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1 Abstract
The 12 January 2010, an earthquake hit the city of Port-au-Prince, capital of Haiti. The earthquake reached a magnitude Mw 7.0 and the
epicenter was located near the town of Léogâne, approximately 25 km west of the capital.
The earthquake occurred in the boundary region separating the Caribbean plate and the North American plate. This plate boundary is
dominated by left-lateral strike slip motion and compression, and accommodates about 20 mm/y slip, with the Caribbean plate moving
eastward with respect to the North American plate (DeMets et al., 2000). Initially the location and focal mechanism of the earthquake
seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along
the Enriquillo-Plantain Garden fault system (EPGFZ), however Hayes et al., (2010) combined seismological observations, geologic field
data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Besides, the authors
showed that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the EPGFZ.
In December 2010, a Spanish cooperation project financed by the Politechnical University of Madrid started with a clear objective:
Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource
management. One of the tasks of the project was devoted to vulnerability assessment of the current building stock and the estimation
of seismic risk scenarios.
The study was carried out by following the capacity spectrum method as implemented in the software SELENA (Molina et al., 2010).
The method requires a detailed classification of the building stock in predominant building typologies (according to the materials in the
structure and walls, number of stories and age of construction) and the use of the building (residential, commercial, etc.). Later, the
knowledge of the soil characteristics of the city and the simulation of a scenario earthquake will provide the seismic risk scenarios
(damaged buildings).
The initial results of the study show that one of the highest sources of uncertainties comes from the difficulty of achieving a precise
building typologies classification due to the craft construction without any regulations. Also it is observed that although the occurrence
of big earthquakes usually helps to decrease the vulnerability of the cities due to the collapse of low quality buildings and the
reconstruction of seismically designed buildings, in the case of Port-au-Prince the seismic risk in most of the districts remains high,
showing very vulnerable areas. Therefore the local authorities have to drive their efforts towards the quality control of the new buildings,
the reinforcement of the existing building stock, the establishment of seismic normatives and the development of emergency planning
also through the education of the population.
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Figure 1. Main layout of the SELENA web page
(http://selena.sourceforge.net )

For the seismic risk and loss assessment studies in Port-au-Prince (Haiti), the open-source
software SELENA v5.0 (Molina et al., 2010, Molina et al., 2007; Lang et al., 2008) is applied
(Figure 1). The software allows the use of deterministic, probabilistic and ”real
time”scenarios as the hazard on the study region (to calculate the seismic hazard input).
According to the selected option, the seismic ground motion in each geographical unit is
represented by soil-dependent response spectra which is derived through an empirical
ground-motion prediction relation, spectral seismic hazard maps or real time shake maps,
respectively. Physical damage probabilities (structural damage) are calculated by using the
modified capacity spectrum method (MADRS) as given in FEMA 440 (FEMA, 2005).

During July 2011, a field campaign was carried out through the city with the
cooperation of engineers from the ONEV. Therefore the building stock was classified
in several building types according to their structure, main materials and use.
Adittionally the MTPCT (Ministère des Travaux Publics, Transports &
Communications) provided us with a building database compiled after the 2010
earthquake containing structural information, damage state and use. Table 1 shows the
defined model building types (MBT) in the city and the chosen vulnerability function
(capacity and fragility curves; first ones are plotted in Figure 5). Finally, the building
stock was classified according to the corresponding model building type and its location
in the different districts (36 geounits) defined by the CNIGS .

Table 2 Building typology classification in the study areas of Port-au-Prince (Haiti) and
allocation of vulnerability (capacity and fragility) functions used for the loss assessment

Figure 5. Capacity curves for the different model building types taken partly from Lagomarsino
and Giovinazzi (2006), HAZUS (FEMA, 2003) and RISK-UE (Milutinovic and Trendafiloski 2003). 
(The corresponding fragility functions are not depicted.)

In order to predict the damage scenarios for the current building stock of Puerto
Principe we have taken into consideration two possible assumptions (Dr. J. Martínez,
pers. comm.): the maximum earthquake happening in the Enriquillo Plantain Garden fault
zone (Dumay scenario) and the most probable earthquake happening in the Muertos-
Neiba-Matheaux fault system (Neiba scenario). In both cases the soil-dependent
response spectra at each geounit was obtained through the ground-motion prediction
equation given by NGA relation (Boore and Atkinson, 2008). Soil amplification was
included in the NGA relation using the Vs30. This parameter was previously obtained
through a microzonation study that the Haiti working group carried out during July
2011 (Dr. M. Navarro, pers. comm.).

Table 2. Comparison of structural damage for the chosen earthquake scenarios.

The obtained results have been computed using a very basic model building type
distribution derived from survey estimation and existing databases. The following
conclusions can be proposed:

a) The existing building stock still shows a high vulnerability therefore, the maximum
expected earthquake (Dumay) or the most probable earthquake (Neiba) will
strongly affect the city causing between 35% to 43% of buildings with at least
extensive damage.

b) The damage distribution along the city is quite uniform due to the site effect
amplification on the distant geounits and the higher ground motion in the closest
geounits. If we also take into consideration that emergency buildings and health
care buildings are also spread on the city, then it will increase the difficulty of
emergency management within the city. Wounded popultation will have to be
displaced outside the city .

c) Finally, this study will be continued with a compilation of more detailed
information on distribution of the population on the study area and cost of
repair/replacement in order to apply a detailed human and economic losses model.

Authors are only part of a multidisciplinary team of scientist working on the seismic risk management
of Haiti. The rest of the team is: Dr. M. Navarro (Univ. Almeria), Dr J. Martínez-Díaz and Dr. D.
Córdoba (Univ. Comp. Madrid), Dr. M.A. de las Doblas (CSIC), Dr. D. Belizaire (ONEV-Haití) and the
Earthquake Engineering Group (Univ, Politécnica Madrid-
http://www2.topografia.upm.es/grupos/sismo/).
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3 Seismicity in Haiti

Figure 2. Distribution of seismicity (M >5.0) and main fault
systems. Main historical earthquakes are represented with stars.

Damage

State

Earthquake

Scenario

Number of  buildings 1  standard deviation
TOTAL2

RC_UR URC CW WD_UR RC_R

Slight
Dumay 3557  423 1014  156 1767  241 221  32 264  49

7061  876 
(14%)

Neiba 3810  265 1087  71 1866  112 235  5 288  27
7471  418 

(15%)

Moderate
Dumay 4159  254 1053  81 2181  225 197  14 108  12

7837  410 
(15%)

Neiba 4229  116 1042  36 1954  316 190  11 107  9
7607  421 

(15%)

Extensive

Dumay 2164  74 659  36 1212  393 133  10 150  18
4358  475 

(9%)

Neiba 2108  94 611  54 886  315 121  13 138  18
3881  500 

(8%)

Complete

Dumay 12798  2679 2698  940 622  461 450  187 424  165
17010 4432 

(34%)

Neiba 10835  2130 2020  635 335  209 310  75 302  121
13811  3170 

(27%)
1 Only for prevalent buildings (>2% of  the total building stock (N):  50768 buildings)
2 Accumulated for all building typologies (also those with a stock lower than 2% of  N).

Figure 6. Vs30 distribution in the city of Port-au-Prince and chosen earthquake scenarios.
As expected, the deepest sediments (lower Vs) appears close to the coastline.

As we can see from Figure 3a, the most of the building stock can be found included
within the MBT: RC_UR (61%); CW (16%) and URC (15%). Therefore , although the
computations will be done for all the MBT, we will focus in these prevalent buildings.
Figure 3b shows, additionally, that the most of the building stock is used as Residential
(88%). Figure 4 shows the prevalent building distribution at each district (geoounit).

Label Name, Description

Comparable with model building type 
defined by

Vulnerability functions assigned 
for the study

HAZUS RISK-UE PAGER

URC Unreinforced concrete structure URML M11L RS2 
M1L-BTM (Lagomarsino and 
Giovinazzi, 2006) 

RC.R 
Reinforced concrete structure 
with reinforced concrete walls 

C1L RC1 C1L 
RC1L-BTM (Lagomarsino  and 
Giovinazzi, 2006) 

RC.UR 
Reinforced concrete structure 
with unreinforced masonry infill walls 

C3L RC1L C3L 
RC1L-pre (Risk-UE, Milutinovic and 
Trendafiloski 2003) 

ST.R 
Steel structure 
with reinforced concrete walls 

S4 S4 S4 S4-pre (HAZUS,  FEMA 2003) 

ST.UR 
Steel structure 
with unreinforced  block masonry 

S5 S3 S5 S5-pre (HAZUS,  FEMA 2003) 

WD.R 
Wood structure 
with reinforced concrete walls 

RM2 M4 RM2 
M7-BTM (Lagomarsino and 
Giovinazzi, 2006) 

WD.UR 
Wood structure 
with unreinforced masonry 

URML M31 W1 
M5wL-BTM(Lagomarsino and 
Giovinazzi, 2006) 

WW Confined wood walls with heavy bases W1 n.a W1 W1-pre (HAZUS,  FEMA 2003) 

CW Confined or reinforced walls URML M4 M7 URML-pre (HAZUS,  FEMA 2003) 
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Figure 4. The city of Port-au-Prince was divided into 36 districts (geounits) and the damage is
computed at the center of each geounit. The figure shows the name of the geounits, and the
distribution of the prevalent typologies . Also a picture identifying the main characteristic of the
typology appears at the top.

Figure3. a) Number 
of  buildings classified 
according to the 
typologies defined for 
Port-au-Prince (See 
Table 1). b) Number 
of  buildings classified 
according to their 
occupancy type.
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Hispaniola Island lies along the complex boundary between the North American and
Caribbean plates and is therefore subject to large, damaging earthquakes (Figure 2). The
plate motion is partitioned between two offshore thrust systems, the North Hispaniola
fault and the Muertos fault, and two major, strike-slip fault zones that bound the
intervening Gonave microplate: the Septentrional fault zone (SFZ) on the north and
the Enriquillo-Plantain Garden fault zone (EPGFZ) on the south (Prentice et al., 2010).
The most last major earthquakes along the EPGFZ occurred in November 1751 (M 
7.5) and June 1770 (M  8.0); both of them devastated Port-au-Prince. However the
exact location of the related rupture has not been determined yet. Regarding the
Septentrional Fault, the last major earthquake occurred in 1842 (M8.0).
Additionally, as can be seen, the lack of instrumentation in Haiti has the consequence
that the instrumental seismicity starts from 1950 aprox.. This is a weakness when
seismic hazard in the region has to be evaluated and stress the importance of a political
effort in the establishment of an operative Haitian Seismic Network.

a) b)Figure 7. Complete Damage distribution in
the city of Port-au-Prince for a) Neiba
scenario and b) Dumay Scenario. Damage is
shown as percentage of the total building
stock at each geounit. Adittionally a color scale
represent the PGA in units of g’s.

Figure 6 shows the seismic scenarios and the Vs30
distribution for each one of the geounits. Uncertainty has
been included assuming that the ground motion can be
represented by Boore and Atkinson NGA (weigthed 0.70
and Boore and Atkinson ± 1 standard deviation
(weigthed 0.15 each). Therefore, that logic tree can
provide median results and corresponding uncertaintiy in
terms of standard deviation (Table 2).

Figure 7 shows the comparison between the complete damage produced by both scenarios.
Additionally, the PGA (in terms of g’s) for the median ground motion relationship has been
displayed as a ground color scale. It’s easy to see how the ground motion is amplified on
those geounits with a lower Vs30. These geounits are the most distant from the rupture area
of the earthquake so ground motion is not very different from the closest geounits (hgih Vs
velocity). The damage is uniformly distributed along the city so the building distribuiton with
complete damage can be found on all geounits, maybe slightly higher on those with a higher
Vs. In any case these results point out the high vulnerablity of the current building stock to a
new occurrence of a big earthquake.
Table 2 summarizes the damage results accumulated for all the city as a median ±standard
deviation value. Results have been included not only for the prevalent building types
(RC_UR, URC and CW) but also for those typologies over the 2% of the total building stock
(WD_UR, RC_R). We can see as the URC typolgy shows the highest vulnerabilty.
Additionally, all the health and emergency facilities in the city are distributed in geounits with
an important number of damaged buildings. Finally we can establish that independently of
the chosen scenario (Dumay or Neiba) the complete damage will range from 27% to 34% of
the total building stock and that between 65% and 72% of the total building stock will suffer
at least slight damage, stressing the importance of emergency planning, seismically designed
new constructions and reinforcement plans.
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