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The radiation impedance of orbiting conductors
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Abstract. The dispersion relation for waves in a cold, magnetized plasma is discussed

using the potential for the longitudinal part of the electric field. This clarifies wave emission
from a conductor in low Earth orbit and should be useful in considering the far field and

both hot, plasma and nonlinear, near-field effects. General formulas for radiation impedance
are directly obtained. For tethers a fundamental dependence on contactor size is discussed.
Spherical and ellipsoidal contactors and an {anodeless) bare tether are considered. Simple
arguments on nonlinear contactor effects lead to a surprisingly simple result {for impedances

off the Alfwén branch.

1. Introduction

In a seminal paper, Drell ef al. [1965] showed how
an orbiting conductor, if in electrical contact with the
ionosphere, would excite Alfvén waves. Since the emf
induced by the geomagnelic field is proportional to
the perpendicular conductor length, using a long space
tether, with contaclor ends, would enhance radiation
[Banks et al, 1981). A quantity of interest for both
power generation and Alfvén (and higher frequency) sig-
nal propagation is the wave impedance [Rasmussen et
al., 1985; Dobrowolny and Veltr, 1986]. Fundamental
results were obtained by Barnell and Olbert [1986] and
Estes [1988).

Further work on the impedance was carried out by
Donohue et al. [1991} and by Hastings and Wang [1087)
and Hastings ef ol [1988], who extended the analysis
to conductors carrying ac currents. Fstes [1988] and
vom Stewm and Neubauer [1992] studied the field near
a tether, Rasmussen ef al. [1990] and McKenaze [1991]
studied the far field, and Hastings and Wang [1989] and
vom Stezm and Neubauer {1992] studied two-ion effects.
Tether radiation has been modeled in the laboratory
[Urrutia and Stenzel, 1989; Stenzel and Urrutia, 1990].

Here, contrary to published analyses, we do not di-
rectly study wave emission. Instead, we first collect con-
venient results from the well-known dispersion relation
for a cold, magnetized plasma and then solve the wave
equation in terms of the potential ¢ for the longitudi-
nal part of the electric field of the wave. Only then are
conditions particular to orbiting conductors considered,
this corrects or clarifies resulls found in the literature.
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The ¢ formalism, a powerful tocl for studying nonlin-
ear or hot-plasma effecls, is used here to directly derive
complete impedance formulas (sections 2 and 3).

For tethers the impedance for branches other than
Alfvén is shown to depend heavily on the model for
the cathodic and anodic contactors at the ends. Taking
into account a nonvanishing contactor length along the
{ether proves essential for a proper model and yields
an impedance varying as the inverse of contactor area.
Simple results are obtained for spherical (and ellip-
soidal) contactors and for an anodeless bare tether, pro-
posed as an efficient anodic contactor [Senmartin ef el
1993]. Nonlinear contactor effects suggest an impedance
varying as the inverse of current (sections 4 and 5).

2. Wave Emission

We first recall three well-known results from the usual
wave equation for the Fourier-transformed electric field
E(k,w) in a two-component, cold plasma [Akhiezer ef

al., 1975],

_k/\(k/\E) e -E  4mij, {

k2 Y Y (1)
Here j, is the source current density, k is the wave
vector, # = ck/fw is the refractive index, and £,(w) is

the dielectric tensor (with 2 axis aleng the field Bg),
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with Q, > 0, wiy ~ wi+ QF, Wiy ~ Q202 +
w2 (92 +wl,). Here wye, wy, and Q., Q, are plasma
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TFigure 1. Schematics of branches (fast extraordinary
(FE}, ordinary (Q), slow exiraordinary (SE), fast mag-
netosonic (FM), and Alfvén (A)) for the dispersion re-
lation of a cold, magnetized plasma; W is the whistler
region in branch FM. The figure is dependent on the
angle between k and the ambient field.

frequencies and gyrofrequencies for electrons and ions;
WUH, Wiy are upper and fower hybrid frequencies. (1)
Equation (1) yields the Astrom dispersion relation, here

writlen as
29)(1-%)
72 n?

2
. € [
+ (51n29 - ;%) 2 = D(k,0.0) =0,

(61 sin’ @ + egcos? § —

(2)

# being the angle between k and B¢ There are two
branches for a2(¢,w) but there are five branches for
w?(k,8), shown schematically in Figure 1, as follows:
fast extraordinary (FE}, ordinary (Q), slow extraordi-
nary (SE), fast magnetosonic or compressional Alfvéu
(FM), and Alfvén or shear Alfvén (A). (2) FE and O
branches have n < 1. (3) SE, FM, and A branches have
asymplotes (resonances) w3B(8), wEM(9), and w? (8},
obtained from (2) in the limit & — oo (that is, n — o¢
or e | /% = 0,7 = 1~ 3), yielding

ersin?fd + czeos? 0 = D(oo,§,w) = 0. (23

We add here two more points. (1) On the A branch
the limit » — oo may be obtained from condition w —
0, instead of condition & - oco. Then, one would also
have | ¢g j— oo, and the ratio cz/n? could take any
value. If ¢1/n?, e3/n? are small but cs/n® is large, (2)
becomes

exc0s? 0 — 2L = Dy (k0,w) 0, cos’ 0 < 1. (27)
[

(2) Introducing longitudinal { and transversc ¢ parts of
the field,

E=kk-E/k* EB;=E-E,
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(1) becomes, in all generality,

4],
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Ef—F(Eg+EI): (1’)

yvielding the E; components along z and perpendicular
1 to By,
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with J the two-dimensional unil tensor. Use of

€] =

k-E, =0, E;=—ik¢

gives an explicit scalar cqualion for ¢,

K2D(k, 8, w)d = [(1_ ;?3)2 %] %
(1)
X [k'zjsz + (1 - i—;n) k, - H-1 'jsi] .

Fouation {4) then becomes

k2 D{(00,8,w)p = %k Js {49

for conditions leading to {2'), and

47 ¢ ]
KD, (k,0,0)¢ = w?%h Jeu o

2
“pe AT

313
ki w

k‘js (4/1)

for conditions leading to (27); we used cos?# < 1 Lo
write k- js1 o k-js.

We are now in a position to discuss wave emission
from an orbiting conductor sustaining a steady current.
In the terrestrial reference frame the Doppler relation
reads

w= k. V,; (5

as usnal, we take By and orbilal velocity V horizon-
tal and perpendicular to each olher, with z axis along
V. In the ionosphere, the Alfvén velocity Va = 2, /w,,
satisfics the conditions [Barnett and Olbert, 1986] (here-
inafter referred to as BO)

V& Va<e, (6a)

Q%({wge or Vi<cimgfm, (65

(V =7 km/s, Va ~ 300 km/s, my/m, =~ 30.000). It
also satisfies the condition

VieVim,/m ; (6¢)
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. /e is the ion-electron mass ratio. The lower-hybrid
frequency is now wyy ~ (QeQ,)Uz.

Note from (5) and (6a) that n is here very large,

l/n=w/ck=k, V/ke € 1. ()

This means, first, that no FE or O emission is possible.
It suggests, secondly, that (2’) might apply to the SE
and FM branches, which is indeed the case. For SE, use
of wS¥(8) [Akheezer et al., 1975),

SE 2 202412
Wpe S wit ~ (wpe—}-ﬂe sin )" < wyp, (8a)
gives €2 2 Qofwpe, ¢ = —cfcos?l, 3 ~ dsin®f;

condition (7) (and (6b)) then shows all €, /1 to be
small. Alternatively, one can find (wif —w) jw < 1,
directly from (2), for £,/ ck small as in the present case
(Qe/ck = cz/n). For FM, use of wEM(8) [Akhiezer et
al., 1975),

wrg < wiM o (22 cos® § 4+ wiy sin” 9)1/2 < Qe, (8H)
similarly proves that | ¢, | /2? () =1 -3) and (WM —
w)/w are small for wrp/ Vak, < 1. Hercwpy/Vak, =
wru Ve /wVak,) is indeed small because of condition
ViVa< L

The large refraclive index finally suggests thai (27)
or (27), or an intermediate dispersion relation, might
apply to the A branch. Here we have

les | w;‘fe _focg m, V2

o~ S e -
n? ck? T wrkIm, V)

Since this branch always has w < §2,, condition (6¢)
makes | ¢, | /n? large and (2”) valid, excepl for k,/k,
large enough. The equation Ds == 0 has the root

wa (k)= QVak,/ (@2 + VIR (9)
Note that cos 8 = k, [k = (k; V /kV ) Vak,/wa is small
as required, unless w is very close to ,. We now
make the ansatz that negligible energy is carried by
such frequencies and by large k,/k, values, which may
thus be ignored. Note also that ¢;/n? (= cos® 8) and
c2/n? (= e1w/n?Q,) are small as assumed.

For both the SE and FM modes, (27}, (3), and (4°)
give

47k - js

= —— B~ E, =—-tkg,
W{eFE + ak2) 1= —tko

(10a)

with E; = 0(n~2). For the Alfvén mode, (2"), (3), and
(47} give

¢:“JMM Ex~Ej = —ikig,

w (kT = niEE)’ (108)
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with By, o ~Er, Epy = 0(rn™?). Since we, is a func-
tion of just 8§, or k; /k, SE and FM waves have a group
velocity perpendicular to k in the Bo, k plane, a fact not
entirely clear in the literature [BO;Hastings and Wang,
1987]. Since w, depends only on k;, A waves have group
velocity along B with k nearly perpendicular. Note
that certain results in BO’ analysis (figures 2b and 2c,
for bands I and III, of that paper) represent just the
well-known formulas (8a) and (8b) (figure 2a, for band
I, of BO’s paper represenis wa (kz/k.) from (9}, with
wa written as Vk; where necessary).

Note also that there is no whistler emission (part W
on the FM branch of Figure 1); Stenzel and Urrulia’s
experiments showing whistlers do not apply to an iono-
spheric tether; they either fail to reproduce the steady
condition w = k; V [Urrutia and Stenzel, 1989)] or cor-
respond to the opposite regime V =~ 2 x 107em/s>
Va o 4 x 10° cm/s [Stenzel and Urrutia, 1990]. Ra-
diation occurs at the contactors, where V - j, # 0, be-
cause it depends on the source divergence k-j,, a fact
first noticed by Fstes [1988] and clearly arising from
the quasi-electrostatic character of the field, B~ —ik¢
or —tki¢. For FM waves this followed from condi-
tion V « V4; FM emission along a tether, as found
by Stenzel and Urrutiq [1990], corresponds to the oppo-
site, whistler regime, ¥V » V), . Note, however, that con-
dition V' € V4, being dependent on planetary param-
eters (surface gravity, radius, ionopheric density, and
ambient field Bg), is not an intrinsic property of teth-
ers; tether radiation might thus depend, in general, on
current source features other than its divergence [Dono-
hue et ol.,1991].

In the following sections we shall use the present ¢
formalism to determine radiation impedance formulas.
The formalism, however, should also be useful in study-
ing (1) how to match linear results for the field to non-
linear results near the tether, where E should be nearly
electrostatic; (2) the radiation pattern in the transverse
far field of the waves, given clearly as

€e

-k
E¢~~i—=¢, (SE,FM) or E;=ik, 1,5 (A)

ki

(3) hot plasma effects [(10a) would still hold, with the
hot dielectric tensor ¢; replacing €. in the expression
e1k? +ek? =k e k).

3. The Impedance Formulas

To determine the impedance, there is no need o com-
pute the near field [Estes, 1988] or the far field [Barneft
and Olbert, 1986; Hastings et al., 1988]. For SE or M
waves we have E(r, t) ~ —V¢ (r, 1) in space-time coor-
dinates r, 1. Since j, vanishes outside certain volume,
we find a radiated power
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Pm,jz—fj,-Edr:mfgbV-jsdr

dky di :
/d f 1 wl tk; r—tw1t¢(k1,wl) (11)
dedw kwiweyy
x [ ook, w)

with ¢ (k,w) given by (10a). For A waves we have Ec
—V ¢ and, again setting k, -3, ~ k-§,, we arrive back
at (11) with ¢(k,w) given by (10b). The r integral
is immediate, [drexpli(k +k).r} = 8x%6(k, + k).
This makes the k; integral immediate too.

‘The source divergence can be written as

- drdi
ks :f an?

=i, (w ~ kV) g (k).

ek EHIY i (4~ V1,3,)

We have set # — VI — 2 and introduced the current
I, in the conductor and a dimensionless function g (k)
defined by

gk = mi/drv cds()yexp (~ik-v) /2nl,.  (12)

The w; and w integrals in (11) are now straightforward,
yielding the impedance, Z =Power/Il?, as

2¢ | g (k) |* dk
] | u(;ki)" ~F
(13)
24,7 -1
5 —c*fw A
+k { es () /K] }] ! { SE, FM }
with w = k;.V; we used the relation g(—~k) = —¢*(k).
Alfven Mode
For the A branch we have ¢; > w?,/ (€ ~ w?) and
c2k2 o2 Qz + VA’CZ
€1
2 VIRV

(s i) — foa (k, )/V}
k2

A -0t

where we set w — w+ i (v — 01}, which is the usual
rule for wave poles, arising from considerations of weak
collisions, adiabatic switching in the remote past, or the
radiation condition at infinity. Note that the integrand
in (13) is even in ky, k., and odd in &k, (for A strictly
zero). Then we find
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~VZ) g P

Z"‘"f dkf dkf cﬂwz (m VIRE)
8iV 2k, _ 8iV7k,

(ke + i) =B V2 (kg —iD) —w}/V?

[g(wa/V, Ky, k;) [*
kZ A4 wi fV?
(14)

_SWVK f‘” /"’O dkydk,
TV Jo Jo (9 4+ VIR
where we used

) — Th (k e
(ke — wa/V) + A2 *

A formula somewhat simpler than (14) is obtained by
changing variables in the double integral from (ky, &)
to (ky,wa/V), ie., effectively changing to (ky, kc). The
result can thus be directly oblained from (13} by car-

“fvf‘) as A - 0t

rying out the integration over k, . We find
k2 k2 — Y (ki)
TR Ty [ !
b (ko) = — eV

(@2 — k2v2)HH
OO oD 00
ZA=/ dk, / dk, | ¢ |
Q Q -0

dik,
X e
{kﬁ —[k3 (ks —iD)]" k2 -

Vdk,
c? ki

4tk }
[k (ke +i0)" |

Since we have kj (kz £ (A) = k} (k) L iAdRS /dk,,
with dk} /dk, posilive (for k; posmve) the Lz inte-
gral yields 8uky | g (ke by, k) |2 /R4 for kg such that
&5 (kz) is real (b, < 2,/V), and zero otherwise. Defin-
ing k; = Q,/V we arrive at

BrVa [ dk,
(.‘2 0 1(7,'

f dky | g ka, 3 ky ) kA ('I"r)]

k2 + k3
Slow Extraordinary and Fast Magnetosonie
Modes

Zs = (k7 — 2"

{(14)

For the SE branch we have ¢3 = (w2 - wﬁe) [w?, 6~
- (W%H — wz) Jw?. Proceeding as with Alfvén waves we
get

k2 k2 + k3, (kg +i0)? — k,

R R ¥ k2 ’

ks! 3
ZSE;-—SWf dk/ dk;'g(l k”k)l (15)

A — Q%



vhere kis, ko, are known functions of k,, k, which we
ill not pause to give. Changing variables from &, k,
o ky, kis (effectively ky, k;) or directly integrating over
, in (13), we finally find

8r [hus ko dk,,
Zsy. = < N2 L2 _ L2 Nij2
14 Epe (LUH - k:b) (kx - kpe)
(15"
X -/OO dk&' | Q(kw:kyskgn) |2
o T EER)TE
k*D = (L2 + kz)l/z(AUH _ LZ)I/Z/(W . )1/2

kpe, v = wye v/ V.
For the FM branch we have 5 = —w?, /w?, & =

—es(w? — ) /(2 - w?), B

kY Rpe kg o+ kdp (ki +3A) — Ky

+
atEeswure B 0 470
8 / / dkydk, £ — k2 ,

M = kip, k. k
e ".gc ki + kip Llkir. by, 5]

(16)
with &, = Q./V and kiy, kop, some given functions of
ky, k.. Also,

8 [Fe kydl, [ kP — k2 \/?
Gom =y k2 \kZ <k
kLu pe af LH

(16')

x/oodk_ lg(kﬂjkylk;'M) |2
VGE R
ki = (k3 + )Pk

) 2 - KD,

kLH = wLH/V.

BO derived formulas (14°)-(16) for a particular source
current by determining the far field; formulas (14)-(16)
are new.

4. The Source Divergence of a Tether

As usual, we will take the y axis along the vertical
tether, with velocity V and field By along axes z and
z, as previously noted {Figure 2). Most current diver-
gences discussed in the literature may then be written
as

V jslr) = flw, 2)ilély + L/2) - 6(y — L/2)]

for an upward current and a tether length 7; f(x, z) is a
step function equal to 1{0)inside (outside) certain cross
sections representing equal bottom and top contactors.
BO considered a circle of radius b {j = I, /nb?), Hastings

(17)
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Figure 2. Coordinate system used to compute tether
impedance.

and Wang [1987] and Hastings et ol [1988] considered
rectangular surfaces of sides Ly, L, (j = L/Lz1;).
Estes [1988} source divergence is that of a ribbon of
width L, givenn by (17) with a segment L. along z as
cross section, and j = I,8(z) /L,. An additional case
of interest is a ring of radius R, with j = I, 6(rpe —
R)/2xR = (&% + 2%)/? (perpendicular to tether
axis).

Using (17) in (12} we find

1 ?‘per

i L
g(k) = -—SlIl (ky—z—) gper(ka, kz)

with (g, k) = kper, and gpee =< exp(—ikper - Tper) >
heing the average of the exponential in the cross section.
For the above models we obtain

(18)

vin wer _ Sin(keL/2)
perg = JO(kPeI‘R) gggﬁ = W’
BO .. J1{kper) Hast _ sin{ke Ly /2) sin(k, L, /2)
Tper kperb/2 ’ per kpLy/2 k,L,/2

with Est denoting Estes {1988] and Hast denoting Hast-
ings and Wang [1987] and Hasiings et ol [1988]. For
models deriving from (17), contactors have vanishing
characteristic length along the tether (as different from
distance L between contactors).

If contactor lengths in the plane (&,2) perpendicu-
lar to the tether are small enough, the above models
collapse into a common form, with gper — 1, § —
sin(ky L/2)/w. One may also consider negligible per-
pendicular lengths for a general source divergence not
given by (17); we may then write g(k) — g(ky). This
will later be of interest for the Alfvén mode of a bare
tether.

Alfvén Mode

In (14°) we have b, = kh{ks) ~ kV/Va < ks <

€;/V (=~ 1/36 m). Thus we may certainly neglect the
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characteristic z length and set &, = &} ~ 0in gper.
Using (1B} in {14’} we can carry out the k, integration

to obtain
Wa [ di 2\
w40
4 i ka;- ki (19)
X (1 - e—k:L) ] gp&l‘(kxso) ]2 -
BO gave (19) with ¢B0 ;
approximation for his model, using g
| gper 1%
If the characteristic Jength along x may also be ne-
glected, one sets | gper [7=1 in (19) and, for L > V/€;,
obtainsg

Estes [1988] gave a close

Est
e in place of

Za=(@Va/H (271 L/V), v~ 0577, (19)
a result found by BO and by Estes. The dominant,
logarithmic contribution comes from frequencies w ~
V/L. Since k; is w/V, the single integral over &, in (19)
contains the Alfvén power spectrum; clearly, frequencies
w o2 §2; contribute negligibly to the impedance, proving
a previous ansatz. _

For an arbitrary source divergence with negligible
perpendicular lengths, a new, general formula results
from using g(k,) in (14’) and carrying out the k; inte-
gration

Za | glky) 7.

(19”
For ¢ = sin(k, L/2)/, and Lk; > 1, one recovers (1.9’)).
When deriving (19)-(19”) from (14°), one can verify that
large values of ky/k; may be ignored, again proving a
previous ansatz.

S TGRS L
- c? o _k;— k,:

Slow Extraordinary and Fast Magnetosonic
Modes

As later detailed, perpendicular contactor lengths are
large compared with 1/k,e, for the FM and SE modes.
This makes impedances quite dependent on the size of
contactors, a case opposite that of A waves, as first ob-
served by BO for FM waves, and repeatedly discussed
afterward. Here we note that the effect is heavily depen-
dent on contactor model. At large sizes the factor | g |?
in the (15’)-(16") integrals, and therefore the impedance
itself, scales differently with contactor size for different
contactor shapes. We have '

78 oc 1/R, 2Pt o 1/L2,
SE,FM  (20)
ZB0 o 163, ZHest o /1212,
a square sine or cosine averaging to 1/2 inside the inte-
grals (see Appendix).

This sensitivity of impedance to the source divergence
model raises the fundamental question of the proper
model. We now make two points. First, there is a
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simple rule applying to the above results; for both the
ring and Estes sources, the divergence occurs at a finite,
one-dimensional set (line contactors); if the set closes on
itself, with no boundary (ring), one has Z o (length)~1;
otherwise [Estes, 1988], one has Z o (length)™2. Now
the BO and Hastings and Wang [1987] and Hastings
et al. [1988] sources use two-dimensional sets {surface
contactors), the first having one boundary (radially),
the Hastings set having boundaries on both dimensions;
one would thus expect scalings ZP° oc (length)~! x
(length)~? and Z™*' o (length)™? x (length)~?%, in
agreement with the above results (see the Appendix).

Secondly, this sensitivity questions the validity of ne-
glecting the contactor characteristic length along the
tether, as in all those models. We now show that tak-
ing into account that length actually determines the
proper model, i.¢., the correct dependence of Z on con-
tactor size. Nonvanishing lengths along the tether were
considered mn studying contactor planar surfaces of dif-
ferent orientations [ Hastings ef al., 1988], the Alfvén far
field [Rasmussen et al, 1990], and Debye sheath effects
[Donohue et al., 1991].

In a proper model the current divergence should
clearly occur at a surface topologically equivalent to a
sphere, e.g., a rotational ellipsoid with axis along By .
This 1s a finite two-dimensional set as in the models of
Hastings and Wang [1987] and Hastings et of. [1988]
and BO, but it has no boundaries at all; we would thus
expect finding Z « (]ength)_z, and this is indeed the
case. For instance, for (symmetrical) spherical contac-
tors of radius R the source divergence is

I, L
4?&'R2 [6 (l x4 "'2"1y | —R)

)

and one arrives at

v'js:

_ sin(ky L/2) sin{k R} 1
- T kR - 4 R?

(21)

Note that {1) among sources collapsed along the tether,
Estes [1988] model has, coincidentally, the right length
dependence and (2) the scaling may be read a5 Z «x A™!
(A = contactor area).

Using (21) in (15) with k? = k3d -+ k1 = k3 k2/(k
— k2,), setting sin®(k, L/2) = sin®(kR) ~ 1/2, kyy ~
kpe + k2 /2ky, and calling ky/k, = u, we find

g _ 2V /md’% e -k, \ "
SE TR ke Ko \ kfy — k2
[+ 5]
“
1]
v

(i 72)
B W;“;e Acat Aan :

du N v
(14 u?)3/2 ™ 2w§BR2

(22)
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. with Acat = Aan = 4wR2 . The only previous result
- (Zsp = 2V?/t%W3,) corresponds to BO’s model, which
underestimates Zgp , for b ~ R, by a typically small
factor, 4V/Rwpe ~ 1/R{mm). When (21) is used in
(16°), only values k, ~ krp contribute to the integral.
We may then set k;/k. — 0, integrate throughout the

range kry < k, < 0o, and write k? = k32 + k3 ~ k3
to find
7 2V /00 dk ke
FM o e e ey
TR*Z, Sy *r (k2 — k2 )12

e du vV
< et ®

27V ( I 4 1 )
Wpelpg Acu Aan J

No previous analytical formula for Zypy was available.
Note the simple results (22) and (23).

Note also that Zgp is not influenced by hot-plasma
effects, despite concerns to that effect raised earlier (see
BO, Hastings et al. [1988], Donohoue et al. [1991]).
This is a pieasant side effect of the fact that a contac-
tor will have 2 nonvanishing characteristic length along
the tether, making the contribution from values, say,
ks, ky < 10kLu (approximately inverse electron gyro-
radius), dominant in the cold-plasma double integral in
(16"). Hot effects on SE waves suggest the energy in
such waves should experience heavy collisionless damp-
ing [Hastings et al., 1988]; the small value found here for
the ratio Zsg/Zrm = m,/2m; ~ 1075 further suggests
that such energy is negligible. Note also the ratio

1/2 q
Za _g (m,) R2Q; (2&7‘1%
ZFM M, VAV 1%

[ [t

(24)
L(km)
0.028 °

taken from {19°) and (23); n, is electron density.

We now check our having assumed k,, &k, to be large
compared with inverse perpendicular contactor lengths,
for the integrals in (15°) and (16°). This is clear for the
SE branch, where we have k, = kip ~ kp wpe/V ~
1/0.2 mm. The FM case is more involved. Although
we do have k, > wLH/ V ~ 1/20 cm, which is compar-
atively large, k. = kgpy is smaller by a factor of order
kun/ke = (me /ml)lf for ky ~ wry/V. However, in
a proper model of g such as given by {21), &, appears
only it kper = (k2 + k2)Y? > k,, and our assumption
holds.

Nenetheless, consider uniform current divergence on
the surface of a rotational, prolate ellipsoid of major and
minor semi-axes @ and b along and perpendicular to By
respectively, A straightforward development gives the
result
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1
_a2.2\1/2
_ sin(ky L/2) 2/[; dn(1 =€)

7r (1— e2)1/2 4 (arcsine)/e

(25}
x cos(k,an)Jo [k_Lb(I - nz)lfz .
where ¢ = (1 — b?/¢*)Y/? . For b=a = R (e = 0) one

recovers (21). For an opposite case, V/iwpy << b <<
a << V/8; , in the FM branch, one gets

_ sin(kyL/ 2){ (m) 7 (k;b)]

sm(ky L/2) 4 sin(k,b)
kb

T ks

Clearly, the impedance then reads

a 8V 1 1
= + ), (26
(Aca.t Aan ) ( )

which is much larger than the value for the spherical
case as given by (23). Note, however, that the actunal
divergence might be highly nonuniform.

b WpeWpi

5. Bare Tether Impedance

It has been shown recently that a tether could work
efficiently without an anodic contactor, by collecting
electrons along certain length of its anodic end, if bare
[Sanmartin ef al, 1993]. If actually bare along its
entire length, a (generator) tether was found to be
optimal if positively biased over a length I, =~ :ler.
The current I(y) would vanish at y = L/2 and reach
a nearly constant value I, at y = L/2 -1, , with
dIfdy o< —(y— 3 L+1.)"* (Figure 3). If b is the collect-
ing radius in the @, z plane and the cathodic contactor
is a sphere of radius R, we then have
L6(r+ 301 |~R) 2
4mR? Le

g o) o)

where h is the unit step function. For &, > 0 we find

(ymwlnL+l)
2I3/2

v‘jg

_ sinkR oikll2 _ 3Jo(kBerb) —ikyL]2
= OmikR’ dmkyl,

y [1 ityta Callyla) = iSa(kyle )] |

(2kylofm)t/?
with Fresnel integrals [Ca(s), Sa(s)]
xdu/(2ru)t/?, and

= [, {cosu,sinu}
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Figure 3. Anodeless, bare tether collecting electrons at
its upper (anodic) end, over a positively biased length
(= L/7); the bias vanishes at height L/2 — [,.

g = sinfcR)2+J02(kperb)F(kyla) 370 (kperd)

I\ omkR 4n? ype
sin kR ,

x k—R-{gl(.’cgla) cos(ky L) + ga(kyly)sin(k, L)f, (27)

F(s) = -é% { [sg(s) - (%ri)l/zsin sr
o]

91(8) = (w/25°)H?[S,(5) cos s — Ca(8)sin 8],
92(5) = (x/283)/3[Cifs) cos 5 + Sy(s)sin 5] — 1/s.
For the Alfvén branch and R, kped << 1, we have
g — g9(ky), (27) becoming
4r? | g Pt L+ F(ky1,) + 391(kyly) cos(ky L)
+399(kylo) sin(k, L),

for use in (19”). Note that if k., — 0, we recover
| ¢ *= sin®(ky L/2)/n® . At large s = kyl, we have
Fls) = 0(52), g1(s) = 0(s/2), gafs) = 0(s~1), and
4n% | g [*~+ 1. We can thus integrate separately ranges
ky < km and ky > kp,, with

T/L =~ 11, & kyy < S /V.
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. Equation(19”) can then be written as

CQZA N w%(,{gf_}_k;;)lh__ ';Jy
Va Kon ky ks

/k"‘i“ L+ F(s) + 3g1(s) cos 7s + 3g2{s)sin T8
+ ds , ,
0

leading to an impedance

Za= Kﬁi In (2@.0’“195£) .

c2 174 (28)

1
o= f {1+ F(s) + 3¢1(s) cos73]g§—
0 a
+/100[F(s) + 3g;(s) cos 78]555

o ds
—i-f 3¢2(8) sin 757 —~InT7 =~ 4.00.
o P

For the FM branch we may take kR large. Then
the last term in (27) makes a negligible contribution
to the impedance Zpy as shown in {16"), while the
first term yields one half the value given by (23), in
agreement with the general result that anodic and ca-
thodic contactors make independent contributions to
the FM impedance [Dondhue ef al., 1991], For the
middle term we can set ky ~ 1/l, € wig/V < kg
and k, = ki € wog/V ~ k., thus writing &k, ~ kg,
kper ~ k. H, additionally, kperb is large, we arrive at

vy W [T dky kB
- szpewpi 'm""geb!“ kL k“"' (kg "'krz_.f-l)llz

2wy ( 1 + ,8)
" Wpewps \Acar  Anpn/

Aan = 20bl,, B Ef M ~ 1.12.
[} T

ZFM

(29)

Note that written in terms of arcas, (23) and (29) read
nearly the same.

Actually, condition b 3> 1/kpe, ~ 20 cm will not be
satisfied if b is the actual radius of the tether; for fperd
sall we would have Zpyp o~ 2mV fwpowpiAcay, or one
half the value given in (23). At this point we raise
the question of what are the lengths really character-
izing V - j; . FEstes [1988] suggested that the plasma
cloud emitted by an active contactor might extend the
effective dimensions well beyond the dimensions of the
contactor itself; Donohue et al. [1991] further suggested
that the sheath radius should be an effective radius for
passive contactors.

The basic argument underlying these suggestions is
the need to account for nonlinear effects, which are es-
sential for a self-consistent analysis. A crude recipe is to
consider the entire nonlinear region around the contac-
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~ tor as part of the contactor itself. For the anodic part
of a bare tether, which collects electrons as a cylindrical
Langmuir probe in the orbital-motion- limited regime,
the faraway electric potential decays as the inverse of
distance to tether [Laframboise, 1966]. Then, for typi-
cal electron temperature T, ~ 0.1 eV, tether radius (~ 1
mm) and anodic bias {hundreds of volts), the average
b would be of order of meters, large, indeed, compared
with 1/kper.
The above argument suggests that nonlinear effects
would adjust contactor areas to effective values

Acay ~ Is/jth- ~ Aan, (30)
where jyp is the (unperturbed) electron random current
density, ju = Fen.(8T./wm,}/?, with ¢ = electron
charge. Using (30) in our previous (23) or (29) and
using m; V2 o 8.9 eV then yields a very simple result

Zymds ~

4oV VT,
- e

12
) ~0.38 V. (31)
Wpeldpi
Note that the power radiated in the 'M branch,
Zpwm 12, will increase only linearly {rather than quadrat-
ically) with current. FM radiation will dominate Alfvén
radiation, except at large currents, when the effective
contactor area and effective radins R is large; this is re-
flected in (24), where Z4/Zpy scales as R?. A 0.5 km
long (the so-called PMG) tether, flown in June 1993,
reached a current Iy ~ (.34 at the maximum density
ne o 10% cm™3, yielding R o 1.54 m in (30); (31) and
(24) then give Zpm =~ 1.27 2 and Z4 o 0.086 . For
the aborted tethered satellite system (TSS) 1 experi-
ment the effective area was probably the actual physi-
cal surface of the passive anode {a sphere of radius 0.8
m), the current in (30) being of purely thermal origin,
Iy ~ 0066 A at n, ~ 10° ecm~3. Equation (31) then
yields Zpn =~ 5.7 €, a result also directly obtained from
(23). Since the deployed tether length was L ~ 300 m,
one finds Z4/Zpn 22 0.015 in (24).

6. Summary of Results

We have used the potential ¢ for the longitudinal part
of the electric field of a wave and conditions particu-
lar to low Karth orbits in discussing the five branches
w(k,®) of the dispersion relation for a cold, magne-
tized plasma. No emission of fast extraordinary or or-
dinary waves is possible. Slow extraordinary {(SE) and
fast magnetosonic (FM) emission occurs near & — 00
asymptotes, with E ~ —V¢. Alfvén (A) emission oc-
curs in a peculiar regime, arising from condition

Vi< Vimg/m,,

with E ~ —V, ¢. The discussion clarifies or correets
some published vesults on group velocities, emission
bands, and emission of whistlers or outside contactors.
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The ¢ formalism appears useful for future work on a
number of standing issues. The formalism has been
used here to determine the impedance of an orbiting
conductor.

For tethers we found that usual models, having van-
ishing contactor length along the tether (L, = 0),
yield values Zpy {and Zgyp) heavily dependent on the
model. A proper model requires L, # 0 and this yields
Zrmse o« (contactor area,)'"l. We found new, simple
formulas for Zgg (see (22)), so small that power radiated
into this strongly damped branch should be negligible,
and Zpy (23) unaffected by hot-plasma effects. An an-
odeless, bare tether of equal area, has a very similar
Zym (29). Nonlinear effects might make contactor area
proportional to current I,, and this would lead to an ex-
tremely simple result, (31). We have also found Zg for
ellipsoidal contactors (see (26)) and Z4 for contactors
with Ly # 0 but with vanishing lengths perpendicular
to the tether (see (19”)), particularized to a bare tether
in (28).

Appendix
Consider an (z, z) surface contactor with polygonal

contour, s in the rectangular model for (17) by Hast-
ings et al. {1988]. We then have

Mo ds
Iper = / g Thpers i
$m. <

_ [sM 6—ikpe:aﬁdw“/ds
. A, ikper '

we(s)

(A1)

e

where A, is area and w.(s) is full width at given s; we
used a partial integration and the vanishing of w.(s)
at both s, and sy (Figure 4a). Since dw./ds is piece-
wise constant, g, 18 a sum of straightforward integrals,
yielding gper 0¢ 1/Ackl, o 1[4, Z o 1/A%, in agree-
ment with the result in {20).

If the contour is a smooth curve, as in the BO
model, dw./ds diverges at both s, and sm (Figure
4b). A range As ~ 1/kge. around each extreme then
gives dominant contributions of order 1/kot to (Al);
within such range we have dw,/ds ~ (R/As)}/?, where
R ~ A3? is the radius of curvature of the contour. This
vields gpor o As(R/AS)Y2[Ackper o /AT RS
1/43% 7 o 1/AY? as in (20).

For models with line rather than surface contactors
we would have

§ . dS dl
—tkpers €
Gper = j e pecd 7 T F
s

A2
I.ds’ (42)

m

where [,(s} is the length lying between s,, and a given
s, and L, is total length (Figures 4a and 4b). For a
polygonal (open or closed) curve, dl./ds is piecewise
constant, yielding gper o 1/Lekper ox 1/Le, Z oc 1/L2.
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Figure 4. Cross section of contactor with vanish-
ing length along tether and (a) polygonal, (b} smooth
shape. For a surface contactor, w.(s) represents the
width MQ; for a line contactor, {{s) represents the
length of the curve MPQ.

For a smooth curve, dl./ds diverges at s, and sp;
if R o L. is radius of curvature, (A2) gives gper
As(RIASM L, o« /LY kME o 1/LY?) 2 o 1/L..
'This explains the results in (20) for the Estes [1988]
and ring models.
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