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We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq
convection in a rotating system using water as the working fluid. We identify two regimes. For weak non-
Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and
typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau
equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil-
lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau
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The complex Ginzburg-Landau equation (CGL) as the
universal description of weakly nonlinear oscillations has
been studied theoretically in great detail. The classical,
supercritical case, which involves only two independent
parameters, looks deceptively simple. It exhibits, however,
a vast variety of qualitatively different phenomena includ-
ing several types of spatiotemporal chaos [e.g., [1,2]]. If
the oscillations arise in a subcritical Hopf bifurcation the
quintic CGL comes into play, which introduces further
interesting states including, for instance, intermittent
bursts in the oscillation amplitude.

In contrast to the extensive theoretical work on the CGL,
direct experimental validation of its various regimes of
complex behavior are scarce [3], in particular, for the
two-dimensional case [4]. In this Letter we present detailed
numerical computations for an experimentally realizable
thermal convection experiment that exhibit defect chaos
and bursts. We show that the defect chaos can be system-
atically described by a cubic CGL, while the bursts can be
modeled with a quintic one.

Rayleigh-Bénard convection of a fluid layer heated from
below in systems with large aspect ratio, in which the
lateral dimension L of the layer is much larger than its
thickness 4, has proved to be a paradigmatic experimental
system [5] for studies of complex patterns. Above a critical
temperature difference AT, across the layer, which corre-
sponds to the critical value R. of the dimensionless
Rayleigh number R, one observes in the simplest case
the familiar striped (roll) patterns with wave numbers ¢
close to the critical wave number ¢.. However, in systems
in which AT, is large, fluid properties like the thermal
expansion coefficient or the viscosity vary significantly
across the layer. Under these non-Boussinesq (NB) con-
ditions the instability of the homogeneous state leads to
hexagonal convection patterns [6].

If the chiral symmetry of the system is broken by rotat-
ing the layer about a vertical axis with frequency (), new
interesting dynamics arise. For () above the Kiippers-Lortz
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frequency Qy; , one finds in the Boussinesq case immedi-
ately at onset R, domain chaos in which rolls persistently
switch orientation [cf. [5] ]. In contrast, in the NB case the
hexagons are steady in this regime. However, weakly non-
linear theory predicts at € = (R — R,)/R,. = €y a second-
ary oscillatory instability [cf. Fig. 1] to ‘“whirling
hexagons,” in which the three hexagon amplitudes oscil-
late about their mean, with their phases shifted by 27/3
relative to each other, giving the hexagons the appearance
of rotating American footballs [7-9].

Here we perform computer experiments on rotating non-
Boussinesq convection with water as the working fluid in
cases that can be realized in currently available experi-
ments. Focusing on the whirling hexagons, we obtain
different spatiotemporally disordered states, an example
of which is shown in Fig. 2(a), and use the complex
oscillation amplitude FH [see (2) below] to interpret
them in terms of suitable complex Ginzburg-Landau equa-
tions. The magnitude | | is shown in Fig. 2(b).

Specifically, we consider two situations corresponding
to weak and intermediate NB effects, respectively, and
solve the full Navier-Stokes (NS) equations with the
leading-order temperature dependence of all fluid parame-
ters included [10]. We obtain spatially periodic stationary
hexagon patterns and test their stability using a standard
Galerkin method. The temporal evolution of the states is
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FIG. 1 (color online). Sketch of bifurcation diagram for rotat-
ing NB convection. Solid (dashed) lines denote stable (unstable)
branches. For the oscillating (““whirling’’) hexagons maxima and
minima of the oscillations are indicated (thick solid lines).
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then simulated with a pseudospectral code with periodic
lateral boundary conditions [10,11]. We consider two set-
ups differing in the mean temperature 7|, of the fluid layer.
In case A we choose Ty = 14 °C resulting in AT, = 6.4 °C
and a value of Q = —2.2 for Busse’s NB parameter [6];
case B with Ty = 12°C and AT, = 8.3 °C is more non-
Boussinesq and yields Q = —3.62 [12]. In both cases & =
0.492 cm and Q = 65v,/h> with v, being the viscosity of
the fluid in the midplane.

In case A we obtain above the Hopf bifurcation at ey
states in which almost all convection cells are oscillating
about a mean, but for general initial conditions the oscil-
lations of different cells are out of phase with respect to
each other. This is shown in Fig. 2(a) where the solution
(with N = 256) is visualized by the deviation 6(r, ¢) of the
temperature from the conduction profile in the midplane of
the fluid layer. Here r denotes the horizontal coordinates.
To extract the oscillations explicitly we make use of the
fact that the underlying hexagon pattern itself is well
ordered. We first demodulate each snapshot in space by
writing

3
O(r, 1) = > Ay, )e"™ +cc. +hot (1)
j=1

Here the wave vectors g7 ; represent the three dominant
wave vectors of the hexagons and h.o.t. denotes their
harmonics. For strictly periodic stationary hexagon pat-
terns the amplitudes A;, j = 1...3, do not depend on r
or t, have the same modulus A, and can be chosen real
and positive in our case (water). In general, the amplitudes
A/(r, 1) are complex and depend slowly on space represent-
ing the contributions from the sidebands of the basic wave
vectors g1 ;.

Slightly above the Hopf bifurcation at € = e the am-
plitudes A; vary in time. For patterns that are close to
periodic in space the A; can be expressed as

Aj = (Apey + p'2[e2mBH el + c.c.]
+ O(w) exp(iAgh; -t +ip'?¢;(r, 1), (2)
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FIG. 2 (color online). Disordered state of whirling hexagons in
case A for €e=02 (R.=61413, €y =0.062), L=
32(2m/q,) = 38.3. (a) Snapshot of 6(r) [see Eq. (2)].
(b) Magnitude | FH| of oscillation amplitude of snapshot shown
in (a). Red (blue) indicates large (small) values of | |.

where u = (R — Ry)/Ry and w is the Hopf frequency.
Here HH denotes the complex oscillation amplitude, which
we extract by standard spatiotemporal demodulation of a
series of snapshots like Fig. 2(a). The space dependence of
the phases ¢; captures slight deformations of the under-
lying hexagon lattice.

A snapshot of the magnitude |# | of the oscillation
amplitude is shown in Fig. 2(b). A more detailed analysis
shows that the domains with small || are due to spiral
defects in the complex oscillation amplitude, which are
isolated zeroes of JH . During the evolution of the system
these defects are persistently created and annihilated in
pairs. In appearance, this state is thus quite similar to the
defect chaos of the cubic CGL (see below).

When the NB effects are stronger (case B) the Hopf
bifurcation is shifted to larger values of € and, unexpect-
edly, becomes subcritical. The numerically determined
bifurcation diagram showing the jump in the oscillation
amplitude, the small hysteresis, and the restabilization
[reentrance [13]] of the steady hexagons is presented in
Fig. 3(a). As a consequence, the dynamical states obtained
in this regime are very different. This is shown in Fig. 3(b),
where the colors represent the oscillation magnitude [cf.
Fig. 2(b)]. In addition, the contour lines indicate the under-
lying hexagon pattern. Strikingly, the oscillations are now
localized into relatively small domains. Only within these
domains the convection cells are elongated to footballs and
are whirling. In most parts of the system the hexagons are
relatively steady. The burstlike temporal evolution of the
hexagon amplitudes is evident from Fig. 4. It shows the
normalized oscillation intensity in the bursts I(¢) =
N[ 3012051941, |H dxdy, where N is the temporal
mean of the integral, which exhibits substantial intermit-
tency reflecting the growth and decay of bursts (thick solid
line). In case A (thin solid line) the intensity fluctuates
relatively little.

To provide insight into the complex dynamics obtained
in our numerical experiments we make use of the fact that
the whirling hexagons arise from a Hopf bifurcation. It is to
be expected that in the supercritical case the dynamics can
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FIG. 3 (color online). (a) Bifurcation diagram for the subcrit-
ical case B (cf. Fig. 1 with the rolls omitted). (b) Bursting state
obtained with NS simulation (N = 128) in case B for € = 0.5
(R, = 6121.9, €5 =0.285) and L = 16(27/q.) = 19.1. |H |
color coded as in Fig. 2(b); contour lines indicate hexagon
pattern.
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FIG. 4 (color online). Normalized intensity /() (see text).

be captured by the CGL for the oscillation amplitude,
arH = pH + dVPH — cH|H | 3)

We compute d = d, + id; from the wave number depen-
dence of the Floquet exponent of the Galerkin stability
computations and extract ¢ = ¢, + ic; from fits of (3) to
the magnitude and frequency of growing oscillations ob-
tained in direct simulations of the NS equations. Using a
resolution corresponding to N = 256 in Fig. 2, we find d =
244 + 9.57i and ¢ = 219 + 1737i. Going to N = 512
changes ¢ by less than 1%. Consistent with predictions
based on a theory for small-amplitude hexagons [9], these
values position the system in the Benjamin-Feir-stable
regime (1 + d;c;/d.c, >0) in which, however, defect
chaos persists due to the wave number selection by the
spiral defects [1,2]. Indeed, we find in the NS simulations
that spatially homogeneous oscillations are stable. To
reach the chaotic attractor shown in Fig. 2 we employ
initial conditions in which the oscillations are not synchro-
nized across the system.

To capture the bursting dynamics found in the subcritical
case B the CGL (3) has to be extended to include a quintic
term, —g|H |*JH . Proceeding as in case A, we determine
the coefficients of the resulting quintic CGL and simulate
it. As shown in Fig. 5(a), which depicts a snapshot of the
magnitude | |, we obtain quite similar bursts. Based on
this qualitative agreement we use the CGL to gain further
insight into the bursting found in the NS simulations.

The burst mechanism can be elucidated by considering
the local gradient of the phase of H = Re', i.e., the
wave vector k = Vi of the oscillations. Note that k is not
related to the wave vectors making up the hexagon pattern.
Gradients in |F{| induce significant differential phase
winding due to the strong amplitude dependence of the
oscillation frequency (|c;/c,| > 1). This builds up |Kk| at
the perimeter of the bursts while |k| remains small at their
cores, as illustrated in Fig. 5(b), which shows an enlarge-
ment of a burst (top) and the associated |k| (bottom). The
increased wave number k enhances the dissipation via the
diffusion term in (3) and eventually leads to a collapse of
the oscillation amplitude. This mechanism has been
studied previously in one dimension [14—19]. It has been
shown to underlie the dispersive chaos observed in binary-
mixture convection [15,16] and, interestingly, can be
strong enough to avoid blowup even if there is no saturat-

eSS

FIG. 5 (color online). Bursting state obtained with quintic
CGL for parameters corresponding to Fig. 3, d =224 +
0.389i, ¢ = —12.96 + 84.70i, g = 42.53 + 17.20i, except for
the larger system size, L = 100. (a) Magnitude || of oscil-
lation, (b) enlarged portion from (a) magnitude || (top) and
wave number |[k| = |Varg(F)| of the oscillation (bottom).

ing nonlinear term at all (¢, = g, = 0) [14,17,18]. The
collapse can also be interpreted in terms of two colliding
fronts that connect the steady base state with the nonlinear
oscillatory state. Since these fronts select a nonvanishing
wave number for the nonlinear state, the base state can
invade the nonlinear state even above the Hopf bifurcation
(“retracting fronts’”) [19]. Note that the collapse of the
bursts described here is not due to a breakdown of the
underlying hexagonal structure [20,21].

Further analysis of the NS simulations shows that the
localization mechanism has an additional contribution.
Since the oscillations arise in a secondary bifurcation they
couple also to slow, long-wave deformations of the hexa-
gon lattice, which are described by an additional, diffusive
equation for the phase vector ¢ = [, (by — b3)//3]
[9]. Thus, deformations of the hexagon lattice affect the
oscillations through an additional term ~FH V - (i)) to be
included in (3), which captures the dependence of the
growth rate o of the oscillations on local compressions
of the lattice. Conversely, gradients in J{ drive (f) [9].
Figure 6(a) shows that the hexagonal lattice is dilated

inside the burst (V - (f) < 0). This decrease in the local

wave number g = g, + V - (i)) /2 of the hexagons increases
o [see Fig. 6(b)] and provides a positive feedback for the
oscillations that enhances the bursting activity compared to
the quintic CGL.

Of course, the coupling of the oscillations to the under-
lying lattice exists also in the supercritical case shown in
Fig. 2. Consistent with the weakly nonlinear description of
rotating hexagons [9], we find, however, that in this regime
the growth rate o depends only weakly on the local wave
number of the hexagons [see Fig. 6(b)] and varies by less
than 10% across the system. We therefore suggest that the
classic cubic CGL should describe whirling hexagons very
well in the supercritical case A.

In conclusion, we have numerically investigated whirl-
ing hexagons that arise in rotating NB convection and have
identified two different regimes. In the weakly NB case the
oscillations typically exhibit defect chaos and our analysis
suggests that this state should be well described by the

074501-3



PRL 96, 074501 (2006)

PHYSICAL REVIEW LETTERS

week ending
24 FEBRUARY 2006

Growthrate ¢

ol 1y
44 46 48 5 52 54

() (b)

Wave number q

FIG. 6 (color online). (a) V - qg generated by NS burst shown
in Fig. 3(b). (b) Growth rate o of the oscillatory @ode as a
function of the hexagon wave number ¢ = g, + V - &b/2.

cubic CGL. Rotating NB convection would then represent
one of only a few experimentally realizable physical sys-
tems [4] in which at least one of the complex states of the
two-dimensional CGL is accessible.

For stronger NB effects we found that the Hopf bifurca-
tion becomes subcritical and typical states exhibit bursts.
Such bursts and the related retracting fronts have been
discussed in some detail previously in one dimension
[14-19]. The intermittent bursting behavior, however,
has not been studied in detail yet. In two dimensions
even less is known. For instance, the conditions for the
persistence of bursting when stable steady and whirling
hexagons compete remain to be understood. Preliminary
simulations indicate that for € = 0.7 the bursting persists
but not for € = 0.9 [cf. Fig. 3(a)].

Since the oscillations arise in a secondary bifurcation the
oscillatory mode is, in principle, coupled to the deforma-
tions of the hexagon lattice. While in the supercritical case
our results indicate that this effect should be small, it is
significant in the subcritical case, where deformations of
the lattice modify the growth rate of the oscillatory mode
substantially [cf. Fig. 6(b)]. Compared to the bursting
behavior of the quintic CGL alone, this enriches the sce-
nario and warrants further investigations.

In most of our simulations we have employed periodic
boundary conditions and have taken great care to obtain
defect-free hexagonal lattices. We have also performed
runs in which a radial step in the Rayleigh number to R =
0 mimics a circular container. Defects then tend to destroy
the hexagonal lattice. The resulting complex states in
which the defects interact with the whirling mode warrant
further analysis [cf. [10]]. By stabilizing the hexagon
pattern near the boundary through an additional, patterned
volume heating we were, however, able to recover the
regular lattice and the two chaotic whirling states discussed
in the present Letter.

While our numerical experiments have been very pro-
ductive in identifying and exploring various complex states
in rotating NB convection, current computational limita-
tions do not allow us to use the NS simulations to inves-
tigate in detail the statistical properties of these states. For
instance, for the defect chaos we cannot address the pos-
sibility of deviations from the squared Poisson distribution
for the defect statistics [22] or the expected transition to

exceedingly slow, glassy states [23] as the wave number of
the underlying hexagon pattern is changed [9]. Similarly,
investigations of the ramifications of the hexagonal anisot-
ropy due to the underlying lattice or of the broken chiral
symmetry may require system sizes that are still beyond
current computational capabilities. Questions like these
can so far only be investigated in experiments.
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