining with (61) yields (33).

Lemma 3. For any k ∈ N, the factorial k! satisfies the following:

k! >
√

2πkk+1/2 exp(−k), (62)

lim
k→∞

k! exp(k)

kk+1/2
=
√

2π. (63)

Proof. These expressions follow from Abramowitz and Stegun (1970, eq. (6.1.38)).

Lemma 4. For any sequence of numbers δk such that 0 ≤ δk ≤ 1, limk→∞ γ(k, k +
δk) = 1/2.

Proof. According to Adell and Jodrá (2005, lemma 1), limk→∞ γ(k, k) = 1/2. From
(4),

γ(k, k + 1)− γ(k + 1, k + 1) = (k + 1)k exp(−k − 1)/k!. (64)

As a result of Lemma 3, the right-hand side of (64) tends to 0 as k → ∞, and
therefore limk→∞ γ(k, k+1) = limk→∞ γ(k, k) = 1/2. The fact that γ(t, u) is monotone
increasing in u implies that γ(k, k) ≤ γ(k, k+ δk) ≤ γ(k, k+ 1), and the desired result
follows.

Lemma 5. For r ≥ 2 and a = b, the solution Ω∗ to (26) lies in (r−4/3, r−2+log 2),
and limr→∞(Ω∗ − r) = −4/3.

Proof. The result follows from Alm (2003).

Lemma 6. For r ≥ 2 and a = b, the solution Ω∗ to (30) lies in (r − 1, r).

Proof. Using (4) the condition (30) can be written, for a = b, as(
Ω∗2

r(r − 1)
+ 1

)
γ(r,Ω∗) =

Ω∗r exp(−Ω∗)
r!

(
1− Ω∗

r − 1

)
+ 1. (65)

Let v1(Ω∗) and v2(Ω∗) respectively denote the left-hand and right-hand sides of (65),
considered as functions of Ω∗. It is easily seen that v1 is monotone increasing, whereas
v2 is monotone decreasing on the interval (r − 1, r). From Lemma 5 and the mono-
tonicity of γ(t, u) with respect to u it follows that γ(r, r − 1) < 1/2, which implies
that v1(r − 1) < 1. On the other hand, v2(r − 1) = 1. Therefore the solution to (65),
or equivalently to (30), satisfies Ω∗ > r − 1. By analogous arguments it is seen that
v1(r) > 1 and v2(r) < 1. Therefore the solution satisfies Ω∗ < r.

Lemma 7. For any δ1, δ2 ∈ R, the sequence of functions hk(δ) = exp(δ)(1 + δ/(k −
1))−k+1, k ∈ N, k ≥ 2, δ ∈ [δ1, δ2] converges uniformly to 1 as k →∞.
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Proof. Let k0 = max{−δ1, 0}+2. As 1+δ/(k−1) > 0 for δ ≥ δ1, k ≥ k0, it is possible
to take logarithms in the definition of hk(δ) for k ≥ k0, which gives log hk(δ) =
δ − (k − 1) log(1 + δ/(k − 1)). Replacing k by a continuous variable x > 1 and using
the inequality log(1 + t) > t/(1 + t), it is seen that

∂

∂x

[
δ − (x− 1) log

(
1 +

δ

x− 1

)]
= − log

(
1 +

δ

x− 1

)
+

δ

x+ δ − 1
< 0. (66)

This implies that hk+1(δ) < hk(δ) for k ≥ k0. In addition, hk(δ), δ ∈ [δ1, δ2] is a
continuous function and converges pointwise to 1 as k → ∞. Thus Dini’s theorem
(Apostol, 1974, p. 248) can be applied, which ensures that the convergence is uniform.

Proof of Proposition 3. For L as in (1), particularizing (24) to a = b, Ω = r − 1 and
using (4),

η̄

a
= 2(γ(r − 1, r − 1)− γ(r, r − 1)) =

2(r − 1)r−2 exp(−r + 1)

(r − 2)!
. (67)

In the following, the value Ω∗ determined by (26) for a given r will be denoted as Ω∗r .
Particularizing (27) to a = b,

η∗

a
=

2Ω∗r
r−1 exp(−Ω∗r)
(r − 1)!

. (68)

From (67) and (68), with hk(δ) as defined in Lemma 7, it follows that

η̄

η∗
=

(
r − 1

Ω∗r

)r−1
exp(Ω∗r − r + 1) = hr(δ

∗
r ) (69)

with δ∗r = Ω∗r−r+1. Lemma 5 establishes that δ∗r ∈ [−1/3,−1+log 2] and limr→∞ δ∗r =
−1/3. On the other hand, by Lemma 7, hk → 1 uniformly on [−1/3,−1 + log 2] as
k →∞. Therefore, according to Apostol (1974, theorem 9.16), limk,l→∞ hk(δ∗l ) exists
and equals 1. Thus, in particular, limr→∞ hr(δ

∗
r ) = 1, which combined with (69)

establishes that limr→∞ η̄/η∗ = 1.
For L as in (2), and with Ω∗ given by (30), let Ω∗r and δ∗r be defined as before. In

addition, let Ω̃r denote the value of Ω̃ corresponding to a given r, and δ̃r = Ω̃r− r+ 1.
Particularizing (28) to a = b, Ω = Ω̃r and using (4) gives

η̄

a
=

r

Ω̃r
(γ(r − 1, Ω̃r)− γ(r + 1, Ω̃r)) +

(
Ω̃r
r − 1

− r

Ω̃r

)
γ(r − 1, Ω̃r) +

r

Ω̃r
− 1

=
Ω̃r−1r exp(−Ω̃r)

(r − 1)!

(
1 +

r

Ω̃r

)
+

(
Ω̃r
r − 1

− r

Ω̃r

)
γ(r − 1, Ω̃r) +

r

Ω̃r
− 1.

(70)

Thus η̄ can be written as a(θ̃0 + θ̃1 + θ̃2) with

θ̃0 =
(r − 1 + δ̃r)

r−2 exp(−r + 1− δ̃r)
(r − 2)!

(
2 +

1 + δ̃r
r − 1

)
, (71)

θ̃1 =

δ̃2r
r−1 + 2δ̃r − 1

r − 1 + δ̃r
γ(r − 1, r − 1 + δ̃r), (72)

θ̃2 =
1− δ̃r

r − 1 + δ̃r
. (73)
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The quotient θ̃2/θ̃0 is computed as

θ̃2

θ̃0
=

(1− δ̃r) exp(δ̃r)(
1 + δ̃r

r−1

)r−1 (
2 + 1+δ̃r

r−1

) · (r − 1)! exp(r − 1)

(r − 1)r−1/2
· 1√

r − 1
. (74)

Proposition 1 implies that δ̃r ∈ (0, 1). Taking into account that r ≥ 2, it is seen that
the first factor in (74) lies in a bounded interval for all r, whereas, by the equality in
Lemma 3, the second factor tends to

√
2π as r →∞. As a result, limr→∞ θ̃2/θ̃0 = 0.

Similarly, θ̃1/θ̃0 is expressed as

θ̃1

θ̃0
=

(
δ̃2r
r−1 + 2δ̃r − 1

)
exp(δ̃r)(

1 + δ̃r
r−1

)r−1 (
2 + 1+δ̃r

r−1

) · (r − 1)! exp(r − 1)

(r − 1)r−1/2
·γ(r−1, r−1+ δ̃r) ·

1√
r − 1

. (75)

As before, the first factor in the right-hand side of (75) is bounded, and the second
tends to

√
2π. The third factor tends to 1/2 by Lemma 4. Thus limr→∞ θ̃1/θ̃0 = 0.

The quotient η∗/a is given as in (70) with Ω̃r replaced by Ω∗r ; and η∗ = a(θ∗0 +θ∗1 +
θ∗2), where θ∗0 , θ∗1 and θ∗2 are obtained from (71)–(73) with δ̃r replaced by δ∗r . Lemma 6
implies that δ∗r ∈ (0, 1), and arguments analogous to those in the preceding paragraph
show that θ∗1/θ

∗
0 and θ∗2/θ

∗
0 tend to 0 as r → ∞. As a result, limr→∞ η̄/η∗ can be

computed as

lim
r→∞

η̄

η∗
= lim
r→∞

θ̃0
θ∗0

= lim
r→∞

(
1 + δ̃r

r−1

)r−2
exp(−δ̃r)(

1 +
δ∗r
r−1

)r−2
exp(−δ∗r )

·
2 + 1+δ̃r

r−1
2 +

1+δ∗r
r−1

. (76)

Since δ̃r, δ
∗
r ∈ (0, 1) for all r, it is clear that the second factor in the rightmost part of

(76) tends to 1 as r →∞. By Lemma 7, (1 + δ/(r− 1))r−1 exp(−δ)→ 1 uniformly for
δ ∈ (0, 1). This implies that the numerator and denominator of the first factor in (76)
tend to 1 as r →∞ (note that δ̃r and δ∗r are not required to converge). Consequently
limr→∞ η̄/η∗ = 1.
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