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Wireless sensor networks (WSNs) consist of thousands of nodes that need to communicate with each other. However, it is possible
that some nodes are isolated from other nodes due to limited communication range. This paper focuses on the influence of
communication range on the probability that all nodes are connected under two conditions, respectively: (1) all nodes have the same
communication range, and (2) communication range of each node is a random variable. In the former case, this work proves that,
for 0 < 𝜀 < 𝑒−1, if the probability of the network being connected is 0.36𝜀, by means of increasing communication range by constant
𝐶(𝜀), the probability of network being connected is at least 1− 𝜀. Explicit function𝐶(𝜀) is given. It turns out that, once the network is
connected, it alsomakes theWSNs resilient against nodes failure. In the latter case, this paper proposes that the network connection
probability is modeled as Cox process. The change of network connection probability with respect to distribution parameters and
resilience performance is presented. Finally, a method to decide the distribution parameters of node communication range in order
to satisfy a given network connection probability is developed.

1. Introduction

Wireless sensor networks (WSNs) [1, 2] are a promising
technology nowadays.The use ofWSNs in numerous applica-
tions, such as forest monitoring, disaster management, space
exploration, factory automation, secure installation, border
protection, and battlefield surveillance, is emerging. WSNs
technology is the basis of future network “Internet ofThings”
(IoT) [3], which offers a vision where anyone can interact
with any addressable nodes (things or objects)—such as RFID
tags, sensors, and mobile phones—anywhere and anytime.
“Anywhere” suggests that any object is reachable from any
location. From the network topology point of view, every
node in WSNs should be able to, directly or through limited
number of intermediate nodes, connect to any other nodes.
This kind of network is called “connected network.” If the
network is still connected after removing at most 𝑘−1 nodes,
it is called 𝑘-connected network, where 𝑘 = 1, 2, 3, . . .. A

𝑘-connected network guarantees that at least 𝑘 different paths
are available for transmitting signals from one node to any
other nodes.

However, 𝑘-connected network is not always possible. In
WSNs, sensor nodes are usually deployed in the areas of inter-
est either randomly or according to a predefined distribution.
In this case, it is likely that some nodes are isolated from other
nodes.Therefore, the network connection is characterized by
probability. On the other hand, the resilient problem, which
indicates fault-tolerance capability in the presence of node
failure, is also important in the probabilistic network. Our
concern in this paper is the probability that the WSNs are a
connected network and network resilience against the node
failures.

Most of earlier studies focus on the model where each
node in a network is the same and, for example, has the same
communication range. However, WSNs nodes are usually
heterogeneous.The communication range of theWSNs node
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Figure 1: Different methods to connect nodes: (a) node connects 2 nearest neighbors; (b) node connects other nodes within its
communication range; (c) node connects other nodes with same probability 𝑃.

may vary fromonenode to another, and even communication
range of the same node may change over time. For instance,
in a wireless network, the transmission power required for
a node to reach another node is proportional to 𝑅𝛼, where
𝑅 is the transmission radius and 𝛼 is the loss constant
depending on the wireless medium of which typical value is
between 2 and 4 and may vary from devices to devices [4].
According to various wireless communication technologies,
communication range may vary from tens to thousands
meters, such as IEEE 802.11 (25–600m), Bluetooth (10–
100m), ZigBee (10–75m), HomeRF (50m), UWB (10m), and
WiMAX (1–50 km). Depending on how long nodes work,
residual energy of battery powered devices decreases over
time, so a node may try to shorten communication range
in order to save energy. Environments where nodes are
deployed, for example, indoor or outdoor, with or without
obstacle, result in communication range quite different due
to the interference, shadowing, fading, and pass loss [5].

This work concentrates on WSNs connection probability
for both heterogenous and homogenous networks in terms of
communication range. AssumingWSNs nodes are randomly
and uniformly distributed, two problems are addressed in
this paper: given a network where all nodes have the same
communication range, how does the connection probability
change as communication range increases? In the case that
communication range is a random variable, what is the
network connection probability?

Through analysis, this work finds that for 0 < 𝜀 < 𝑒
−1

and the number of nodes in the network is big enough and if
the original network connection probability is 0.36𝜀, through
increasing the communication range by constant 𝐶(𝜀), the
probability of a network being connected increases from
0.36𝜀 to 1 − 𝜀. Explicit function 𝐶(𝜀) is given in this paper. It
turns out that, when a network is connected, it is also almost
sure log(𝑛) + 𝑏-connected (where 𝑛 is the total number of
nodes deployed and 𝑏 is a constant greater than 1), which
is important for the WSNs resilient against the node failure.
Afterwards, the connection probability problemwith random
communication range, which is often the real case in the
WSNs, is studied. The model is reformulated as Cox process,
and the connection probability is analyzed by simulation. A
method for determining the distribution function parameters
for a given connection probability is developed.

Our main contributions are as follows: first, this paper
employs an effective and novel approach to obtain analytical
results for homogenous WSNs connectivity, some of which
have been validated by previous studies; second, we propose
that the Cox process can be used to model heterogenous
WSNs and the simulations are performed to reveal the
relations between the network connection probability and its
distribution parameters.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts of networkmodel and the prob-
lem to be addressed. In Section 3, derivation and verification
in case that the network nodes have the same communication
range are presented. In Section 4, communication range is
modeled as a random variable. A brief introduction of related
works is provided in Section 5 while Section 6 concludes our
work.

2. Network Model and Problem Statement

Usually, there are three methods to create links between
nodes, as presented in Figure 1. One is k-nearest neigh-
bor model. In this model, the network is formed by each
node connecting to k-nearest neighbors; for example, in
Figure 1(a), each node has 2 neighbors. The second is disc
model. Node is modeled as a disk with communication radius
𝑟. The node 𝑠 is linked to node 𝑢 if the Euclidean distance
between 𝑠 and 𝑢 is less than 𝑟; for example, in Figure 1(b),
node 3 cannot connect to node 2 and node 1 because they
are out of communication range of node 3. The last one is
Erdös-Rényi random graph that connects any two nodes by
the same probability which is inappropriate in the WSNs;
for example, in Figure 1(c), each node connects other nodes
with the same probability 𝑃. The k-nearest neighbor model
can be achieved by changing communication range of each
node until the number of neighbors reaches 𝑘. Disc model,
on the other hand, connects those nodes that fall into its
communication range. k-nearest neighbor model and disc
model are different. k-nearest neighbor modelmakes sure that
there is no isolated node, but disc model is characterized by
the probability that a network does not have isolated nodes.
Disc model is more plausible in the WSNs in the case that
obtaining 𝑘 neighbors is not always feasible. For instance, in
wireless environment, some nodes may be unable to connect
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Figure 2: (a) Disk communication model and (b) irregular communication model.

to a required number of neighbors due to the communication
range limitation.

The notations and basic network definitions that will be
used throughout the paper are now introduced. Additional
terminologies are referred to [6]:

𝑛: total number of nodes deployed in target field, and
𝑛 ≫ 1,
𝐴: area of node deployed,
𝜌: node density, defined as 𝑛/𝐴,
𝑡: expected number of neighbors of node.

Note that in this paper “log” means the logarithm to
nature base 𝑒. Next, main definitions are introduced.

Definition 1. Node’s communication range is defined as the
area where other nodes can receive its signal.

For a disk, the communication range is the circle with
radius 𝑟. However, communication range is not necessary
modeled as a disk. The communication range of radio is
highly probabilistic and irregular [7, 8]. Figures 2(a) and
2(b) illustrate the ideal disk communication and irregular
communication model, respectively. More importantly, the
communication range of each node may not be the same.
Note that the analysis in this section is a disk, but it can also
apply to the irregular communication model.

Definition 2. 𝑆
𝑛,𝑟

denotes a network following disc model.
More specifically, the network is formed by 𝑛 nodes randomly
and uniformly deployed in area 𝐴. The node is modeled as a
disk with radius 𝑟.

This paper focuses on the probability of network 𝑆
𝑛,𝑟

being 𝑘-connected. A 𝑘-connected network implies that there
are still 𝑘 − 1 alternative path(s) if one path failed, therefore a
higher 𝑘 indicates that the network is more resilient against
failures. In this paper, 𝑘 is used to evaluate the WSNs
resilience. This property depends on many factors, such
as communication range, node density 𝜌, node processing
capability, node energy, and deployment environment. This

paper is only interested in the impact of communication
range on the connection probability. The problem can be
stated as follows.

“Given WSNs 𝑆
𝑛,𝑟

with fixed node density 𝜌, in the
cases in which node communication range is the same and
different, how network connection probability and resilience
performance change as node communication ranges vary?”

3. Homogenous Node Deployment in WSNs

This section considers that, in the network 𝑆
𝑛,𝑟

, each node
has the same communication range. First, the mathematical
model that will be used is presented. Based on this model,
theoretical results are proved and validated by an example and
simulations. In Section 4, the situation where communica-
tion range of each node is a randomvariablewill be discussed.

3.1. Network Connection Probability Analysis. For uniformly
distributed nodes with density 𝜌, the number of nodes in
the area 𝜋𝑟2 has a Poisson distribution [9]; therefore the
probability of a node having𝑁 neighbor nodes is

𝑃 (𝑁) =

(𝜌𝜋𝑟
2

)
𝑁

𝑁!
𝑒
−𝜌𝜋𝑟

2

.
(1)

Number of node neighbor is also called the node’s degree.The
minimal degree of all nodes is called the network degree. If
the network has 𝑛 nodes, the probability of network 𝑆

𝑛,𝑟

is 𝑘-
connected given by following well-known formula [9]:

𝑃 (𝑘) = (1 −

𝑘−1

∑

𝑁=0

(𝜌𝜋𝑟
2

)
𝑁

𝑁!
𝑒
−𝜌𝜋𝑟

2

)

𝑛

. (2)

Let

𝑡 = 𝜋𝑟
2

. (3)

Note that 𝑡 indicates the communication range of a node, but,
if 𝜌 = 1, 𝑡 actually is the expected number of neighbors a node
has.
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Without loss of generality, assume that 𝜌 = 1. For a real
network the density of node 𝜌 = 1 indicates that the average
number of nodes in unit area is one. However, whether 𝜌 is
equal to 1 is irrelevant in this model, because if 𝜌 is not 1, say
𝜌
󸀠, then letting 𝑟󸀠 = 𝑟/√𝜌󸀠 the results will be the same. In

order to simplify denotation, define

𝑊(𝑡, 𝑘) =

𝑘−1

∑

𝑁=0

(𝑡)
𝑁

𝑁!
𝑒
−𝑡

. (4)

So, (2) can be rewritten as

𝑃 (𝑡, 𝑘) = (1 −𝑊 (𝑡, 𝑘))
𝑛

, (5)

and its first derivation with respect to 𝑡 is

𝑑𝑃 (𝑡, 𝑘)

𝑑𝑡
= −𝑛(1 −𝑊 (𝑡, 𝑘))

𝑛−1

𝑑𝑊 (𝑡, 𝑘)

𝑑𝑡

= 𝑛(

𝑒
𝑡

− ∑
𝑘−1

𝑁=0

(𝑡
𝑁

/𝑁!)

𝑒𝑡
)

𝑛−1

(𝑒
−𝑡

𝑡
𝑘−1

(𝑘 − 1)!
) .

(6)

The function 𝑃(𝑡, 𝑘) can be written as 𝑃(𝑡) = (1 − 𝑒−𝑡)𝑛 when
𝑘 = 1. In this section, the properties of 𝑃(𝑡) are analyzed,
namely, 1-connected network. Two points are found out
where 𝑃(𝑡) almost starts and stops growing in order to show
that the connection probability increases fromnear 0 to reach
1.

Proposition 3. Letting 𝑃(𝑡) = (1 − 𝑒
−𝑡

)
𝑛 and 𝑛 ≫ 1, then

following statements hold:

(1) for every 0 < 𝜀 < (1 − (1/𝑛))(𝑛−1), there exists 0 < 𝑡
1

<

𝑡
2

such that 𝑃󸀠(𝑡
1

) = 𝑃
󸀠

(𝑡
2

) = 𝜀;
(2) 𝑃(𝑡) has a flex point at (log(𝑛), (1 − (1/𝑛))𝑛).

Proof. (1) First, (5) is a monotonically increasing function
for any 𝑘 ≥ 1 (note that 𝑒𝑡 = ∑

+∞

𝑁=0

(𝑡
𝑁

/𝑁!) is the Taylor
expansion of 𝑒𝑡, and 𝑡 ≥ 0); see Figure 3(a).

Now consider the first and second derivative functions of
𝑃(𝑡):

𝑃
󸀠

(𝑡) = 𝑛(1 − 𝑒
−𝑡

)
𝑛−1

𝑒
−𝑡

,

𝑃
󸀠󸀠

(𝑡) = 𝑛𝑒
−𝑡

(1 − 𝑒
−𝑡

)
𝑛−2

(𝑛𝑒
−𝑡

− 1) .

(7)

It is evident that 𝑃󸀠󸀠(𝑡) vanishes at 𝑡 = 0 and 𝑡 = log(𝑛).
Furthermore, 𝑃󸀠󸀠(𝑡) > 0 for 𝑡 ∈ (0, log(𝑛)) and 𝑃󸀠󸀠(𝑡) <
0 for 𝑡 ∈ (log(𝑛),∞). Therefore, 𝑃󸀠(𝑡) is an increasing
function in the interval (0, log(𝑛)) and a decreasing function
in (log(𝑛),∞). Hence, 𝑃󸀠(𝑡) reaches the maximum value
at 𝑡 = log(𝑛) (see Figure 3(a)). On the other hand, since
lim
𝑡→∞

𝑃
󸀠

(𝑡) = 0, by applying Bolzano Theorem, for every
0 < 𝜀 < 𝑃

󸀠

(log(𝑛)) = (1 − (1/𝑛))(𝑛−1), there exists 0 < 𝑡
1

< 𝑡
2

,
such that 𝑃󸀠(𝑡

1

) = 𝑃
󸀠

(𝑡
2

) = 𝜀 (Figure 3(b)).
(2) It is derived from the proof of statement above.

Remark 4. Note that 0 < 𝜀 < (1 − (1/𝑛))(𝑛−1) < 1 since 𝑛 ≫ 1.
In Figure 3(b), 𝜀 = (1 − (1/500))(500−1) ≈ 0.368.

The proof of the previous proposition can be applied to
obtain the following result.

Theorem 5. Let 𝑃(𝑡) = (1 − 𝑒
−𝑡

)
𝑛, 𝑛 ≫ 1, 𝑏 > 1, and 𝜀 =

𝑒
−𝑏. Then there exists a constant number of neighbors, 𝐶(𝜀) =
log((1 − log 𝜀)/𝜀), for which the network becomes connected
with probability increasing from 𝑃(𝑡

1

= log(𝑛/(𝑏 + 1))) to
𝑃(𝑡
2

= log(𝑛) + 𝑏).

Proof. First, it can be observed that 𝜀 = 𝑒
−𝑏 satisfies the

hypothesis in Proposition 3(1) since 𝜀 = 𝑒−𝑏 < 𝑒−1; therefore
0 < 𝜀 < (1 − (1/𝑛))

(𝑛−1). Let 𝑥 = 𝑒−𝑡 and define 𝑓(𝑥) as

𝑓 (𝑥) = 𝑛(1 − 𝑥)
𝑛−1

𝑥 − 𝜀. (8)

Then, the goal is to find the roots of (8). For this purpose,
consider the derivative function:

𝑓
󸀠

(𝑥) = 𝑛(1 − 𝑥)
𝑛−1

− 𝑛 (𝑛 − 1) (1 − 𝑥)
𝑛−2

𝑥

= 𝑛(1 − 𝑥)
𝑛−2

(1 − 𝑛𝑥) .

(9)

Note that 𝑓(𝑥) is the function 𝑃
󸀠

(𝑡) − 𝜀 under the
change of variable 𝑥 = 𝑒

−𝑡, and by applying the proof of
Proposition 3 there exist only two roots 𝑥

1

and 𝑥
2

of 𝑓(𝑥) in
the interval (0, 1). Newton method can be used to find out
the approximation of roots 𝑥

1

and 𝑥
2

. However, its accuracy
depends on the initial value, which should be close enough to
the real root. Letting 𝑥

0

be the initial value, according to (8)
and (9), yields

𝑥 ≈ 𝑥
0

−
𝑓 (𝑥
0

)

𝑓󸀠 (𝑥
0

)

= 𝑥
0

−
𝑛(1 − 𝑥

0

)
𝑛−1

𝑥
0

− 𝜀

𝑛(1 − 𝑥
0

)
𝑛−2

(1 − 𝑛𝑥
0

)

= 𝑥
0

−

𝑛 (1 − 𝑥
0

) 𝑥
0

− (𝜀/(1 − 𝑥
0

)
𝑛−2

)

𝑛 (1 − 𝑛𝑥
0

)

= 𝑥
0

−
(1 − 𝑥

0

) 𝑥
0

1 − 𝑛𝑥
0

+
𝜀/(1 − 𝑥

0

)
𝑛−2

𝑛 (1 − 𝑛𝑥
0

)
.

(10)

Additionally, the inequality 0 < 𝑥
2

< (1/𝑛) < 𝑥
1

< 1 holds
from the proof of Proposition 3; then Newtonmethod can be
applied. Let 𝑥

0

= 0 as the initial value to approximate 𝑥
2

and
𝑥
0

= (𝑏/𝑛) (where 𝑏 > 1) as the initial value to find 𝑥
1

:

𝑥
2

=
𝜀

𝑛
=
𝑒
−𝑏

𝑛
,

𝑥
1

=
𝑏

𝑛
−
(1 − (𝑏/𝑛)) (𝑏/𝑛)

1 − 𝑏
+
𝜀/(1 − (𝑏/𝑛))

𝑛−2

𝑛 (1 − 𝑏)

=
1

𝑛
(

(𝑏
2

/𝑛) − 𝑏
2

+ (𝜀/(1 − (𝑏/𝑛))
𝑛−2

)

1 − 𝑏
) .

(11)
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Figure 3: Network connection probability function 𝑦 = 𝑃(𝑡) and corresponding 𝑃󸀠(𝑡) and 𝑃󸀠󸀠(𝑡) (a); values 𝑡
1

and 𝑡
2

for a given 𝜀 and 𝑛 = 500
(b).

Taking into account that we have (1 − (𝑏/𝑛))𝑛−2 → 𝑒
−𝑏 when

𝑛 → +∞ and 𝜀 = 𝑒−𝑏, therefore

(𝑏
2

/𝑛) − 𝑏
2

+ (𝜀/(1 − (𝑏/𝑛))
𝑛−2

)

1 − 𝑏
󳨀→ 1 + 𝑏. (12)

Note that 𝑏 = − log(𝜀). Letting 𝑡
2

= − log𝑥
2

, 𝑡
1

= − log𝑥
1

,
and defining 𝐶(𝜀) = 𝑡

2

− 𝑡
1

, according to (12), we obtain

𝐶 (𝜀)

= log(𝑥1
𝑥
2

)

= log(
(1/𝑛) (((𝑏

2

/𝑛) − 𝑏
2

+ (𝜀/(1 − (𝑏/𝑛))
𝑛−2

)) / (1 − 𝑏))

𝜀/𝑛
)

󳨀→ log(
1 − log (𝜀)

𝜀
) .

(13)

Finally, taking into account that 𝑡
2

= log(𝑛) + 𝑏, we have
𝑡
1

= 𝑡
2

− 𝐶(𝜀) = log(𝑛/(𝑏 + 1)). Since 𝑃(𝑡) is an increasing
function, we conclude that the network becomes connected
with probability increasing from 𝑃(𝑡

1

= log(𝑛/(𝑏 + 1))) to
𝑃(𝑡
2

= log(𝑛) + 𝑏).

Theorem 6. Letting 𝜀 = 𝑒−𝑏 and 𝑏 > 1, if 𝜋𝑟2 = log 𝑛+ 𝑏, then
network connection probability𝑃(𝑆

𝑛,𝑟

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑) is at least 1−
𝜀 when 𝑛 → +∞.

Proof. Consider

𝑃 (𝑆
𝑛,𝑟

connected) = (1 − 𝑒
−𝑏

𝑛
)

𝑛

≥ 1 − 𝑛
𝑒
−𝑏

𝑛
= 1 − 𝜀.

(14)

Remark 7. This theorem shows that, as 𝑏 → +∞, network
connection probability tends to 1 and leads to the network
that has degree log 𝑛 + 𝑏. The author in [10] proves that
if a network does not have any links at the beginning,
and later links are added to connect nodes, the resulting
network becomes 𝑘-connected as soon as network degree is
𝑘. Therefore, this theorem shows that once network becomes
connected, it turns out to be log 𝑛 + 𝑏-connected with high
probability. This conclusion is consistent with the result
in [11]: by increasing 𝑘 network becomes s-connected very
shortly after it becomes connected, for 𝑠 = 𝑂(log 𝑛). log 𝑛+𝑏-
connected network makes WSNs more resilient against node
failure because there are log 𝑛+𝑏distinct paths fromonenode
to any other nodes.

Theorem8. Letting 𝜀 = 𝑒−𝑏 and 𝑏 > 1, if𝜋𝑟2 = log(𝑛/(𝑏+1)),
then the network connection probability 𝑃(𝑆

𝑛,𝑟

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑) is
about 0.36𝜀 when 𝑛 → +∞.

Proof. Consider

𝑃 (𝑆
𝑛,𝑟

connected) = (1 − 𝑏 + 1
𝑛

)

𝑛

󳨀→ 𝑒
−𝑏−1

= 0.36𝑒
−𝑏

= 0.36𝜀.

(15)

Theorem 9. Letting 𝜀 = 𝑒−𝑏 and 𝑏 > 1, if 𝜋𝑟2 = log 𝑛 + 𝑏, then
the network connection probability is 𝑒−𝑒

−𝑏

, when 𝑛 → +∞.

Proof. Consider

𝑃 (𝑆
𝑛,𝑟

connected) = (1 − 𝑒
−𝑏

𝑛
)

𝑛

󳨀→ 𝑒
−𝑒

−𝑏

. (16)

Remark 10. This conclusion is the same as [12] and has similar
form in the Erdös-Rényi random graph [13].
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Figure 4: Network connection probability 𝑦 = 𝑃(𝑡) increases from
𝑃(𝑡
1

) to 𝑃(𝑡
2

) for 𝑛 = 500.

Corollary 11. Letting 0 < 𝜀 < 𝑒−1, if the probability of network
being connected is 0.36𝜀 when communication range is 𝜋𝑟2,
then, by increasing node communication range by constant
𝐶(𝜀) = log ((1 − log 𝜀)/𝜀), namely, 𝜋𝑟2 +𝐶(𝜀), the probability
of network being connected is at least 1 − 𝜀.

Proof. It is obvious from the previous Theorems 5, 6, and 8.

This section addresses one question. If a node cur-
rent communication range is known, then the connection
probability can be calculated by using (2). If the network
connection probability is very low, maybe one wants to
increase the node communication range to obtain a higher
network connection probability. Equation (2) can be used
again to calculate the required communication range, but
surprisingly the corollary proved in this section shows that
the incremental of communication range to obtain a high
connection probability is a constant for any size of network.

3.2. Validation Results. This section validates the previous
results by an example and simulations. In the example, 500
nodes with equal communication range are deployed in the
field with√500 ⋅ √500𝑚2.

Example 12. Thefunction𝑃(𝑡) = (1−𝑒−𝑡)𝑛 for 𝑛 = 500 and 𝑏 =
4 is studied. According to Theorem 5, there exists a constant
number of neighbors 𝐶(𝜀) = log((4 + 1)/𝑒−4) = 5.60944,
for which the network becomes connected with probability
increasing from 𝑃(𝑡

1

) = 0.65705% to 𝑃(𝑡
2

) = 98.18507% (as
depicted in Figure 4).

First, it is observed that

𝜀 = 𝑒
−4

= 0.0183 < (1 −
1

500
)

(500−1)

= 0.3682 (17)

which satisfies the hypothesis in Proposition 3(1). In our
approach, the Newton’s method is used to approximate the
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Figure 5: Network connection probability 𝑦 = 𝑃(𝑡) when 𝑛 =

500, 1000, 10000, and 100000.

Table 1: Connection probability with different sizes of network.

𝑛 𝑡
1

𝑡
2

𝑡
2

− 𝑡
1

𝑃(𝑡
1

) 𝑃(𝑡
2

)

500 4.60517 10.21461 5.60944 0.65705% 98.18507%
1000 5.29832 10.90776 5.60944 0.66540% 98.18509%
10000 7.60090 13.21034 5.60944 0.67295% 98.18511%
100000 9.90349 15.51293 5.60944 0.67371% 98.18511%

roots of

𝑓 (𝑥) = 500(1 − 𝑥)
500−1

𝑥 − 0.0183, (18)

obtaining

𝑥
1

= 9.98 ⋅ 10
−3

, 𝑥
2

= 0.04 ⋅ 10
−3

. (19)

Observe that 0 < 𝑥
2

< 1/500 = 0.002 < 𝑥
1

. Hence,

𝑡
2

= − log (𝑥
2

) = 10.21461, 𝑡
1

= − log (𝑥
1

) = 4.60517,

(20)

which indicates 𝑃(𝑡
1

= 4.60517) = 0.65705%, 𝑃(𝑡
2

=

10.21461) = 98.18507%, and 𝐶(𝜀) = 𝑡
2

− 𝑡
1

= 5.60944.
Figure 5 shows connection probability 𝑦 = 𝑃(𝑡)when 𝑛 =

500, 1000, 10000, 100000. Table 1 demonstrates the values of
𝑥
1

, 𝑥
2

, 𝑡
1

, 𝑡
2

, and 𝐶(𝜀) and corresponding values of 𝑃(𝑡
1

)

and 𝑃(𝑡
2

), for 𝑛 = 500, 1000, 10000, 100000. For any 𝑛 in
the table, the obtained value 𝑡

2

− 𝑡
1

≈ 𝐶(𝜀) = 5.60944.
Of course, in a real network, the number of neighbors is
integer, so 6 neighbors are needed.This example implies that,
regardless of network size (number of nodes should be big
enough), if the network connection probability is 0.66%, by
increasing the communication range until each node obtains
6 more neighbors (namely, increasing communication range
by 6m2), the network connection probability reaches at least
98.17%.Meanwhile, the networkwill be at least 10-connected.

In order to validate Theorems 6 and 8, this paper calcu-
lates the error between theoretical results and approximation
values with different , 𝑛 and 𝑏, as shown in Figure 6.The error
of Theorem 6 is defined as (1 − (𝑒−𝑏/𝑛))𝑛 − (1 − 𝑒−𝑏), and the
error of Theorem 8 is defined as (1 − ((𝑏 + 1)/𝑛))𝑛 − 0.36𝑒−𝑏.
The errors for both theorems are very small, which indicate
that both have a good approximation.
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Figure 6: (a) The errors of Theorem 6; (b) the errors of Theorem 8.

4. Heterogenous Node Deployment in WSNs

In the last section, the obtained asymptotic results were
based on the assumption that each node has the same
communication range which is often not the case in practice.
This section presents the connection probability when node
communication range follows a normal distribution, that is,
𝑡 ∼ 𝑁(𝜇, 𝜎

2

).
Formally, network model is reformulated as follows: 𝑛

nodes are randomly and uniformly deployed in area 𝐴 with
density 𝜌 = 1. Communication range of node 𝑖, denoted
as 𝑡
𝑖

, is i.i.d random variable and has normal distribution
𝑡
𝑖

∼ 𝑁(𝜇, 𝜎
2

). Hence, the number of neighbors of the node,
denoted as 𝑘

𝑡

, is the Poisson random variable condition on
parameter 𝑡, where 𝑡 ∼ 𝑁(𝜇, 𝜎

2

). This model is analog
to the so-called Cox process in which random variable is
Poisson process where density itself is a stochastic process.
Cox process is widely used in economics, for example, [14].

4.1. Connection Probability for Random Communication
Range. 𝐸[𝑉] denotes the expected value of a random variable
𝑉; therefore the expected neighbors of node are

𝐸 [𝑘
𝑡

] = 𝐸 [𝐸 [𝑘
𝑡

| 𝑡]] = 𝐸 [𝑡] = 𝜇. (21)

In what follows, connection probability itself is
researched. For 𝑘 ≥ 1, probability of node 𝑖 having at
least 𝑘 neighbors is given by

𝑃
𝑖,𝑘

= 𝑔
𝑖

(𝑡
𝑖

) = 1 −

𝑘−1

∑

𝑁=0

𝑡
𝑁

𝑖

𝑁!
𝑒
−𝑡

𝑖 . (22)

For 𝑘 = 1, 𝑃
𝑖,1

= 1 − (1/𝑒
𝑡

𝑖) is the probability that node 𝑖
is not isolated. 𝑒𝑡𝑖 has log normal distribution. Therefore, the
expected value 𝐸[𝑃

𝑖,1

] and variance Var[𝑃
𝑖,1

] can be obtained
via standard method:

𝐸 [𝑃
𝑖,1

] = 1 − 𝑒
−𝜇+(1/2)𝜎

2

,

Var [𝑃
𝑖,1

] = (𝑒
𝜎

2

− 1) (𝐸 [𝑃
𝑖,1

])
2

.

(23)

For 𝑘 > 1 neighbors, the distribution of 𝑃
𝑖,𝑘

does not have a
closed-form expression.

If 𝑛 is big enough, the probability of network being 𝑘-
connected is

𝑃
𝑘

=

𝑛

∏

𝑖=1

𝑃
𝑖,𝑘

. (24)

Since parameter 𝑡 is a random variable, 𝑃
𝑘

is a random
variable as well. Letting 𝑃min = min{𝑃

1,𝑘

, 𝑃
2,𝑘

, . . . , 𝑃
𝑛,𝑘

},
because 0 ≤ 𝑃

𝑖,𝑘

≤ 1, so

𝑃
𝑛

min ≤ 𝑃𝑘 ≤ 𝑃min. (25)

Therefore the obstruction of connection probability of
entire network is the node which has the minimal commu-
nication range.

𝑃
𝑘

is affected by several parameters: 𝑘, 𝑛, 𝜇, and 𝜎.
Theorem 6 is used to decide 𝜇. According to Theorem 6, the
probability of the network being connected is at least 99.33%
when 𝑏 = 5. Let 𝜌 = 1 and take log 𝑛 + 5 as average 𝜇 of
communication range; for instance, if 𝑛 = 500, then 𝜇 = 11.2.
In other words, 500 nodes with node communication range
following normal distribution 𝑡 ∼ 𝑁(11.2, 𝜎2) are deployed.

Our major concerns are the parameter 𝜎 which indicats
communication range difference and 𝑘 which shows the
resilience capability. In order to study the changes of connec-
tion probability 𝑃

𝑘

as parameters vary, the following simu-
lations are performed: (1) cumulative distribution function
(CDF) of 𝑃

𝑘

is calculated after 500 runs with various 𝜎 and
𝑘, as shown in Figures 7 and 8; (2) given 𝜇 and 𝜎, what is the
probability of network being 𝑘-connected as the number of
nodes deployed grows?This is done by computing average of
𝑃
𝑛,𝑘

after 500 runs for a given number of nodes, as illustrated
in Figures 9 and 10; (3) how to choose the parameters in order
to get the required connection probability. This is discussed
in Section 4.3.

Figures 7 and 8 show the CDF of 𝑃
𝑛,𝑘

when 𝜎 and
𝑘 change. The network probability is sensitive to standard
deviation. As mentioned earlier, a single node that has
small communication range can cause the whole network
connection probability to be low. For instance, in Figure 8
when 𝜎 = 3 and 𝑘 = 2, the probability of network being
connected is almost sure less than 40%.
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Figure 8: Cumulative distribution function (CDF) of 𝑃
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when 𝜎 =
1, 2, and 3, 𝑛 = 500, and 𝑘 = 2.

Figure 9 illustrates the connection probability as𝑁 nodes
were deployed in network when 𝜎 = 2 and 𝑘 = 1, 2, 3, 4.
Figure 10 shows the changes when 𝜎 = 1, 2, 3 and 𝑘 = 1. Both
figures show that the average of 𝑃

𝑘

is the decreasing function
of 𝑘, 𝑁, and 𝜎. Network connection probability as network
size growing is predictable. For instance, Figure 10 shows that
the network average connection probability for 𝜎 = 3 is about
73%when the network has 250 nodes, but the probability falls
to 55% if the network size is doubled. Figure 9 shows how the
resilience performance decreases when network size grows or
the probability decreases if higher resilience performance is
required. For example, for networks which have 200 nodes,
the probability that this network can tolerate 1, 2, and 3 (i.e.,
𝑘 = 2, 3, 4) nodes failure are about 83%, 50%, and 10%,
respectively.

0 100 200 300 400 500
0

0.5

1

k = 1

k = 2

k = 3

k = 4

P

Figure 9: 𝑘-connected probability𝑃when 𝜎 = 2 and 𝑘 = 1, 2, 3, and
4.
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Figure 10: Connection probability𝑃when 𝜎 = 1, 2, and 3 and 𝑘 = 1.

4.2. Choose Distribution Parameter. The simulations in
Section 4.2 show𝑃

𝑘

with different parameters. In this section,
it is addressed which distribution parameter(s) can maintain
the given 𝑃

𝑘

.This is helpful to choose appropriate parameters
when network simulator is used to simulate real networks.
According to (6), (22) is a monotonically increasing function
of 𝑡
𝑖

∈ [0, +∞), and its inverse function is written as

𝑡
𝑖,𝑘

= 𝑔
−1

𝑖

(𝑝
𝑖,𝑘

) . (26)

Letting 𝑝(0)
𝑖,𝑘

be an instance of 𝑝
𝑖,𝑘

, thus 𝑡(0)
𝑖,𝑘

= 𝑔
−1

𝑖

(𝑝
(0)

𝑖,𝑘

). The
probability 𝑝

𝑖,𝑘

being greater than 𝑝(0)
𝑖,𝑘

is given by

∫

+∞

𝑡

(0)

𝑖,𝑘

𝑓
𝑇

(𝑡) 𝑑𝑡, (27)

where 𝑓
𝑇

(𝑡) is the probability density function of 𝑡. If
the probability of a network required to keep network 𝑘-
connected is at least 𝑃

0

, the corresponding probability for
each node is at least

𝑝min ≥ 𝑃
1/𝑛

0

. (28)

With formula (26)–(28), the required density function
parameter of communication range for given 𝑃

0

can be
calculated.
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For example, 500 nodes are deployed in√500 ⋅ √500m2;
communication area is 𝑡 ∼ 𝑁(𝜇, 𝜎

2

) with mean 𝜇 = 10. If
the desired probability of thewhole network being connected,
that is, 𝑘-connected, is at least 90%. Standard deviation of
this distribution is evaluated. For 𝑘 = 1, according to (26)
and (28), corresponding minimal range is 𝑡(0)

𝑖,1

= 8.46. In
order to make probability of 𝑡

𝑖,1

greater than 𝑡(0)
𝑖,1

is high, for
example, at least 95%, according to (27), 𝑡

𝑖,1

= 𝜇 − 1.65𝜎.
Therefore corresponding standard deviation 𝜎 should be no
more than 0.93. This is useful in the case of using network
simulator to choose appropriate parameters to design high
probability connected networks. Figure 11 shows the required
𝜎 in order tomake the network connection probability at least
90% when the number of nodes are different. Note that the
node density is always 1.

5. Related Works

Extensive studies have been done on the connection problem
of networks. Many of them focus on how many neighbors
or network density is needed so that a network connects
with high probability, such as [15]; some construct network
to satisfy connectivity [16, 17]; some works try to develop
algorithms to preserve network connectivity or coverage,
for example, [18–20], while some other works study other
aspects of network connectivity, such as [21] which evaluates
the quality of connectivity by measuring the reliability of
link; it shows that the largest eigenvalue of the probabilistic
connectivitymatrix can serve as a goodmeasure of the quality
of network connectivity. When all the nodes of a region fail,
[22] measures the number of connected components. This
paper studies the connection probability when the network
nodes are randomly deployed.

When nodes are randomly deployed, asymptotic upper
and lower bounds of connection probability for both k-
nearest neighbor and disk model have been studied [12]. For k-
nearest neighbor, [23] concludes that, as 𝑛 → ∞, if each node
is connected to less than 0.074 log 𝑛 neighbors, the network
is disconnected with probability one, while, if neighbors
are more than 5.1774 log 𝑛, the network is connected with
probability one. Reference [24] finds that if 𝑘 ≤ 0.3043 log 𝑛,
the network is not connected with high probability and if
𝑘 ≥ 0.5139 log 𝑛, then network is connected with high

probability as 𝑛 → ∞. But for the directed network the
upper and lower bounds are 0.7209 log 𝑛 and 0.9967 log 𝑛,
respectively. Reference [25] improves the upper bound to be
0.4125 log 𝑛. For disk model [26] states that 6 to 10 average
numbers of neighbors almost make sure that network will be
fully connected nomatter howmanynodes there are totally in
the network. In [27], if communication range 𝜋𝑟2 = log 𝑛+𝑏,
then the network connection probability tends to be 𝑒−𝑒

−𝑏

.
Compared with [26], Table 1 in this paper shows that, when
𝑛 = 10000, at least 13 neighbors are needed in order to make
sure that network is connected with high probability. Besides,
a result (Theorem 9) presented in our paper is the same as [27]
but uses a totally different approach.

Reference [11] shows that, in k-nearest neighbor model
by increasing 𝑘, network becomes s-connected very shortly
after it becomes connected, where 𝑠 = 𝑂(log 𝑛). Reference
[28] proves one conjecture in [24] that, in k-nearest neighbor
model for every 0 < 𝜀 < 1 and 𝑛 sufficiently large, there
exists 𝐶 = 𝐶(𝜀) such that, if the network has k-connected
probability 𝜀, then (𝑘 + 𝐶)-connected probability is bigger
than 1 − 𝜀. This paper improves the results in [11], obtaining
an explicit expression for disk model, that is, 𝑠 = log 𝑛 + 𝑏,
where 𝑏 > 1. The corollary in this paper proves that the result
for disc model has a similar form presented in [28].

Nodes having the same communication range usually
are not true in reality. In order to make the model more
accurate, [8, 29] utilize irregular radio to model real nodes.
The connectivity for heterogenous networks has been well
studied; for example, [16, 30] investigate the relay node
placement problem such that network is the 𝑘-connected.The
authors in [31] assumes that node communication radius 𝑟

𝑖

of node 𝑖 is i.i.d. random variable with normal probability
density 𝑟

𝑖

∼ 𝑁(𝜇, 𝜎
2

). Reference [32] adopts the model that
Poisson intensity is given by a normal distribution; then it
obtains the asymptotic bound of range that all nodes in this
area are connected to the origin. Reference [33] considers
nodes are placed according to a shot-noise Cox process
rather than uniform deployment. This paper employs the
stochastic methods to characterize heterogenous network. In
this paper the density is maintained constant, but the node
communication range is normal distribution.

6. Conclusion and Future Works

When deploying manyWSNs nodes, one of the key problems
is whether all nodes in the network are connected to other
nodes. Isolated nodes will be useless for applications. This
paper presents the results on how the network connection
probability changes as the communication range varies in
randomly and uniformly distributed homogenous and het-
erogenous WSNs. In case of network with all nodes having
the same communication range, through theory derivation
and validation, this paper proves that, regardless of network
size, the network connection probability increases from 0.36𝜀

to 1 − 𝜀 by increasing constant communication range of
each node. As the example shows in Section 3.2, regardless
of network size, if the network connection probability is
0.66%, by increasing the communication range until each
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node obtains 6 more neighbors, the network connection
probability reaches at least 98.17%. On the other hand, this
paper shows that, once network is connected, it also becomes
log 𝑛 + 𝑏-connected with high probability, which makes
the network resilient against node failures because there are
log 𝑛 + 𝑏 alternative paths between any two distinct nodes.

In case each node communication range is i.i.d random
variable which has normal distribution, this paper analyzes
the connection probability by simulation. This paper shows
that network connection probability is determined by the
distribution parameters and the network size, especially sen-
sitive to standard deviation 𝜎. The reason is that the network
connection probability is dependent on the node that has
minimal communication range. It implies that it needs to
take care of the node which has minimal communication
range because it is the bottleneck of the whole network.
The network will become disconnected if they fail. With the
same configuration, the resilience capability decreases when
network size grows. Besides, given the required connection
probability, this paper develops onemethod to decide the dis-
tribution parameter of communication range. This method
can be used to choose appropriate distribution parameter
of communication range for network simulators or real
deployments.

In some circumstances, a full connected network is
impractical and not necessary. One would be more interested
in the giant connected component which contains most
nodes of entire network are connected. More specifically,
the relation between the giant connected component and
the communication range distribution is what is wanted to
be learnt. It is a percolation problem with random commu-
nication range. Percolation occurs when a node belongs to
infinite component with none-zero possibility. The critical
intensity 𝜆

𝑐

is defined as the minimum intensity in which
percolation occurs. For disk model, the bound for critical
intensity is known (e.g., [34]) but for variable radius is
unknown. Therefore, studying the percolation problem with
i.i.d communication range (or radius) will be our future
work. On the other hand, the degree of the node obeys
Poisson distribution in this paper. It has been found that
many networks, such as the World Wide Web, the Internet,
airplanes connection networks, some biological systems, and
international ownership network, have power-law degree
distribution with an exponent that ranges between 2 and 3
[35]. Our future work will center on connection probability
with a more accurate model.
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