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Abstract—Analytical expressions for current to a cylindrical 
Langmuir probe at rest in unmagnetized plasma are compared 
with results from both steady-state Vlasov and particle-in-cell 
simulations. Probe bias potentials that are much greater than 
plasma temperature (assumed equal for ions and electrons), as of 
interest for bare conductive tethers, are considered. At a very high 
bias, both the electric potential and the attracted-species density 
exhibit complex radial profiles; in particular, the density exhibits 
a minimum well within the plasma sheath and a maximum closer 
to the probe. Excellent agreement is found between analytical and 
numerical results for values of the probe radius R close to the max­
imum radius -Rmax for orbital-motion-limited (OML) collection 
at a particular bias in the following number of profile features: the 
values and positions of density minimum and maximum, position 
of sheath boundary, and value of a radius characterizing the 
no-space-charge behavior of a potential near the high-bias probe. 
Good agreement between the theory and simulations is also found 
for parametric laws jointly covering the following three charac­
teristic R ranges: sheath radius versus probe radius and bias for 
R <^i -Rmax! density minimum versus probe bias for R = _Rmax; 
and (weakly bias-dependent) current drop below the OML value 
versus the probe radius for R > _Rmax. 

Index Terms—Asymptotic theory, bare electrodynamic tether, 
high-voltage sheath, Langmuir probe current, particle-in-cell 
(PIC) simulations, steady-state Vlasov simulations. 

I. INTRODUCTION 

T HE BARE-TETHER concept, i.e., leaving a conductive 
space tether bare of insulation to freely collect charge 

from the ambient plasma [1], has spurred new issues in the 

old theory of cylindrical Langmuir probes, which have long 
been used in space. At a negative bias $ p , with - e $ p ~ kTe, 
the retarding range of the probe characteristic has served to 
determine the electron temperature Te; ion collection, which is 
dominant at a more negative bias, has been used to determine 
the plasma density n ^ [2]. In the past, studies of the effects of 
relative plasma velocity U0 were limited to moderate voltages 
[3]; when the probe was nearly aligned with the spacecraft 
velocity, the ion current showed a peak that can serve to find 
the ion temperature % [4], [5]. Typically, however, a bare tether 
operates as a giant Langmuir probe at a positive bias, with 
e$ p being very much greater than both the thermal energy of 
particles and the ion ram energy. The probe sheath is then much 
larger than both the probe radius R and the Debye length XD, 
whereas the latter two quantities may have similar values. 

In the absence of effects from the geomagnetic field Bo 
and from the velocity U0, both the potential $(r) and elec­
tron density ne(r) have been theoretically predicted to exhibit 
spatially complex structures [6], [7]. The faraway potential 
behaves as $ ~ 1/r, this being just a result from the angle 
subtended by the probe decreasing as inverse distance 1/r and 
as $ ~ In r inside some neighborhood around the probe, where 
the high bias makes space charge effects negligible. In between, 
however, the product $ r 2 would go through a relative minimum 
at a certain point 0 lying outside the sheath, with $0?*o > &pR2 

in the case where the probe is collecting orbital-motion-limited 
(OML) currents and through a maximum at some point m well 
inside the sheath (Fig. 1). The density itself would show a 
minimum nm i n at point m and a maximum near point Q, where 

*, QrQ 3>o»o, c l ° s e t 0 the probe before settling at a value of 
l/2noo at its surface. For R that is greater than some maximum 
radius i?m a x , point 0 lies below the diagonal in Fig. 1, the 
density at the probe drops below l/2noo, and the current drops 
below the OML value. This paper proposes to validate both the 
analytical and numerical approaches by comparing the results 
on sheath profile features and on parametric laws, such as 
sheath radius and current beyond the OML regime. 

Except for the geometry-specific Laplace-type potential near 
the probe, the results for arbitrary convex cross sections (with 
some definite "equivalent radius" Req playing the role of the 
radius of a circular cross section) are quite similar [8]. The 2-D 
OML law for electron collection is very robust. It does not re­
quire azimuthal symmetry; it is independent of the unperturbed 
ion distribution and (at high bias) is also independent of the 
electron distribution if isotropic, as with the highly subsonic 
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Fig. 1. Schematics of potential profile for a cylindrical probe in quiescent 
unmagnetized plasma in the case of OML current collection (point 0 above the 
diagonal). 

relative electron flow at low Earth orbit (LEO). Moreover, the 
probe radius can be made much smaller than the electron ther­
mal gyroradius. Ignoring both U0 and Bo might thus possibly 
be a valid approach in predicting electron current collection in 
LEO. Preliminary laboratory tests at the Marshall Space Flight 
Center have been followed by more careful tests [9]—[12]; 
however, the full laboratory simulation of all conditions in 
space is difficult. Both particle-in-cell (PIC) [13]—[15] and 
steady-state Vlasov [16], [17] numerical analyses have been 
carried out, with results being (as of yet) inconclusive about 
a collected-current law for magnetized (Bo ^ 0) flowing 
(U0 ^ 0) plasma. 

A recent steady-state Vlasov analysis of highly biased ion-
attracting probes has provided detailed sheath profile and cur­
rent collection results for both stationary and flowing plasma, 
with B 0 = 0 [18]. In this paper, we present a thorough compari­
son of theoretical results from [6] and [7] with numerical results 
for the stationary (U0 = 0) case from [18] and [14]. Note that 
the LEO U0 ^ 0 case is fundamentally different for negative 
and positive biases, owing to the mesothermal character of the 
relative plasma flow [19]. Note also that the OML collection 
appears applicable in unmagnetized plasma as long as the 
attracted species has an isotropic distribution function [20]. 

II. KINETIC MODELING OF HIGH-VOLTAGE 

PROBE SHEATHS 

Theoretical results will first be compared with some recently 
published numerical results pertaining to high-voltage sheaths 
[18], which were obtained using a steady-state self-consistent 
kinetic model implemented as the kinetic plasma solvers (KiPS) 
[17]. The simulation results shown in [18] include the sheath 
profile and collected ion current and pertain to both stationary 
and flowing plasma with Mach numbers from 0 to 10. For the 
present purposes, we will only use the stationary (nonflowing) 
kinetic simulation results based on KiPS-l-D simulations, 
which span the bias ratios e§p/kTe ranging from -10 to 
-5120, whereas results with earlier similar models [21] had 

been provided over a limited range of potential bias ratio (down 
to -25). 

KiPS-l-D and KiPS-2-D are steady-state self-consistent 
kinetic solvers that are capable of simulating, respectively, sta­
tionary and flowing collisionless unmagnetized plasma in a vast 
region surrounding a round conductive cylinder of an arbitrary 
radius (in the case of KiPS-l-D) or any 2-D conductive object 
(in the case of KiPS-2-D). The KiPS codes numerically solve, 
in a self-consistent manner, the Poisson and Vlasov equations 
in the steady state. The Poisson solver was implemented 
using the finite-element method. In 1-D, the Vlasov solver 
uses conservation of energy and angular momentum to infer 
velocity-distribution functions within the computational zone. 
In 2-D, the Vlasov solver is based on the inside-out approach 
of tracking particle trajectories backward in time up to their 
origin on one of the computational-space boundaries. 

A key component of the solvers is their iterative approach 
to reaching a self-consistent solution based on successive lin­
earizations of the nonlinear Poisson-Vlasov operator [17]. Nu­
merical instabilities resulting from the large grid sizes required 
to model the large sheaths resulting from high voltages are 
handled using a Tikhonov-regularized Newton iterative process 
[17]. The sharp features encountered in the net space charge 
near the sheath edge in high-voltage sheaths are accurately 
resolved in both KiPS-l-D and KiPS-2-D using an adaptive 
meshing strategy. 

Theoretical results will also be compared with some results 
from [14], which were obtained using a PIC method, which 
groups particles into superparticles having parameters defined 
as the sum of the corresponding parameters of all particles in 
the cell. From the superparticle positions, the plasma density 
is extrapolated to each node of the grid and then used in the 
Poisson equation to calculate the potential. The electric field 
and resulting acceleration are then inferred for each superpar­
ticle, allowing one to update its velocity and position. The 
PIC method could not be used, however, in the proximity of a 
highly biased tether due to the high velocity of superparticles 
with respect to the scale of the grid. Instead, the motion of 
electrons inside a small domain around the tether was calculated 
analytically, using local conservation of energy and angular mo­
mentum under a fairly valid assumption of a purely Laplacian 
field. 

With regard to boundary conditions, quasi-neutrality was 
imposed at the boundary of the simulation domain, rewriting 
separately the densities of incoming and outgoing electrons and 
ions n™ + n°u t = n™ + n° u t . In the case of no flow and no 
magnetic field, incoming densities could be obtained by in­
tegrating Maxwell-Boltzmann distributions, whereas outgoing 
densities were computed from the simulation itself. Combining 
both types of expressions allowed for the calculation of the 
potential at the boundary, which was then used to evaluate the 
velocity of new particles to be injected. 

III. COMPARISON OF SHEATH PROFILE FEATURES 

To readily refer to theoretical results from [6], we consider 
the case of an electron-attracting probe, which is now entirely 
symmetric to the ion-attracting case considered in [18]. The 



Fig. 2. Reproduction of a figure presented in [18, Figs. 3(b) and (c)]. The figure shows semilogarithmic profiles at values Ti = Te 

and R = XJJ for (a) normalized potential e<&/fcT and cumulative space charge and (b) densities of attracted and repelled species (in addition to samples of the 
directional-energy distribution of the attracted species Eg/Er along the profile). 

electric potential, electron density, and radius are normalized 
as in [18] 

$ = e<S>/kTe > 0 ne/na r/Xi 

except that the relative potential $ assumes positive values 
here. All dimensionless features in the profiles are functions of 
just three dimensionless parameters, which are the temperature, 
bias, and Debye ratios 

Ti/Te e%/kTe = % R/XD = R. 

In this section, we compare theoretical results with numerical 
results from [18, Fig. 3(b) and (c)] [reproduced here, for ease of 
reference, as Fig. 2(a) and (b)], although no perfect comparison 
is possible with the available data. The parameter values 

Ti/Te 1 $ p = 5120 R = 1 

were used in Fig. 2, whereas R was the maximum radius i?max 

collecting OML current throughout [6]. In [6, Fig. 6], one has 

R„ ,{Ti/Te = 1, * p = 5120) « 1.09. 

The semilogarithmic profiles shown in Fig. 2(a) numerically 
verify that the space charge has a negligible effect on the poten­
tial over a large neighborhood around the probe. The radius reos 

in Fig. 2(a) corresponds to the zero-potential intercept in the 
symmetrical Laplace no-space-charge solution for cylindrical 
geometry 

$ ln(re o s/r) 

$ p ln(re o s/i?) ' 
(1) 

The density profile of the attracted species shown in Fig. 2(b) 
exhibits the following five characteristic values: a "sheath" 
radius rs, defined in [18] as corresponding to a potential $ s = 
kTe/e; radii within the sheath r(nmin) and r(nmax), where 
the attracted-species density assumes minimum and maximum 
values, respectively; and the corresponding values nm i n and 
«max- Numerical results for the aforementioned dimensionless 
characteristic values are 

rs 

rs 

^eos 

r(nmin) 

^eos 

^min 

^ i^max ) 

^max 

= 155.5 

155.5 
104.8 

80.2 
104.8 

= 0.052 

= 1.62 

= 0.71. 

a 1.484 

a 0.765 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

A. Simple Sheath Features 

The high-bias asymptotic analysis in [6] introduces a thin 
layer between two close points, 1 and 2 in Fig. 1, where d^/dr 
in the quasi-neutral limit and $ diverge, respectively. The 
plasma is quasi-neutral for r > r i ; no ions are present for r < 
r2. From [6, Appendix A, eq. (A4a) and following], one has 

1 - 3.45 
AyU, 

1/5 

( a i / ^ i ? 2 ) 2 / 5 (3) 



where the product coefficient A/z, the coefficient 

ax = %RA/ a iJi (4) 

and a third coefficient n used in the following to describe the 
density within the sheath only depend on the ratio Ti/Te in 
case R = i?max- For Ti/Te = 1, one has (see [6, Fig. 5]) 

/xA « 5.0 ax K, 0.24 K « 3.40 

here resulting in r1/r2 « 1.05. With $ i = O(l) < 1 and $2 
being large, our prediction for the sheath radius as defined in 
[18] (3>s = 1) would be rs « r\ (slightly smaller than rf) or 

: 1.09 X 

: 159.2 (5) 

as compared with 155.5 in (2a). 
For the high-bias large-sheath cases considered here, the 

potential could always be written as [6], [7] 

$ oc g(u) u = ln{r2/r) (6) 

where the function g was numerically determined. At a large u 
(near the probe), g takes a form corresponding to a no-space-
charge Laplace solution 

g{u)K,c{u-h) c « 2 . 0 9 b«0.351 

resulting in 

In(r2/V) — b 
111(7-2/!?) - b 

leading to 

H 
r2 

exp(6) = 1.05e' 0.351 

r2e 

1.490 

(7) 

(8) 

(9) 

which compares with the ratio 1.484 in (2b). 
Except near the probe (see in the following), the density 

within the sheath, as given in [6, eq. (20)], behaves as 

K R 
nr2 

cln(e-br2/R) 
0 2 u 

g(u) 
(10) 

The expression above has a minimum at point m in Fig. 1, 
away from both probe and sheath boundaries, where $ r 2 goes 
through a maximum, i.e., where g(u)e~2u is maximum. It 
follows from the numerical solution for g(u) that um « 0.63 
and g(um) « 0.86 [6]. We then find that 

r(nm i n) = r2e °'63 => r^^^/r^ = < 

as compared with a ratio of 0.765 in (2c). 

,0.351-0.63 : 0.756 
(11) 

Setting u = 0.63 and g « 0.86 in (10) and using 

R 7*1 fo\ 

?*2 r2 V $„ 

we find a density minimum 

1 .05A/—— « 0.00719 
5120 

0.049 

(12) 

(13) 

to be compared with the value 0.052 in (2d). 

B. Density Maximum 

The sheath law n oc l/{ryj$), as given by (10), exhibits no 
maximum. As noted in [6, eq. (25)], however, that law fails 
near the probe, although this failure does not affect the solution 
for the potential, any space charge in a limited neighborhood 
around the probe having negligible effects because of the high 
bias. The maximum, which was noticed in 2001 [22] and again 
in 2003 [14], is explained in the following in terms of both 
the probe (as charge sink) and potential barrier effects. We 
recall here that in the absence of any such effect, the density 
of attracted particles in an arbitrary 2-D potential field remains 
undisturbed n = 1 throughout [20]. 

To allow for a possible density maximum, we then revert to 
a general expression in [6, eq. (7)] 

dE 
irkTp exp 

-E 
2 sin 

-1 J*r{E) 
ME) 

1 J*R(E) 

ME) 
(14) 

with 

J r
2 ( B ) = 2 m e r 2 [ £ + e$(r)] (15) 

J*(E) = min [M{E);r < r' < 00J < Jr(E). (16) 

For given r and (electron energy) E, angular momentum 
values of zero and Jr(E) correspond to zero azimuthal and 
radial velocity, respectively. In case J*{E) < Jr(E), inward 
trajectories with angular momentum in the range J*{E) < 
angular momentum < Jr (E), which have low radial velocities, 
are unpopulated. Such trajectories, if traced back in time, turn 
around at radii between r and the radius where the minimum in 
(16) occurs; a potential barrier is said to exist at r [7]. 

We clearly have Jr*(£) = Jr(E) whenever J*(0) = Jr(0) 
applies, i.e., for r2<&(r) < r'2Q{r') holding throughout the 
range, r < r' < 00. In Fig. 1, this applies for both r > r0 and 
rq > r > R. The OML current law itself holds if there is no 
potential barrier at just R, i.e., there are no trajectories that, 
if traced back in time, turn around and return to the probe; 
the OML condition i? 2$ p < r2<&(r) for all r requires point 0 
to lie above the diagonal, as shown in Fig. 1. The second 
term in the bracket of (14) is the probe-as-sink effect. With 
JR< JR= y/2meR

2(E + e$p) , that term vanishes with the 
probe size. In case one had R —> 0 and J*{E) = Jr(E), (1) 
would indeed yield n = 1 as required in [20]. 



With J*R{E) = JR(E) and J*{E) = Jr(E) holding from 
point Q to the probe in Fig. 1, (14) can be rewritten as 

_ [dE/kTe (-E\ . _! R2% 

o 

1 -i . I&*P (17) 

where we used the approximation kTe ~ E <C e$Q < e$ p , 
leading to Jr{E) « J r(0) for both rQ and i?. Note that (14) 
recovers (10) only away from both probe and sheath bound­
aries, when both angles in the bracket of (14) are small, with 
Jr « J r(0) oc ryJQ, and J*{E) approximately given in [6] 
in terms of both Jro{E) and Jr\{E), which determined the 
factor K. 

Clearly, the density increases along with r 2 $ from the probe 
to point Q in Fig. 1. If the density maximum actually occurred 
at Q, we could make a comparison on density maximum values 
by consistency, by using (1) for the potential not far from the 
probe in (17) 

1 
"•max = nQ = 1 s in 

7T 

R_ / \n(reos/R 
rQV ln(r e o s / rQ) 

(18) 

When setting R = 1, 
from (2e), (18) yields 

= 104.8 and rQ = r(nmax) = 1.62 

0.77 (19) 

whereas we should have nm a x « 0.71, as in (2f). 
Point Q is actually not quite the point of maximum density 

in Fig. 1. As one moves on the profile outward from Q, the 
second term in the bracket of (14) keeps decreasing as r 2 $ 
keeps increasing. We will now have J* < Jr, with the first term 
in the bracket decreasing below its original unit value as well; 
however, this decrease can be shown to be slower at the start. 
Thus, Q lies at some radius ¥Q < r(nmax) = 1.62, reducing 
the density maximum in (18). 

IV. COMPARISON OF PARAMETRIC LAWS 

A. Density-Minimum Law for R = i?m a x 

Using (4) in (10) provides a general expression for the 
density minimum 

K T*I \<j\ \ e x p ( 2 w m 

T r ^ Y ^ y g(um) 

' 1 $ 7*1 
- l n - ^ - l n — -b (20) 
2 <TI r2 

with the ratio r 2 / r i given by (3). Considering R = 
Rm&x(&P,Ti/Te) with the values for A/x, <TI and K previously 
given for Tj/Te = 1, we find 
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Fig. 3. Reproduction of a figure presented in [14, Fig. 5-3]. The figure 
compares results on a normalized density-minimum ramin/rioo versus probe-
bias law from the theoretical law in (21a) and (21b) for (continuous line) R = 
fimax PS \]j and (dots) PIC simulations for R = XJJ. It also incorporates 
results from (crosses) new KiPS-l-D simulations. 

?*1 
( * p ) = l 

1.62 

'$pfimax($p) 
4/5 ' 

(21b) 

Fig. 3, which is a reproduction of a figure in [14, Fig. 5-3], 
compares density-minimum results from PIC simulations with 
the law in (21a) and (21b); the figure also incorporates new re­
sults from KiPS-l-D simulations. Note, however, that the sim­
ulations used both Ti/Te = 1 and R = 1 throughout, whereas 
i?m a x , as considered in (21a) and (21b), ranges from 0.7 to 
just above unity in [6, Fig. 6]. Moreover, the theoretical law 
was simplified in Fig. 3 by setting r i / r 2 = 1, which is an 
approximation that is seen in (21b) to increasingly fail with the 
decreasing bias. The law itself should fail at a moderate/low 
bias. At zero bias, however, the minimum (nm;n = 1/2) does 
occur at the probe, as shown in Fig. 3; for $ p = 0, one has 
$(r) = 0 and ne(r) = n-j(r), which are particle densities hav­
ing purely geometrical no-particle-mass dependence. 

B. Probe-Current Law for R > i?m a x 

For R > i?m a x($p ,Tj/T e) , the current to the probe falls 
below the OML value, which, at the high bias of interest, is 
JOML = 2i?Lenooy/2e$p/me. One then has 

I 

I OML 
G[$p,fl,p R > Rn *„ (22) 

The current ratio above was shown in [7] to decrease both with 
an increasing temperature ratio and (weakly) with a decreasing 
bias. Neglecting the weak dependence on the bias in G and 
in R itself, G could be written roughly in terms of a single 
variable [7] 

I/IOML ~ G [R — Rm&x(Ti/Te)\ (23) 

Fig. 4, which is a reproduction of a figure found in [14, 
Fig. 5-15], compares values of G from PIC simulation re­
sults with theoretical results from [7]. The simulations used 
Ti/Te = 1 and moderately low values of the bias. Note that 
differences are typically on the order of a few percent. 
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except that the exponent 4/3 was there given as 1.346. We will 
now calculate a to compare c(a/7r)2 /3 with the corresponding 
factor 1.298 in the numerical-fit law. 

In what follows, we shall use the equations presented in 
[7, eqs. (18), (19), (22), (23), (25)], which involve energy E in­
tegrals containing Jr(E) functions for point 1 and for the probe 
\J*R{E) = JR(E) = JR(0)], and a function Jem(E), with 
J2 = J2

nv(E) being some envelope of the family of straight 
lines J 2 = J2(E) in the E — J2 plane with r as parameter [6], 
[21]. The second term inside a bracket in all those integrals can 
be neglected because the ratio 

J2! r?(E + e$i) 
72 

R2e<$>r, 

$1 

o-i 
1 

E 

e $ i 
(28) 

Fig. 4. Reproduction of a figure presented in [14, Fig. 5-15]. The figure 
compares results on the current drop below the OML value versus the probe 
radius for R > -Rmax from (continuous line) theoretical results in [7] and PIC 
simulations (showing error bars), with a weak dependence on bias ignored. 

C. Sheath Law for R <c i ? m a x 

The case R < i ? m a x was briefly mentioned in [7]. A sheath-
size law can be derived, however, from [7, eq. (26)], which 
reads 

g[ln(r2/R)} = (ir2a2/K' ) l / 3 ¥ V 3 / S 4 / 3 (24) 

with CT2 = o"i?*2/r2, r 2 / r i as given in (3), and <TI as defined in 
(4). In general, both <TI and K are functions of all three ratios 
Tt/Te, %, and R. [For R = i ? m a x = A D i ? m a x ( ¥ p , T y T e ) , 
however, <TI and K are (as already noted) only functions of 
Ti/Te, taking the respective values of 0.24 and 3.40 for the ratio 
Ti/Te = 1 considered here]. 

The sheath law in the thin probe limit (R <C i ? m a x ~ XD) 
at a high bias is particularly simple because, as shown in the 
following, we then have 

cr < 1 

KA/CTI = constant = a = O ( l ) . 

(25a) 

(25b) 

is large; $ i is later found to be O ( l ) , and thus, E ~ kT ~ e<&\. 
The family envelope J 2 = J2

nv(E) arises from the appear­
ance of potential barriers for r < r0 , as the profile shown in 
Fig. 1 goes through a minimum at point 0 and rapidly rises at 
the sheath entrance. The envelope was approximately given in 
terms of the J 2 = J2

0(E), J2 = J2i{E) lines presented in an 

equation in [7, eq. (16)], which, using ansatzen p: 

O ( l ) , $ o < $ i , reads 
3 / r l — 

J 2 K 
p ($ !+£) [$ ! +£(/>-!)] 

pw + (p — l)w2 

1 + pw + (p — l)w2 

w = e / $ i = E/$\. 

J (w,p) 

The equation in [7, eq. (25)] now becomes 

K « 2 / dee~eJt 1 

which is just (25b), with a given as 

(29a) 

(29b) 

(30) 

Using the behavior in (7) for the function g, which is valid for 
large values of ln ( r 2 / i ? ) , and inserting (4) and (25b) in (24), 
we find 

c [ln(r2 / i?) - b] « ( ^ 2 a 1 a 2 / a 2 ) 1 / 3 $ V 3 ^ 4 / 3 ^ ^ 

2 / 3 r i r 2 

AD 

2 / 3 

In kn (26b) 

For $ p large and both a and R of order unity, (26a), with its 
left-hand side only logarithmically large, serves to verify that 
<TI is indeed small. 

The numerically fitted sheath law for R/XD = 0.001 pre­
sented in a figure in [18, Fig. 5] can be recovered from (26b) by 
neglecting b against the logarithm of the very large ratio r2/R 
(leading to errors on the order of a few percent for the data used 
in [18]) and setting r 2 « r\ K, rs 

2 / 3 4 / 3 

In 
R kTP. 

(27) 

^3/2 
a = 2<&1 I dw exp(—$iw) J(w, p)y/l + w. 

o 

(31) 

To determine the values $ i and p as required to evaluate (31), 
one uses the aforementioned equations in [7, eqs. (18) and (19)], 
which read, respectively, as 

e x p ( - $ i ) « - $ i / d w e x p ( - $ i w ) s i n J(w,p) (32) 
7T 

e x p t - j ^ i / ^ 6 ^ - ^ ) - W ^ . (33) 
•K J 1+W J ^2, ~ 

We find the values of $ i « 0.350 and p « 1.724, which are of 
order unity as advanced and are thus independent of R if small; 
when used in (31), we find that a « 1.97, finally yielding 

c(a/"7r , 2 / 3 1.53. (34) 



Note that the value 1.298 in the numerical-fit law is about 15% 
smaller. 

To understand this difference, which is greater than in the 
— 2 

previous comparisons, note that both o\ and R are now small 
in (3). We then return to (26b), still neglecting b and keeping 
rs « r\ but retaining (just outside the logarithmic term) the 
effect of a nonvanishing small difference 1 — (r2/Vi).From(3), 
using (4) to conveniently eliminate o\ and again using rs « rl7 

we find that 
2/3 

1 x 3.45 
y«A 

1/5 
XD 

4/5 

(35) 

with the coefficients p and A defined in general form in 
[7, eqs. (22) and (23)] (for R = i?m a x , their product was given 
in [6], where Xp« 5.0, as noticed earlier). Those equations 
take simple forms for R <C i?m a x 

/ x « $ i / — e x p ( - $ ! w ) 
2J(w,p) 

—2 

1- J (w, p) 

(36a) 

A = - exp ( -$ i 
dw 

2TT5>I 
exp(—$iw) 

J[w,p) 3 — 2J (w,p) 
(i + w ) 2 r- -2 1 -J (w,p) 

(36b) 

yielding /x « 2.034 and A « 0.5742, respectively, when the 
previously found values of $ i « 0 . 3 5 0 a n d p « 1.724 are used. 
Equation (26b) then reads 

1.53 1-2.56 
A, 4/5' 

, L V / 3 l n 
XD) kTP. 

(37) 

Equation (37) first shows that a simple law such as (27) 
somehow oversimplifies the true functional dependence of 
the sheath size of a very thin probe, whether one uses the 
numerical-fit factor 1.298 or the theoretical factor 1.53. Next, 
note that at a small given R/XD, the ratio rs/XD increases 
with the bias ratio e$p/kT in (37), the value 1.53 thus be­
ing the correct limit factor in (27) at a very high bias, with 
the exponent 4/3 as the right exponent. Moreover, note that 
the product 1.53 times the bracket in (37) is equal to 1.298 
about midway through the rs/XD range used for the fitting 
in [18] (10-80, roughly). However, for a lower rs/XD and, 
thus, lower e$p/kT, the approximation rs = r\ breaks down, 
as does the agreement with the numerical results. Thus, (37) is 
only valid for the very high bias regime of interest for tether 
applications. 

V. CONCLUSION 

Analytical results on current collection by a cylindrical 
Langmuir probe at rest in unmagnetized plasma were com­
pared with results from both steady-state Vlasov and PIC 
simulations. A probe bias that is very much greater than the 
plasma temperature (assumed equal for ions and electrons), as 
of interest for bare conductive tethers, was considered; results 

on probe current apply to a bare conductive tether because 
the bias along the tether varies over distances that are much 
larger than the local sheath size. At such a bias, both electric 
potential and attracted-species density exhibit complex radial 
profiles; in particular, the density exhibits a minimum that is 
well within the plasma sheath and a maximum that is closer to 
the probe. Excellent agreement was found between analytical 
and numerical results, for a probe radius R near the maximum 
radius i?m a x for OML collection and a bias ratio near 5000, 
in the following profile features: value and position of density 
minimum; a relation between the value and position of the 
density maximum; the position of the sheath boundary; and the 
value of a radius characterizing the no-space-charge behavior 
of the potential near the high-bias probe. 

Good agreement between the theory and simulations was 
also found for parametric laws jointly covering the following 
three characteristic R ranges: sheath radius versus probe radius 
and bias, for R <C i?m a x ; density minimum versus probe bias, 
for R = i?m a x ; and (weakly bias-dependent) current drop be­
low the OML value versus probe radius, for R > Rmax. 

The asymptotic analysis requires a large bias ratio e$p/kTe, 
yielding a sheath-to-probe size ratio on the order of 
1/' y/kTe/e$p for i?/i?m a x or R/XD of order unity. This makes 
for errors in the theory of l%-3% for the bias of interest in 
tether applications. Results in [6] and [7] were also given for 
values of the temperature ratio Ti/Te ^ 1; a comparison with 
corresponding numerical results should show an agreement 
similar to that found here as long as that ratio is of order unity. 
More important for future work is any possible dependence on a 
relative plasma velocity U0. A fundamental difference between 
the negative and positive biases for the LEO U0 ^ 0 case, due 
to the mesothermal character of the relative plasma flow, might 
involve trapped-electron effects [15], [19]. 
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