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We study a model equation that mimics convection under rotation in a fluid with temperature-
dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary con
ditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that 
lead to a Kiippers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating 
hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the 
amplitude equation as functions of the rotation rate. These equations describe hexagons and os
cillating hexagons quite well, and include the Busse-Heikes (BH) model [Busse & Heikes, 1980] 
as a particular case. The sideband instabilities as well as short wavelength instabilities of such 
hexagonal patterns are discussed and the threshold for oscillating hexagons is determined. 

Keywords: Rotating convection; pattern formation; hydrodynamic instability. 

1. Introduction 

In the last decades Rayleigh-Benard convection has 
been the canonical system in studying spatiotem-
poral patterns. More recently the interest in rotat
ing convection was motivated by the dynamics of 
planetary and stellar atmospheres and the circula
tion of ocean currents. In addition, Coriolis forces 
perturb the fluid velocity and new features, absent 
in the nonrotating case, appear in the system. For 
example, spatiotemporal chaos can be obtained im
mediately above threshold where the small ampli
tude of the pattern allows a perturbative analysis 
[Bodenschatz et al, 2000]. The main control param
eter then is the rotation rate 0,. When 0, is greater 
than a critical value 0,c an ideal pattern of straight 
convection rolls loses its stability through the so-
called Kiippers-Lortz (KL) instability [Kiippers & 
Lortz, 1969]. The mechanism of this instability is 

that rolls become unstable with respect to another 
set of rolls with their axis rotated by an angle OKL 
from the original set. The new set will in turn be
come unstable towards rolls rotated at a further 
OKL, and so on, hence there is no saturated steady-
state pattern. 

As the local orientation of rolls is switched by 
#KL ~ 2-7T/3, Busse and Heikes (BH) [Busse & 
Heikes, 1980] proposed a reduced model consisting 
of three coupled equations in the rotating frame, 
that captures some important features of the KL in
stability. However, experiments showed chaotically 
time-dependent coexistence of domains with differ
ent orientations [Bodenschatz et al, 2000]. Indeed, 
Tu and Cross [Tu & Cross, 1992; Cross et al, 1994] 
extended the BH model by adding spatial gradient 
terms and thus proposed three coupled amplitude 
equations as a theoretical model. Numerical com
putations of the model show spatial patterns that 
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seem dominated by domain wall motions, in agree
ment with experiments. 

Unfortunately, the model in reference [Tu & 
Cross, 1992] settles on some preferred directions, 
so breaking the isotropy of the system. To avoid 
this limitation the Swift-Hohenberg model has been 
generalized by adding suitable nonlinear terms that 
break the chiral symmetry. The advantages of the 
Swift-Hohenberg (SH) equation are: (1) it is a 
scalar equation and (b) it is rotationally invari
ant (no prefixed orientation is required). Its main 
shortcoming is the fact that its coefficients are ob
tained from approximate expansions of coupling 
nonlinear terms which reproduce quite well rotat
ing patterns of rolls [Fantz et al, 1992; Ponty et al, 
1997]. Though some authors considered extensions 
of the SH equation in which a small quadratic term 
[Millan-Rodriguez et al, 1992; Sain & Riecke, 2000] 
which stabilizes hexagons is included, to our knowl
edge this has not yet been derived from the basic 
hydrodynamics equations. 

Physically, hexagons are obtained in convection 
when the up-down symmetry is broken, as it oc
curs, for example in Benard and non-Boussinesq 
convection [Busse, 1967]. Instead of the KL insta
bility, rotation under these circumstances will in
duce natural oscillations on the amplitudes of three 
modes at 27r/3 that make up an hexagon [Swift, 
1984; Soward, 1985]. In the present paper, we pro
pose a model that retains the main physical contri
butions from rotating convection, but is much more 
simple to solve than the hydrodynamic equations. 
The model is grounded on an equation proposed 
by Segel [1965] to deal with NB convection. Our 
main aim is to derive the coefficients of the ampli
tude equations for rotating convection within this 
model, their dependence on rotation and the ensu
ing stability diagrams near threshold. These show 
that convection in a horizontal NB fluid layer ro
tated about the vertical axis is a good candidate 
for studying interesting spatiotemporal phenomena 
even close to threshold so that a Ginzburg-Landau 
description should still be valid. 

The paper is organized as follows. In Sec. 2 we 
introduce the scalar model and set up the linear sta
bility analysis. In Sec. 3 a weakly nonlinear analysis 
is completed. The resulting amplitude equations in
clude quadratic spatial terms besides the usual dif
fusive one. The stability of hexagons against ampli
tude and phase perturbations are studied in Sec. 4. 
The main conclusions and a discussion are included 
in the last section. 

2. Model Equation 
Some years ago Segel [1965] proposed a simplified 
model to illustrate nonlinear techniques without the 
computational drawbacks in dealing with full hy
drodynamic equations. This model consists of one 
equation for a scalar field W, usually associated 
with the vertical velocity. It is built with the fol
lowing ingredients: (1) the kernel of the hydrody-
namical linear problem, (2) a minimal (quadratic) 
nonlinear term which represents the advective term, 
and (3) a term that breaks the midplane symmetry 
and accounts for NB convection that can give rise to 
hexagonal cells [Busse, 1967]. The model equation is 

dtW-V6W+RV2W-2j(cosirz)W = -WdzW (1) 

with the boundary conditions W = d2W = dzW = 
0 at z = 0, 1. Here V stands for the horizontal gra
dient, R for the control parameter (similar to the 
Rayleigh number in Rayleigh-Benard convection) 
and 7 for NB contributions. It is worth noticing 
that NB effects have been studied experimentally in 
different fluids [Ciliberto et al, 1988; Morris et al, 
1993; Assenheimer & Steinberg, 1996; Bajaj et al, 
1997]. 

Following this line of thought we extend this 
model by including rotation. Rotation contributes 
to the linear kernel through a term T2d2W [Chan-
drasekhar, 1961] which must not depend on the ro
tation sign. (Here T represents the rotation rate, 
equivalent to the Taylor number in rotating convec
tion.) We assume that rotation enters also through 
a quadratic term which contains spatial derivatives 
that break the rotation symmetry Tez • [VW x 
VdzW]. Hence the model results in the equation 

dtW - V6W + RV2W - T2d2W - 27(cos irz)W 

= -WdzW + Tez • [VW x VdzW] (2) 

The linear stability of this model is easily solved 
after expanding W in terms of normal modes 
W(x, y, z, t) = e°"fe*k'x(/(z) where a is the growth 
rate and g(z) stands for the vertical eigenfunc-
tion. For 7 = 0 (Boussinesq case) g(z) = sin(7rz), 
as in Rayleigh-Benard convection under free-free 
boundary conditions. For the general case 7 / 0 
we take a Galerkin expansion g(z) = A\ sin(7rz) + 
7A2 sin(27rz) + • • • that gives the characteristic 
equation 

a = Rk2 - (vr2 + k2f - ir2T2 

(Air2 + k2f - (vr2 + k2f + 3vr2T2 



This gives a marginal stability curve R(k, T)(a = 
0) that changes with rotation: the critical values Rc 

and kc increase when T increases [Chandrasekhar, 
1961]. Besides the usual rotating convection part, 
the last expression contains small NB corrections of 
0(72) , negligible in comparison with the rest of the 
terms and therefore not considered in the following. 
Consequently the Galerkin expansion of the eigen-
functions can be truncated at order two. In so doing 
we arrive at 

A2 = ^ (4) 
2 (k2 + Air2)3-k2Rc + Air2T2 { ) 

Because kc(T = 0) = ir/V2 = 2.22 and RC(T = 
0) = 1315, the last relationship gives at most 
A2 ~ W~5A\. Although small, the contribution of 
A2 must be retained to get a hexagonal pattern. 

3. Weakly Nonlinear Analysis 

We checked the validity of the rotation terms in 
Eq. (2) by a stability analysis of rolls in the case of a 
Boussinesq fluid (7 = 0). The rolls become unstable 
to KL instability, i.e. rolls with a given orientation 
are replaced by others rotated at a certain angle at 
the values (see Fig. 1) 

6 K L = 47° TKL = 2.05 (5) 

in qualitative agreement with the results in 
[Kiippers & Lortz, 1969] and similar to that found 
through a SH model with a cubic rotation term 

where the time has been rescaled as f -» 
t/(k2Rc) (detailed calculations can be found in the 
Appendix). 

Normalized coefficients v/go, 9/90, h/go and 
v/go are depicted as functions of T in Fig. 3 
(the reference value go = g(T = 0) is taken for 

[Roxin & Riecke, 2002]. (The discrepancy between 
this value and the true KL angle OKL = 58° is not 
important for the ensuing study of hexagons.) 

In the general case (7 / 0) a multiple scale 
analysis of Eq. (2) around a perfect hexagon solu
tion W = Yli=i {Ai e x P i^i • x + c.c.) leads to 

dtAl = fiA! + vA2A3 - g\Al\
2Al 

-h2 \A2 \
2Ax-h3 \A3 \

2AX (6) 

where the equations for the two other amplitudes 
are obtained by cyclic permutations and /x measures 
the distance from onset /j, = (R — Rc)/Rc [Swift, 
1984; Soward, 1985]. (The overbar stands for the 
complex conjugate.) The term vA2A3, assumed to 
be small, accounts for the resonance of the wavevec-
tors of the three hexagon modes. The coefficients h2 

and /13 determine the interaction between a set of 
rolls and the set rotated by +60° and —60° respec
tively. When rotation is absent, clockwise and anti
clockwise rotations are equivalent, so that h2 = h3 

and Eq. (2) reduces to the usual normal form for 
hexagon patterns. On the contrary, rotation (T / 0) 
breaks the chiral symmetry and implies h2 = h + v 
and /13 = h — v, where h indicates the transversal 
coupling coefficient (without rotation) and v oc T. 
Therefore, for T / 0 and v = 0 the BH model is 
recovered [Busse & Heikes, 1980]. Invariance argu
ments require that v,g and h must be even and 
v odd functions of T. The bifurcation diagram of 
Eq. (6) is showed in Fig. 2. 

For the model considered the coefficients in the 
last expression take the form: 

I 
comparison). These dependencies come either ex
plicitly or implicitly through kc(T) and RC(T). The 
coefficient v /750 keeps very small values for any T 
(see Fig. 3). We see in the same figure that h, g and 
v decrease, while v rises almost linearly when T 

v 

9 = 

h = 

v = 

7 3vrd 

k2Rc [{k2 + 4vr2)3 - k2Rc + 4vr2T2] 

1 
2k2Rc 

1 

k2Rc 

16vr4 + T 2 32(k2 + ir2)3-2k2Rc + 2ir2T2 

vr4 2vr6 2vrt 
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Fig. 1. Instability curve for convective rolls under rotation. 
The minimum corresponds to the KL instability. 

Fig. 2. Bifurcation diagram. 

increases, and the condition h > g (stable hexagons) 
is kept for any rotation. 

Stability of Eq. (6) has been studied by sev
eral authors [Swift, 1984; Soward, 1985; Millan-
Rodriguez et al, 1992; Sain & Riecke, 2000]. The 
stationary solutions are hexagons H\ = H2 = H3 = 
H with H = (v + ^v + 4(5 + 2h)[i)/2(g + 2h), rolls 
Hi = R, H2 = H3 = 0 with R = \//J./g and a limit 
cycle. (A mixed-mode solution, Ai / A2 = As / 0, 
also exists, but it is always unstable.) The reso
nant quadratic term VA2A3 breaks the symmetry 
A ^ —A, thus breaking the heteroclinic connection 

Fig. 3. Coefficients in the normal form as functions of T. 

0.5 

H 0.25 

Fig. 4. Stability regions in a (/it, T) plane. Rolls are stable 
above the curve labeled Roll. Below the line labeled Hex 
hexagons are stable. Above this line and to the right of line 
Het oscillating hexagons are stable. 

characteristic of the BH model into a very slow limit 
cycle [Swift, 1984; Soward, 1985]. 

A standard linear stability analysis around 
stationary solutions gives stable hexagons within 



% + 2/i) 

and stable rolls for 

<H<HH = 
v2(2g + h) 

{h-9? 

v2g 
(9) 

(g-h-v)(g-h + v) 
The hexagons become unstable towards a Hopf 

bifurcation with UJC = 2\>r3v(v2/(h — g)2) at the 
value fj, = /in- The branch of oscillating hexagons 
remains until /x = /Xhet, in which an unstable hetero-
clinic connection involving the three modes appears. 

Existence conditions result in the stability di
agram depicted in Fig. 4. Hexagons are stable be
low the line labeled Hex, rolls above the line Rolls 
and oscillating hexagons can appear in the region 
below Het and above Hex. Though [in does not de
pend explicitly on v it still has a dependence on 
T through coefficients. This leads to a reduction 
of this threshold as rotation T increases, in agree
ment with the curve computed numerically from 
hydrodynamic equations reported in [Riecke et al, 
2000]. It is worth noticing that rolls are never sta
ble for |z/| > Z/KL = h — g. When the value Z/KL 
is exceeded a KL-like instability appears. Never
theless the limit cycle survives even very far from 
threshold, but the stability curves Het and Roll 
tend asymptotically to the associated value TKL 
when /j, is increased. After some critical value is 
reached hexagons bifurcate to oscillating hexagons. 
This value is determined by /J,R = [in, thus lead
ing to \UH\ = ((h + g)(h — g)2)/h + 2g [Echebar-
ria & Riecke, 2000]. Investigations of Eq. (6) shows 
that defects in oscillating hexagons have a complex 
dynamics (defect chaos) in the region between the 

2 12(P+7T2^2 

$ = 

a\ 

Ci2 

curves Hex and Het [Echebarria & Riecke, 2000]. 
Thus, complex motion of defects would be reach
able even for small heating and rotation. 

4. Wavenumber Perturbat ions 

Apart from the usual diffusive term, spatial depen
dence enters also through quadratic terms in Eq. (6) 
[Gunaratne et al, 1994; Echebarria & Perez-Garcfa, 
1998]. Using symmetry arguments one arrives at the 
equations 

dtAl = nAx + vA2M - g\M \2AX 

-(h + u)\A2\
2A1-(h-u)\A3\

2A1 

+ f o C A i + ia± [A2dX3A3 +A3dX2A2] 

+ ia2[A2dX3A3 -A3dX2A2] 

+ if3[A2dT3A3-A3dT2A2] (10) 

as discussed in [Echebarria & Riecke, 2000]. Here 
dXi and dn denote the gradient along and perpen
dicular to the direction of rolls with amplitude Ai 
(dXi = hi • V, dn = Ti • V, hi _L fj), respectively. 
(Notice that the resonant interaction makes need
less the usual anisotropic Newell-Whitehead scal
ing [Pismen & Nepomnnyashchy, 1993 ].) The chiral 
symmetry breaking modifies the quadratic nonlin
ear terms through the coefficient a2, which is an odd 
function of T. The remaining spatial coefficients (£g> 
ct\ and (3) have to be even functions of T. 

We have derived spatial coefficients for the 
model equation (2) by a multiple-scale analysis as 
indicated in the Appendix. Their explicit expres
sions are 

Rc 

7 3vr 3 p 2 + 47r2)2(5A;2+47r 2A;2iL + 47r2T2l 

k2Rc 

7 

k[(k2+Air2)3-k2Rc + Air2T2}2 

3V3ksirRcT 
(11) 

k2Rc 2 p 2 + 4vr2)3 - k2Rc + 4vr2T2]2 

7 V3vr3[3(A;2 + 4vr2)2(5A;2 + 4vr2) - 7k2Rc + 12vr2T2] 
13 k2R, A;p2 + 4vr2)3-A;2^c + 47r2T2] 

The linear correlation length £Q diminishes when 
T increases in qualitative agreement (though im
portant differences still exist) with experimental 
findings in [Bajaj et al, 1998] (see Fig. 5). The 
remaining parameters are quadratic, proportional 

to NB effects and therefore assumed to be small. For 
the sake of comparison we have drawn ct\/v (dashed 
line), a2/v (full line) and (5/v (dot-dashed line) as 
functions of T in Fig. 5. 
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Their stability is bounded by the condition 

R2{g-h-2v) 2qai)R>0 (16) 

We shall comment on the ensuing stability diagrams 
at the end of this section. 

ap/v(0) 

-0.4-

-0.8-

ô MO) 
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10 

Fig. 5. The coefficients (a) £0, (b) a.\/v, 0.21v and /3/v as 
functions of T. 

As for coefficients in the normal form the de
pendence of ct\ and (5 on T is relatively intricate, 
while a.2 varies almost linearly with T. Moreover 
a2 is very small. The other two coefficients ct\ and 
/3 are of the same order than v. When rotation is 
absent (T = 0) we get ct\/v = —0.64, so that the 
corresponding term contributes substantially to the 
stability of the pattern. 

With these spatial terms hexagons are given by 

H 
(v + 2qai) + ̂ J(v + 2qai)

2 + 4(g + 2h)(n - £0V) 

2(g + 2h) 

(12) 

which are stable provided the following relation
ships are fulfilled 

u = 2H2(g-h) + 2(v + 2qai)H > 0 (13) 

m = 2H2(g + 2h)-(v + 2qai)H >0 (14) 

These conditions determine two curves that do not 
depend explicitly either on v or on a-i, although 
rotation T enters into these expression through co
efficients. Similarly, rolls are of the form 

R = V - e0v (15) 

4.1. Sideband instabilities 

Distorsions involving spatial modulations over dis
tances much larger than the basic wavelength are 
governed by marginal phase modes, ruled through 
a phase equation. Let us recall briefly the proce
dure to get it for stripes. An amplitude of slightly 
distorted stripes can be split into A = (R + r) 
exp i(qx + 0). After replacing this expression into 
Eq. (10) one arrives at two coupled equations for the 
amplitude r and the phase 0. The former is enslaved 
under the slow phase mode resulting in a diffusion 
equation known as phase equation, which should be 
kept invariant under reversing T —> —T, z —> —z. 
Therefore, the diffusion coefficient must contain a 
term independent of the rotation sign plus a term 
proportional to T. This fact modifies the sideband 
instability regions for stripes under rotation. (The 
interested reader can find detailed calculations by 
Friedrich [1993].) 

For hexagons, slight perturbations can be writ
ten as Ai = (if + r j )exp( iq-Xi+ </>j). Far from 
the Hopf bifurcation the dynamics is governed by 
two independent phase components <f> = (<f)x, <py) 
related to the translationally invariant modes in a 
hexagonal lattice by <f)x = —(02 + 03) and 4>y = 
— (02 — 03)/v/3- Without rotation, they evolve ac
cording to the expression [Lauzeral et al, 1993; 
Hoyle, 1995; Echebarria & Perez-Garcia, 1998] 

dt<f) = AV2<f> + BV(V-<f>) (17) 

build up with the two isotropic second-order spa
tial operators acting on a planar field <j>. In ab
sence of rotation {y = ct2 = 0) Eq. (17) can be 
diagonalized by taking 0 = 0; + <pt, such that 
V x (pi = 0 and V • 0t = 0. This leads to the uncou
pled diffusion equations dt4>i = (B + A)V24>i and 
dt<pt = AV2(f)t- Hexagons become unstable when
ever (B + A) or A become negative. After introduc
ing the explicit expressions for A and B given in 
[Echebarria & Perez-Garcia, 1998] with coefficients 
(7) and (11) these conditions lead to the egg-shaped 
almost-closed curves drawn in Fig. 6.1 (The full 

In Figs. 6 and 7 the exaggerated value 7 = 1000 has been taken to have a sufficiently broad stability region. 



Fig. 6. Amplitude and phase instability curves for T = 0. 
Hexagons are stable inside the shaded region. 

line corresponds to A = 0 and the dot-dashed line to 
(A+B) = 0.) Hexagons are stable inside the shaded 
region. The upper amplitude stability curve corre
sponds to a transcritical bifurcation to rolls which 
can be reached in a range of wavenumbers. We see 
that, though small, quadratic spatial terms mod
ify substantially the stability diagrams as shown 
recently for other systems [Pena & Perez-Garcia, 
2000]. At variance with these cases the stability re
gion is bent to the left in our model owing to nega
tive values of ct\ and (5. 

In the case with rotation T / 0 the phase equa
tion for hexagons has to include new terms. Simi
larly to the stripe case, this equation must remain 
invariant under reflection T —> —T, z —> —z. Thus 
the phase equation for hexagons arising from rotat
ing convection takes the form 

]V20 dt<f> = [A + C(T)ez 

+ [B + D(T)ezx]V(V-<f>) (18) 

in which C and D are odd functions of T. From gen
eralized Ginzburg-Landau equations (10) the four 
coefficients in the last expression are found to be 
[Echebarria & Riecke, 2000]: 

A = 6 l 

v.r 

H'u 2 

—r\-3a2 [cti vW 

Q2£ou - Hwq^lV?ja.2 (19) 

B = a 2^, H< 

C = 

m 

m 

- 1 

m 
(ai + V3/3) 

y/3/3) (20) 

vr w2 y 
< V3uHqa2S,o + -H2w(3a\ 

{pti vW wq2it (21) 

(a) 

Oscillating 
\ Hexagons 

\ 

(b) 

Fig. 7. Amplitude and phase instability curves for (a) T = 0.1 and (b) T = 0.9. The phase instability curve (continuous line) 
coincides in a range of values with the dotted curve issued from a general stability analysis in a range of /it. Outside the shaded 
region hexagons become oscillatory. 



D = y/3a2(H
2a1-qH^) 

m 
with H, u and m given in Eqs. (12)-(14)and w = 
2\/3H2u. The eigenvalue problem related to the 
phase equation (18) have been discussed under some 
special limits, but the general stability curves have 
to be obtained numerically. 

In Fig. 7 we represent the amplitude and phase 
instability curves for two different rotations (T = 
0.1 and T = 0.9). The solid bottom and the long-
dashed line correspond to the saddle-node bifur
cation to hexagons and oscillating hexagons, re
spectively. The dot-dashed line and the continuous 
is the stability boundary of phase perturbations. 
Even for small chiral symmetry breaking (T = 0.1) 
the stability diagram changes drastically as seen in 
Fig. 7(a). The left stability curve does not merge 
with the amplitude curve u = 0 (Eq. 13), whereas 
the right stability curve intersects the line u = 0 
close to its minimum. 

To complete this analysis, arbitrary perturba
tions acting on hexagons Ai = (H + hi) exp(q • x + 
(pi), i = 1, 2, 3 are introduced in Eq. (10). After 
expanding hi in normal modes r«expi(Q -yi + at) 
and linearizing, the resulting eigenvalue problem is 
solved numerically. 

When rotation is absent the most danger
ous eigenvalues correspond to phase modes, so 
that stability limits coincide with phase stabil
ity curves (Fig. 6). Nevertheless, in the general 
case (T / 0) translational modes can destabilize 
hexagons not only by longwave instabilities but 
also through short-wave modes. For some param
eter values the real part of two complex conjugate 
eigenvalues become positive, so that a Hopf bifur
cation to oscillating hexagons takes place [Echebar-
ria & Riecke, 2000]. The general stability analysis 
gives the dashed lines in Fig. 7. For T and /x small 
[T = 0.1, Fig. 7(a)] one remarks that these lines 
coincide with those given by a phase stability anal
ysis (continuous lines), while they diverge when /j 
is increased beyond a threshold value [Echebarria & 
Riecke, 2000]. 

5. Conclusions 

The model proposed in this paper constitutes a 
schematic tool for studying rotating convection. It 
is based on the linear kernel of Rayleigh-Benard 
convection plus some terms accounting for no-
Boussinesq (NB) contributions, rotation and ideal
ized boundary conditions. For vanishing NB effects, 

rotating convection displays a Kiippers-Lortz (KL) 
instability. With NB effects included the preferred 
pattern near onset is hexagonal, but the underly
ing amplitudes can become oscillatory after some 
rotation threshold has been exceeded. We calcu
late the evolution equations for these amplitudes 
as well as the dependence of their coefficients on ro
tation. The resulting stability curves agree qualita
tively with that found by other authors using a gen
eralized Swift-Hohenberg model [Millan-Rodrfguez 
et al, 1992; Sain & Riecke, 2000] or by a numerical 
approach [Echebarria & Riecke, 2000]. 

Rotation adds up new terms in the phase 
dynamics of hexagons. Consequently, the stability 
diagrams against long-wavelength perturbations de
pend on rotation. But this analysis has to be com
pleted with a general stability analysis when ro
tation is present. Let us mention that the present 
analysis could be extended to deal with the interest
ing defect chaos of oscillating hexagons [Echebarria 
& Riecke, 2000]. 

Thus this model equation contains some in
teresting features found in rotating convection, so 
that it could be evolved numerically as a prospec
tive step before launching the computationally de
manding task of simulations of the full fluid and 
heat equations. These integrations could also be 
used to validate the stability curves found through 
Eq. (10). 

Although qualitative, our results point to rotat
ing convection under NB conditions as a good can
didate to study spatiotemporal complex motions, 
because this system can be dealt with a combina
tion of analytical and numerical techniques, and ex
periments seem feasible [Bodenschatz et al, 2000]. 
In particular, it should be interesting to determine 
defect chaos for hexagons, very likely different from 
the domain wall chaos found for stripes [Tu & Cross, 
1992]. 
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Appendix 

Here we quote briefly the main calculations to find 
out Eq. (10). Hexagons can be seen as composed of 
three plane waves of the form 

3 

W = ^ ( ^ e x p i k - x + c.c.) (A.l) 
i=l 

with ki + k2 + k3 = 0. Slight spatial modulations 
of a perfect hexagonal pattern are included through 
envelope functions Ai(x, t) varying in space at a 
scale much larger than the basic wavelength. 

Expanding the variables and derivatives in 
terms of a small parameter e one gets 

W = eW<U + S2WW + e3W^ + ..., 
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R = Rc + eR^+e2R^ 

dt = e2dT, V = V0 + eVi 

The linear operator can be split into 

L = L^+eL^+e2 L^ 

L = - V6 + RV2
h - T2d2

z - 27(cos irz) 

L(0) = _ V 6 + i ? o V 2 - T2d2 - 27(C0S7TZ) 

L(i) = _6(v 0Vi)V^ + 2i?oV0Vi + RiVl 

L(2) = _ i 2 ( V o V i ) 2 V 2 - 3 V 4 v f 

Now we solve for each order in e 

O(el)LWwW=0 

0{e2 )L^wW+L^wV 

= -d2(wVdzwV) + Tez(VWV xV0dzwV) 

0(e3 )L<f»W 3 + LWw&) +LV>wW 

= -dT{wW) - d2
z(WWdzwV> + wV>dzwW) 

+ Tez(V0wW x V 0 a # ( 1 ) 

+ V0W^ xVodzwW 

+ V1W^xV1dzwV) 

Then we determine the solutions W&, W&\ W® 
for each order: 

Order e1: This settles the linear problem 
L(°)W(1) = 0. Its solutions have the form: 

W{1) = (sinvrz + 7Ksin27rz) 

^ ( 4 i e x p i k - x + c.c.) (A.2) 
i=l 

with 

Rc 

K 

( f e 2 + 7 T 2 ) 3 + 7 T 2 T -

k2 

{k2 + AK2f-k2Rc + AK2T< 

(A.3) 

Order e2: The solvability condition (Fredholm 
alternative) gives 

Rik2A{^ + -7T3 jK2A(^Af1
) + 0 ( 7

2 ) = 0 (A.4) 

so that 

which together with Eq. (A.3) determine the crit
ical wavevector. The general solution at this order 
is W^=wi2)+W^\ i.e. the homogeneous solution 
W^] plus a particular solution W^2) given by 

W^ = (a0sin27rz + ai7sin7rz + a27sin37rz) 

x ( ^ ( A 2 1 e x p i k - x + c.c. J 

+ (a0 sm2nz + a'^sinvrz + a'27sin3vrz) 

( 3 

i=l 

(A2 2exp2jk-x + c.c. 

+ (a0 sin2vrz + a^s invrz + a27sin3vrz) 

( 3 

£< 
i=l 

(A 2
J

2 expi (k i -k j ) -x + c.c. 

+ (a'o sin 2nz + a'i' 7 sin nz 

+ a'Z7 sin torz)Aw 

3 

+ -faRl sin 2vrz ^ ( A * exp jk • x + c.c.) 

i=l 

3 

+ 7avsin27rz ^ (VA i expik-x + c.c.) 
i=l 

in which the coefficients useful for us result in 

olQA\ 0 9 

0^21 

Rc = 3(k2 + n2)2 

a, 

a0 A22 

%A20 

aRl 

7T3 Afl2 
32(k2 + 4ir2f-2k2Rc + 2ir2T2 

A^A^An 
{k2 + AK2f-k2Rc + AK2T2 

(3A;2+4vr2)3-3A;2^c + 47r2T2 

A^ + A$ + Af^> ) 

16vr2 + T2 

Rtf 
((A;2+4vr2)3-A;2^c + 47r2T2)2 

2RC 

((k2 + 4ir2)3-k2Rc + 4ir2T2)2 

3 

1 
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Order e3: The Fredholm alternative ends in 

k2Rc 
arAft R2 M) Rl M) V T (2)T (3) 

+ -AliAli 
2 

" 2 

" 3 

( -1 ,^3) 

( - 1 , - ^ 3 ) 

T2 

T3 

(>/3,l) 

(->/3,l) 

( 2 ) 2 ( 1 ) (2) 2 ( 1 ) 
-g^^AXl - (/i + i / ) | A ^ | M n The amplitude evolution equation is obtained by 

adding 0{A2) x e2 + 0(A3
i) x e3 and taking into ac-

(i) 2 (2) 2 (») U) 

+ iai[A{^ dX3A
{^ + A$ dX2A

{^} 

+ ia2\A
($ dX3A

{$ -A$ dX2A
{^] 

count that At = eA]1' +e2A)^, AiAj = e2Ay{>A)l
l 

2e 3Afi^n + 0 ( e 4 ) . Finally we arrive at the ampli
tude equation 

dtAx 

+ if3[A{^ dT3Af A^d2A
{S\ 

liA1+vA2A3-g\A1\
2A1 

-(h + u)\A2\
2A1-(h-u)\A3\

2A1 

where dXi 

defined as 
hi • V, dTi = h • V with the unit vectors 

+ £ o < Ax + iai\A2dX3A3 +A3dX2A2] 

+ ia2[A2dX3A3 -A3dX2A2]+ip[A2dT3A3 

[i 

ni = (l,0) fi = ( 0 , - l ) 

AR 

_ y 3vr̂  
fe2^c ((A;2 + 4vr2)3 - P i ? c + An2T2) 

1 / vr4 

-A3dT2A2] 

with coefficients 

i + 
vr6 

A;2#c 2 ( 1 6 v r 4 + T 2 ) 2(32(fc2 + ^2f - 2k2Rc + 27r2T2X 

1 vr4 2vr6 

l + + 
2vr6 

fe2^c 2(16vr4+T2) ((3k2 + Air2)3-3k2Rc + Air2T2) (k2 + Air2)3 - k2Rc + Air2T2 

1 3 ^ 2 v r 4 T 3V3Pvr4T 
I ( 

&2 

Oil 

CK2 

P 

k2Rc (3k2 + 4vr2)3 - 3fe2i?c + 47r2T2 (k2 + 4vr2)3 - A;2#c + 4vr2T 

12(fe2+7r2)2 

^ 3 v L
3 ( ( P + 4 7 r 2 ) 2 ( 5 P + 4 7 r 2 ) - 2 P ^ c + 47r2T2)) 

7 

fc((fc2+47r2)3-fc2i2c + 47r2T2)2 

3V3k3irRcT 

k2Rc 2((k2 + 4vr2)3 - k2Rc + 47r2T2)2 

7 V3vr3(3(P + 4vr2)2(5P + 4vr2) - lk2Rc + 12vr2T2) 
k2Rc k{{k2 + A^2f-k2Rc + A^2T2)2 

1 

v 

9 

h 

V 2 

in which the time has been renormalized as t -»• t/{k2Rc). 


