
International Journal of Bifurcation and Chaos, Vol. 8, No. 11 (1998) 2255-2262 
© World Scientific Publishing Company 

EXPERIMENTAL EVIDENCE OF A HARD 
TRANSITION TO CHAOS 

E. DEL RIO, J. R. SANMARTIN and O. L6PEZ-REBOLLAL 
E. T. S. Ingenieros Aeronauticos, Universidad Polite" cnica, 

28040 Madrid, Spain 

Received August 18, 1997; Revised April 8, 1998 

A generic, sudden transition to chaos has been experimentally verified using electronic circuits. 
The particular system studied involves the near resonance of two coupled oscillators at 2 : 1 
frequency ratio when the damping of the first oscillator becomes negative. We identified in 
the experiment all types of orbits described by theory. We also found that a theoretical, ID 
limit map fits closely a map of the experimental attractor which, however, could be strongly 
disturbed by noise. In particular, we found noisy periodic orbits, in good agreement with noise 
theory. 

1. Introduction 

A hard in amplitude transition to chaos in a 
class of dissipative flows of broad physical appli­
cability was recently reported [Lopez-Rebollal & 
Sanmartin, 1995; Hughes & Proctor, 1990; 
Sanmartin et al.y 1993]. These flows exhibited a 
state of rest for negative values of a parameter T, 
and a fully developed chaotic attractor for V pos­
itive, no matter how small. The T —> +0 limit of 
long-time solutions was a singular solution: It did 
not exist at T — 0, relating to the fact that the 
limits t —f +oo and T —> +0 do not commute (the 
singular solution takes an infinite time to make a 
single leg on the attractor). This led to exactly ID, 
noninvertible maps, with vanishing Cantor struc­
tures and to chaotic dynamics with vanishing Lya-
punov exponents. The transition has been recently 
shown to be structurally stable [Lopez-Rebollal 
et al, 1998]. 

A particular system exhibiting this transi­
tion (2 : 1 near-resonance of waves or oscillators 
with quadratic coupling) was analyzed in detail 
by Lopez-Rebollal and Sanmartin [1995]. In the 
present paper we carry out an experimental test 
of the theory for this case. To model the system 

we constructed two coupled electronic oscillators, 
using a technique which reported very good re­
sults to us in dealing with nonlinear, in particular 
chaotic, problems [del Rio et al} 1992, 1994]. We 
paid special attention to the effects of noise, which 
should be high in our system, as discussed in nu­
merical calculations [Hughes &c Proctor, 1990]. 

Section 2 briefly reviews the main results of the 
theory for the case of 2 : 1 resonance. Model cir­
cuit and experimental procedure are described in 
Sec. 3. Experimental results and a comparison to 
theory are presented in Sec. 4. In Sec. 5 we consider 
circuit-noise effects on the system. We summarize 
results in Sec. 6. 

2. Summarized Theory of the Transition 

The simplest model for the hard transition is 
the weakly nonlinear, conservative coupling of two 
harmonic oscillators [Lopez-Rebollal & Sanmartin, 
1995], 

x — 2Tx -f 4LJQX 

= "2^ {V?xx*
2 + 2VXVJ/ + VSni?) , (la) 
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y+2>yy+u;%y a.2 = -702 + ai«2 sin /?, (3b) 

at frequencies 2OJO and y U)Q + VUQ (with ^/^o 
small), when the linear damping for x changes 
sign; we expanded the two-dimensional (2D) poten­
tial energy V(x,y), with V£xx representing dy/dx3 

at the origin (a stable equilibrium point), etc. 
Writing 

x — -r^j—a\ cos (2a>ot -f ip) , (2a) 

y = v0 a2 cos {u)0t + 0) (2b) 

and averaging over the 2u>o and c*;o periods, one finds 
that small dampings — 2T and 27 > 0, as well as 
resonant coupling terms and frequency mismatch 
v > 0, make the normalized amplitudes and phase 
constants for the respective oscillations, slowly 
evolve according to equations [Lopez-Rebollal & 
Sanmartm, 1995] 

al 

di = Ten — of sin /3, (3a) 

/3 = i/ + 2 a i c o s / 3 - — cos/3, (3c) 
a\ 

with /3 = 20 — if). This 3D flow has been extensively 
studied as a model for the ubiquitous three-wave, 
quadratic interaction, with one wave instable and 
the two other waves equally damped [Pikovsky & 
Rabinovich, 1981; Wersinger et aJ., 1980; Meunier 
et al, 1982]. 

Systems 3(a)-3(c) has an invariant surface, 
£(a2 = 0). The state of rest (a\ = ai = 0) is a 
global attractor for V < 0 and is unstable for T > 0; 
there is then a fixed point P[a<ip2 sin2/?p = T^, 
aipsinfip ~ 7, tan ftp = ( r — 2y)/i/]. For 
T = 0 there is a second invariant surface, E'(i/ + 
2a 1 cos (3 = 0), which meets £ at a line of fixed 
points A (Fig. 1); point P now lies on A. The sur­
face S' is made of heteroclinic orbits and nested on 
P , joining A-points pairwise (see orbits I, II or III in 
Fig. 1). Also, a\ is constant along E-orbits, which 
are heteroclinic above the bottom Q of A (m —v fh 
in Fig. 1) and periodic below Q. The V = 0 at­
tractor is the union of the periodic orbits below Q, 
and the arc PQ of A [Lopez-Rebollal & Sanmartm, 
1995]. 

a7 

Fig. 1. Heteroclinic orbits for Eqs. (3a)-(3c), with T vanishing and v/i low enough. Invariant surfaces a 2 = 0 (E) and 
v + 2oi cos (3 = 0 (£') intersect at a line of fixed points A; P is a fixed point existing at V > 0 too, Q the bottom of A, P the 
symmetric of P on A. For r —• +0, orbits rise at a vanishing rate from fh below P, to Af' above P. 
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Experimental Evidence of a Hard Transition to Chaos 2257 

The entire heteroclinic structure disappears 
with E' and A at positive I \ A ghost of the T = 0 
invariant structure, however, allows the analytical 
determination of an exactly ID, first return map 
for oi-maxima on the chaotic attractor, in the limit 
r ->• +0. For very small T and 1//7 < 2, P is a 
saddle-focus with a 2D unstable manifold near S; 
as r —y +0 the spiralling motion lying between P 
and S is crashed onto A, making points on this line 
drift along it at a vanishing rate. In the {0,1,0,2,(3} 
space there are three types of "complete" limit or­
bits, taking a\ from a maximum a\M to the next 
one a-iivf/; this determines the map of maxima. 

Type I: These complete orbits consist of three 
steps: 

(1) A T = 0 heteroclinic orbit on the surface E', 
from a point M above P on the (3 < TT branch 
of line A, to a point m lying on the opposite 
branch, between Q and P (symmetric of P on 
A, Fig. 1). 

(2) A T = 0, heteroclinic orbit on E, from m to its 
symmetric fh between Q and P. 

(3) A vanishingly slow (At ~ 1/r) rise along A, for 
r —> +0, from m to a new maximum M' above 
P. Note that 02 vanishes in the last two steps. 

Type II: For M low enough above P , m itself lies 

between Q and P , and the second step of Type I 
orbits is missing. 

Type III: For M high enough, m lying above P , 
there is no third step. 

The resulting ID map is bimodal with the two 
critical points corresponding to m at P or Q. This 
exact limit map, which exhibits a chaotic attractor 
at low enough Z//7, has the form [L6pez-Rebolial & 
Sanmartm, 1995; Hughes & Proctor, 1990] 

F(ZM') = F(\ZM - 2|) if Z M < 3 , (4a) 

ZM,=\ZM-2\ if Z M >3, (4b) 

F(*$*2Z-»$+*y-U»->(*z), 

(5) 

3. Experimental Model 

We constructed an (analog) model circuit for 
Eqs. (la) and (lb). Figure 2 shows both, a block 
diagram for the circuit, and the connection to the 

i ( 0 
/>» : A - D . 

3 Computer 

Fig. 2. Block diagram for circuit and data acquisition device. 
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data acquisition device. There are two similar linear 
oscillators in the circuit (blocks Lx and Ly in the 
figure), tuned at 2wo for the x variable, and near UJQ 
for y. The output voltage of each oscillator is used 
as input in an adding amplifier, and the signal is 
then applied to the input of a four-quadrant analog 
multiplier BB4206. Instead of integrators we used 
for the blocks Lx and Ly the circuit given by del 
Rio et al. [1992], which requires just one opera­
tional amplifier per linear oscillator, with feedback 
close to unity, thus reducing internal and external 
fluctuations and ensuring a fairly linear amplifier in 
a wide frequency range (note that circuit noise can 
affect the dynamics as later seen in Sec. 5). Also, 
one may easily proceed continuously from negative 
to positive values of the damping factor [del Rio 
et al., 1992], as required in the experiment. 

For data acquisition we used a programmable 
12 bit analog-digital converter under computer con­
trol. This system makes possible to measure suc­
cessive maxima of x(t) in Fig. 2 {x(t) = 0 and 
x(t) < 0}, using the following procedure: Setting 
the trigger threshold at OV, we use the signal x(t) as 
trigger channel, choosing the low to high transition 
as trigger mode. For each transition we make 20 
samples in the x(t) channel, each delayed 1/20 ms, 
and covering 1 ms overall; ten samples are acquired 
prior to the trigger condition, and ten afterwards. 
We then fit a parabola to the samples and calculate 
the maximum, called xn; with this method we filter 
the high frequency noise. Next, following Eqs. (2a) 
and (2b), we write x(t) = X (t) cos (2ujQt 4- t/>), 
y{t) — Y(t) cos (wo* + #)• Since the characteris­
tic time of X(t) will be much larger than l/2u;o, 
the discrete sequence of values for maxima of rc(r-), 
{xn}, approximately determines the function X(t), 
and its maxima XM (proportional to CL\M), which 
occur at time intervals close to the period TT/UJQ. 

To determine LJQ one sets the switch B in po­
sition 2, ensuring that, after a transient time, we 
will have y(t) — 0. Under this condition and with 
T tuned close to zero, the nonlinear x-oscillator will 
make autonomous oscillations. If the amplitude is 
small (around 0.05 V), the nonlinear term is negli­
gible as compared with the linear term, and the fre­
quency 2u>o is directly given by a frequency meter 
connected to the x(t) output signal. The result for 
our circuit is UQ = 101.250 rad/s. In a similar way 
we can measure the frequency of the i/-oscillator, 
which gives v in Eq. (lb). 

To measure negative damping factors, V > 0, 
we start with switch A in position 2 and the au­
tonomous, linear x-oscillator amplitude close to 

zero, and measure the exponential growth of the x-
amplitude. We measure 7 in a similar way; since 
the linear y-oscillator is damped, one must start 
here with a large amplitude, typically 5 V. 

4. Comparison to Theory 

Figure 3(a) shows a function of n for two 
typical orbits as described in Sec. 2. The range 
10 < n < 290 will be shown below to correspond 
to an orbit of Type I in Fig. 1, which consists of 
three steps. During the third step (the slow rise on 
A with a2 oc Y « 10~3 V or less) the oscilloscope 
(Fig. 2) displays a horizontal segment of increasing 
length until the system leaves the Y « 0 surface 
[at n ?» 290 in Fig. 3(a)] as a vertical explosion, 
which is the first step of the next orbit. To compare 
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Fig. 3. Typical xn-series (in volts) for v = 0.630 rad/s, 
7 = 1.802 rad/s. (a) Types I and II orbits; the two dashed 
lines are exponential laws fitting the experimental data, 
(b) Type III orbit. For the differences in profile curvature, 
see main text. 
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the step in Fig. 3(a) with theory, note that for 
Y « 0, Eq. (3a) gives X(t) « TX(t)', the experi­
mental series for xn will then grow exponentially. 
A linear least-square fit of the lnxn-data deter­
mines T = 0.175 rad/s, in good agreement with 
the value V = 0.179 rad/s that had been obtained 
from measurements with the z-oscillator when un­
coupled (~ 2% of error), as explained in Sec. 3. The 
dotted line in Fig. 3(a) for n < 290 represents the 
theoretical prediction for xn. 

Values 290 t o n « 720, following a lower 
maximum of xn (lower XM ) , will be shown to cor­
respond to a Type II orbit in Fig. 1. A similar ex­
ponential fit to the data also gives T = 0.175 rad/s. 
Again, the dotted line in Fig. 3(a) for n > 310 is 
the theoretical prediction for xn. 

Differences of profile curvature near the respec­
tive minima in Fig. 3(a), and before the rise on 
line A, are in agreement with theory. Note that 
Eqs. (3a)-(3c) exactly yield: 

_ r 2 . a\ 
d\ = Tza\ + — cos /3 + 2ai 

- o i - -cos/3 

[('-!) sin/? 

(6) 

Close to the surface E but before the A-rise we have 
r « 02 « 1, the bracket term being then domi­
nant in Eq. (6), with the sign of the bracket deter­
mining the sign of d\. Figure 4 shows both A and 
the line L where that bracket vanishes for the v — 7 
values of Figs. 3(a) and 3(b), and T « 7. Above 
and to the right of L, the bracket term is negative. 
Clearly, a Type I orbit, which has d\ > 0 at the 
/3 = 7r minimum in Fig. 1, should have ai < Owhen 
reaching S at the /? > TT branch of A, below P , and 
should again have d\ > 0 on the (3 <TT branch, fol­
lowing the second step. One can see these two sign-
changes, previous to the A-rise, in the 10 < n < 290 
orbit of Fig. 3(a). 

A Type II orbit, on the other hand, does not 
cross the /3 = TT surface, and its minimum occurs 
near the surface E, where d\ is small as seen in 
Eq. (6); this should result in a broad minimum for 
a\. Also, since the orbit approaches S near the 
(3 < ir branch of A, where d\ is positive as at the 
minimum, it will lack the two sign-changes of a 
Type I orbit. Again, one can see both features in 
the 290 < n < 720 orbit of Fig. 3(a). 

Finally, a Type III orbit does cross the /? = 7r 
surface and thus exhibits a narrow minimum, as 
in Type I; also, since the orbit reaches A on its 

Fig. 4. Plane aj — /3 for the same u, 7 values of Fig. 3 and T 
vanishing, showing A, and the line L(0 = 7 sin /3—ai—£ cos /9) 
dividing the plane in two regions according to the x(t) sign 
as indicated. 

P > 7r branch (above P in Fig. 4), d\ should exhibit 
a first sign-change. On the other hand, the orbit will 
clearly lack the second sign-change, keeping d\ < 0 
while crossing to the /3 < ir branch. All these fea­
tures are found in Fig. 3(b) for an orbit starting at 
a rcn-maximum higher than those in Fig. 3(a). 

Finally, for positive T, no matter how small, 
the theory predicts a chaotic attractor within cer­
tain domain of parameters v, 7, with XM governed 
by the limit map (T -» -f-0) given by Eqs. (4) 
and (5). Experimental points in Fig. 5(a) describe 
a first-return map for XM corresponding to the 
values of v, 7 and T of Figs. 3(a) and 3(b). There 
are 599 maxima in a Xn-series of 2 x 105 points. 
Those parts of the complete series represented in 
Figs. 3(a) and 3(b) include three maxima in the 
first figure, and two in the second. One may ob­
serve in the figures that the xn signal has a triangle-
wave component with a period twice the period 
-K/UJQ of the linear x-oscillator. This is a result of 
nonresonant coupling terms in Eqs. (la) and (lb) 
that were not taken into account in Eqs. (3a)-(3c), 
and which are entirely negligible in the vanishing-
amplitude limit only; such as effect made necessary 
to calculate XM &S & parabolic least-square fit of 
a set of points around each xn-hill. Also shown in 
Fig. 5(a) is the theoretical map, Eqs. (4) and (5), 
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Fig. 5. Experimental return map maxima of XM (in volt) for v — 0.630 rad/s, 7 = 1.802 rad/s, as obtained from 2 x 105 i n -
points. The continuous line represents the corresponding exact, T -> +0 limit map. (a) T = 0.179 rad/s. (b) T = 0.092 rad/s 
(for points outside the circle) and T = 0.013 rad/s (for points inside the circle). The two upper dashed lines are the 
corresponding cut-off levels given by Eq. (8). 

for r —> +0 (full line); the agreement with the ex­
perimental data is good. The leftward shift of the 
data from the r —y +0 map may be shown to be due 
to the actual value of T not being small enough (see 
Fig. 6 in [Sanmartin et al., 1993]). On the other 
hand, the substantial dispersion of the data, par­
ticularly around the top of the map, is a result of 
the high sensitivity of our system to noise, which is 
studied in the next section. 

5. Noise Effects at Very Small T 

The rise from m to M' on A, in Types I and II or­
bits, is very slow, as determined by X(t) « TX(t), 

t(M*)-i(*)»iln^=o(i); (7) 

the times for the partial rises from m to P , and from 
P to M', are similarly of order 1/r (Fig. 1). Note 
also that Y/Y(~ a-ilai = — 7 + ai sin/3) is negative 
during the long rise m -f P , and changes sign at 
P ; Y will thus have a (very small) minimum value 
at P . That minimum is clearly smaller when the 
rise to P is longer, i.e. the lower the point m. This 
explains why data dispersion is largest near the top 

of the experimental map in Fig. 5(a). Also, note 
how the weak dispersion at the map bottom on the 
right of the maximum is noticeably larger than on 
the left; this is because Type II orbits (points XM 
lying in the branch of the map at the left of the 
maximum) lack the fast step m —• fh, which con­
tributes somewhat to the Y-decrease for Type I or­
bits (points XM between the maximum of the map 
and its minimum, at XM « 7 V ) . Finally, the few 
data for XM > 7 V correspond to Type III orbits. 

The x and y output signals of our circuit have 
a RMS noise value of e & 0.6 x 10~3 V. Since 
the noise level is constant, one can make it even­
tually dominant by decreasing the (positive) value 
of T. Points outside the circle in Fig. 5(b) repre­
sent the experimental data for the same 1/, 7 values 
of Fig. 5(a), but with T = 0.092 rad/s. We stored 
a xn-series of 2 x 105 points getting 296 maxima; 
this is less than the number of maxima for Fig. 5(a) 
because the characteristic time for orbits is deter­
mined by the slow A-rise, which is proportional to 
1/r [Eq. (7)]. The map domain affected by noise is 
now substantially greater than in Fig. 5(a); on the 
other hand, points far from that domain are closer 
to the limit map than in Fig. 5(a), as expected. 
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Points inside the circle in Fig. 5(b) correspond to a 
value T = 0.013 rad/s. There are 120 maxima here 
for 2 x 105 cycles of the x-oscillator. Orbit dynamics 
is now entirely dominated by noise. 

We may use a crude model of noise for this sys­
tem [Hughes & Proctor, 1990, 1992]. In this model, 
if the minimum Yp in the noiseless system is higher 
than the noise level e, one assumes that the flow is 
unaffected by noise, whereas if Yp is smaller than 
e one sets Yp — e before starting the rise from P . 
Using the variable Z defined in Eq. (6), Eq. (4a) 
becomes [Hughes & Proctor, 1990] 

F{ZM.) = F ( l ) + 2-1 ln(e') | , (8) 
7 

Z\(f being then independent of the input value ZM 
(XM' independent of -XM); e1 is the noise level 
for a2- The value XM' given by Eq. (8) is a cut­
off level for the noiseless map, so in this approxi­
mation the corrected map is determined by choos­
ing for each XM the lower of the two XM' values 
given by Eqs. (4a) and (8). For T small enough, 
0.013 rad/s for the experimental data inside the 
circle in Fig. 5(b), the cut-off level (3.1 ± 0.3 V, 
as indicated by the dash line) lies below the fixed 
point of the noiseless map, so we obtain a noisy 
periodic orbit. The mean value of the mentioned 
data is 3,26 V in very satisfactory agreement with 
the cut-off level given by Eq. (8). On the other 
hand, if the cut-off level lies above the fixed point 
of the map, the map shape remains close to a flat­
top tent, as for Fig. 5(a) (cut-off at 6.71 ± 0.08 V). 
The maximum disturbance of the tent-shape corre­
sponds to a cut-off value around the fixed point of 
the experimental map as for points outside the cir­
cle in Fig. 5(b) (5^18±0.4 V upper dash Une). With 
this first degree of approximation given by Eq. (8), 
which does not take the noise-distribution into ac­
count, only its level e, we have no results for the 
X^-distribution. 

As we can see, the return time for the map in 
the absence of noise, r = t{M') — t(M), is domi­
nated by the exponential rise on A; Tr will thus be 
independent of T for each iteration on the T —T +0 
limit map. Plotting the mean value of r , r , ver­
sus 1/r, at small T and fixed values of v and 7, one 
should approximately obtain a straight line through 
the origin. To calculate f from the experimental 
data, we divide the number of points of a large 
xn series (2 x 105 points in our case) by the cor­
responding number of XM maxima; this yields f 

Fig. 6. Experimental mean return-time for the map, f, 
versus 1/r. The continuos line is obtained by a least-
square fitting of the five points closest to origin. Point / 
has a large error bar. Gamma values are: (a) 0.658 rad/s, 
(b) 0.411 rad/s, (c) 0.179 rad/s, (d) 0.138 rad/s, (e) 
0.092 rad/s , and (f) 0.013 rad/s . 

in periods of the x-oscillator. Results are shown in 
Fig. 6 for six values of Y. The figure also shows the 
least-square fit line for the five points closest to the 
origin, in very good agreement with the noiseless 
prediction. The last point, / , which lies well below 
that line, corresponds to the fully noisy case shown 
inside the circle in Fig. 5(b); the noise reduces f by 
reducing the duration of the rise P —• M'. Points c 
and e correspond to the data in Fig. 5(a) and out­
side the circle in Fig. 5(b), respectively. Point a 
corresponds to a value V = 0.658 rad/s. Note that 
the noiseless, V -> +0, law, for f ( l / r ) , (a straight 
line through the origin) proves to be surprisingly 
robust: The attractor for case e was seen to be 
strongly disturbed by noise in Fig. 5(b), while the 
experimental data for case a lie actually closer to 
a two fixed-points cycle than to the limit map of 
Fig. 5(a). 

6. Summary of Results 

We have presented experimental evidence of a hard 
transition to chaos for 2 : 1 near-resonant coupling 
of oscillators. The particular system we used are 
two-coupled, analog, electronic oscillators, designed 
specifically for this purpose. By checking curvature 
features and a exponential rise stage in the ampli­
tude versus time profiles, we identified in the exper­
iment the three types of orbits described by theory 
[Lopez-Rebollal & Sanmartin, 1995]. We also found 
that the experimental maxima of the amplitude fit 
closely the analytical, ID limit map of Eqs. (4) 
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and (5). We have further shown how the experimen­
tal a t t ractor can be strongly disturbed by noise in 
the circuit. In particular, we found the noisy pe­
riodic orbit, in good agreement with noise-chaos 
theory [Hughes k Proctor, 1990]. 
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