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A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization 
numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. 
Nonlocal effects are only important in the foot of the electronic preheating region, where the 
electron temperature gradient is the steepest. The results are quantified as a function of a 
characteristic Knudsen number of that region. This work also generalizes to arbitrary values of 
Z previous results on plasma shock wave structure. 

I. INTRODUCTION 

Heat transport in a fully ionized gas is mainly carried 
by superthermal electrons, typically with energies of about 
six times the thermal energy kT,* where k is Boltzmann 
constant and T, is the electron temperature. As a conse- 
quence, the classical (local) Fourier law for the electron 
heat flux has been found to fail, contrary to usual predic- 
tions of Kinetic theory, at temperature scale lengths, 
HE j V In T, [ -l, much larger than the thermal mean free 
path for electron scattering dT, usually as large as 102/2T. 
The local expression for the electron heat flux in a plasma 
becomes thus inappropriate whenever moderately steep 
temperature gradients occur. Several nonlocal expressions 
have been proposed in the past to model the electron heat 
fl~x,~ which extend the validity range down to H-&-. In 
this work we use a recently obtained nonlocal heat flux law 
valid for all ionization numbers 2, ’ to study the differences 
introduced by nonlocal transport, as opposed to local 
transport, in a well-defined, and relatively simple, problem 
of plasma physics: The structure of a plane shock wave in 
a fully ionized, homogeneous, and unmagnetized plasma. 
This problem is both basic and very appropriate to test the 
validity of the local, against the nonlocal, electron heat 
conduction expressions. 

As we shall see, within the plasma shock wave the 
nonlocal electron heat flux effects are only important in the 
electronic preheating zone preceding the ionic shock front, 
where the electron temperature rises from its upstream 
value to almost the downstream temperature. Therefore, 
the present analysis will be focused on that shock region, 
though a description of the complete shock structure, 
which generalizes the local results of Jaffrin and Probstein3 
for all Z, is given in the Appendix. We shall see that non- 
local electron heat transport widens the electronic preheat- 
ing region in comparison with local predictions, smoothing 
the electron temperature profile in the foot of that region 
where the gradient is the steepest; the difference between 
both predictions is more important as either the upstream 
Mach number or the ionization number increase. The tem- 
perature scale length of the region of interest is always 
within the validity range of the nonlocal theory 

[H>o(&)], so that the present problem will quantify the 
errors of the local heat flux as H/&- decreases. However, 
the range of values of H/& in the preheating region is not 
so wide as one would expect: As the intensity of the shock 
(Mach number) increases, the temperature scale length of 
that region decreases from H> 102ilr (where the classical 
Spitzer-Harm heat flux law applies), to H~20/2~ for very 
strong shocks. Nevertheless, we shall see that, even for 
these relatively high values of H/AT, the modifications in- 
troduced by the nonlocal electron heat transport are locally 
important at the leading edge of the shock. 

II. FOFMULATION OF THE PROBLEM 

We consider a fully ionized plasma consisting of elec- 
trons (mass m,, charge -e), and ions (mass mi, charge 
Ze), and look for the solution to the steady, one- 
dimensional, shock wave equations with no applied exter- 
nal electric or magnetic fields. We also assume that the 
Debye length is much smaller than any collisional mean- 
free path in the problem,3 so that quasineutrality applies: 

U,= Vi= U, n,=nJ=n, (1) 

where U is the mean (one-dimensional) velocity, n is the 
number density, and the subscripts e and i represent elec- 
trons and ions, respectively. With this assumption, only 
.four conservation equations for n,U, the electron temper- 
ature T,, and the ion temperature Ti are needed. For con- 
venience we use the electron mass, the total momentum, 
the total energy, and the ion energy conservation equa- 
tions: 

mpU=m, 

nU2( m,+$) +nk( Te+G) -s (p,+& g=P, 

~knU(T~+~)+~nU3(m,+~) 

4 
-3 (pe+pi) u$+q,+qi.v=E, 
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i kn$J z+$$+ ni/cTi-ipig g=Ei. (5) 

In the above equations, m, P, and E are integration con- 
stants; pL, and ,Ui are the electron and ion viscosity coeffi- 
cients; qex and qir are the electronic and ionic heat fluxes in 
the x direction; and Ei is the energy transfer between ions 
and electrons. Notice that m, can be neglected against 
m/Z in Eqs. (3) and (4) (mZ/mi-2.78 X 10m4 in a fully 
ionized plasma). Also, since ~i/,u,-mi/m,, 1,4 we shall 
neglect, as usual, the electron viscosity terms against the 
ionic ones in Eqs. (3)-( 5). The ionic viscosity is given by 
pi=ponikTtqi, where ri is the ion-ion collision time at ther- 
mal energies, and ,uo = 0.96.4 Local expressions4 will also be 
used for the ion heat flux, qrji= -K; dTi/dx, where 
Ki= konikTir/mi is the ionic thermal conductivity 
(ko-3.906), and for Ei, 

3mGk 
+--- (Te+- Ti), 

3mi’2(kT,)3L2 

mFei rei= 4 ( 2~) “2e4Z2ni In hei ’ (6) 

rei being the ion-electron collision time at thermal ener- 
gies. 

The main difference of the present work in relation to 
previous ones on plasma shock wave structure (e.g., Refs. 
3 and 5), is the use of a nonlocal expression for the electron 
heat flux, which we take from Ref. 1: 

4e.x’ - 

where the primes denote the values of the respective vari- 
ables at x’, and 

m L;( 0) = &+/2 
s 0 

& ’ exp[ ~s~~o ’ , 
f 

, 

n-e4 g In Ace x’ 
e(x,d)= ~kT,~x,~12 

IS 
x n(x”Mx”, 

I 

Z, S Z In A&n A, . 

(8) 

(9) 

This self-consistent, nonlocal electron heat flux law is valid 
for all values of Z (previous nonlocal expressions were 
valid for Z) 1; see, e.g., Ref. 2)) and reproduces the local 
limit for smooth enough gradients: 

qi = -roCZ)~ePTedTe 
ex m@ dx ’ (10) 

ye(Z)’ s Oa &I%$ 
0 

42, co 
s 

s4eeS 
=o 0 ds [s+3(Z*- 1)/4] ’ (11) 

where ye(Z) ranges from 8/7r for Z= 1 to 128/(3~) for 
Z+ O. Expression ( 10) agrees quite well with exact local 
results (see Ref. 1). Comparing qix with (7) or ( lo), one 

finds that (li./q’ex - d=i Q 1, so that the ion heat flux 
may be omitted in (4), but should be retained in (5). 

To write Eqs. (2)-(5) in dimensionless form we use 
the values of plasma variables far downstream (x-t + CO ), 
subsequently denoted by n2, U2, T, = T, = T,, instead of 
the conditions far upstream (X--CO ), nl, if,, T,, be- 
cause, among other reasons, the relative order of magni- 
tude of the different terms in Eqs. (2)-( 5) will not change 
as the upstream Mach number M, changes from unity to 
infinity (the downstream Mach number remains always 
order unity). Thus we define 

u n2 

rl=G=,y 
e,+ t e,+, YE;, (12) 

where His a characteristic length appropriate for a partic- 
ular region. Far upstream and far downstream all the gra- 
dients vanish in (3)-( 5), and these equations reduce to the 
Rankine-Hugoniot relations 

ri1=(M~+3)/4~~=44iM:/(M:+3) > 1, 

e1~eel=eil=(~~+3)(5~~-i))/i6~: 

(13) 

=16Mt/(M;+3)(5M:-l)<l, 

q2= 1, e2=ee2=er2= 1, (14) 

where 

M,=miU,/[5( 1+Z)kTd3]“2, cr= 1,2, (15) 

are the upstream (a= 1) and downstream (a = 2) Mach 
numbers, related to each other through 

@++3)/(5#- 1). (16) 

Thus when Ml increases from 1 to co, M2 decreases from 
1 to m, remaining always order unity. 

As described by Jaffrin and Probstein3 for the local 
limit, when Z=O( l), Eqs. (2)-( 5) have two characteris- 
tics lengths H, which give rise to three distinguished re- 
gions where different collisional effects are important. 
There is a first region (I or electronic preheating region) of 
thickness HI - iliz J;ni/m, and, therefore, much thicker 
than the thermal mean-free path for ion-ion scattering 
;1, = &?&&i2 ( rt2 is the thermal ion-ion collision time 
based on downstream conditions), where the ion energy 
and momentum transport are negligible, so that the only 
dissipative mechanisms are the (nonlocal) electron heat 
flux and the energy transfer between ions and electrons; in 
this region we shall see that the electron temperature 0, 
raises from e1 to almost its final value tj2 = 1. There may 
next exist a second, much thinner region (II or ionic shock 
front) of thickness HII-,%,, where 6, is almost constant 
but ion velocity and temperature are not. Finally, there is 
a third region (III or ion-temperature relaxation zone), of 
similar thickness than region I (HI,, - HI - jlR dze) 
where the ion temperature relaxes from the high value 
reached in II to e2 by ion-electron collisions. Regions I and 
III are described by the same simplified equations. 
Making HI = a& ,/&%J3/( 1 + Z)3’2, where 
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a=@%c(Z)ln A,/(5 5 In &), and neglecting terms of 
order &/HI - m$mi< l,Eqs. (2)-(5)maybewrittenas 

de? 
de L;(e)e,5/2 dy de L,*(e) 

(17) 

=4M;b7--lNrll--rl), (18) 

(19) 

Notice that the total momentum conservation equation be- 
comes algebraic in these two regions, and the problem is 
reduced there to solving two coupled integrodifferential 
equations for, say, 17 and 8, 

Local linear analysis near the end singular points (see 
Appendix) shows that for weak shocks, more precisely, for 

54-32 10+9z 
M;>~(~+~)-M* or M:‘5(2+z) 9 (20) 

the above equations describe the evolution of the plasma 
throughout the shock, so that regions I and III merge, and 
the much thiner region II does not exist (one has a relax- 
ation shock,’ where the ionic heat conduction and viscosity 
do not play any important role). Notice that the largest 
value of Ml for which a continuous solution in the absence. 
of viscosity is possible is given here for arbitrary values of 
Z [Eq. (20)]; for Z -+ CO it coincides with the correspond- 
ing value for a neutral monatomic gas,5 while for Z= 1 it 
coincides with that given in Ref. 3. 

For stronger shocks (i.e., Mz CM*), Eqs. (17)-( 19) 
yield a discontinuity somewhere inside the shock which 
separates regions I and III, as described above. This dis- 
continuity constitutes the inner ionic shock (region II) 
when one looks at the shock equations with the scale 
HiI-& In this scale, Eq. (4) yields, at the lowest order, 
0,=const=6&, and Eq. (5) may be integrated once. Mak- 
ing Hn=4~,-&/[15(1+Z)]“2, Eqs. (3) and (5) in the 
ionic shock become 

e;12 dq --= M2dy 

where G is an integration constant. The end points of this 
inner ionic layer, ( ei3,q3) and ( ei4,r]4), and the electronic 
temperature es, are obtained by neglecting all the gradients 
in Bqs. (2 1) and (22)) and solving the resulting algebraic 
equations jointly with the numerical solutions of Eqs. 
(17)-( 19) in regions I and III (see the Appendix). 

For smooth enough electron temperature gradients, 
the left hand side of Eq. ( 18) becomes 05’2 dWdy, and one 
recovers the local shock wave equations. In the Appendix 

OO 
I 1 I 

0.4 
I 

0.2 0.6 0.8 1 
se 

FIG. 1. Solutions in the (&.,v) phase plane for different Mach numbers in 
the limit a 1. 

we sketch the solution of Eqs. (17)-(19), (21), and (22) 
in this local limit, generalizing the solution of Jaffrin and 
Probstein3 (which is for Z= 1) for any value of Z. It is 
shown there that e3 is always almost unity, the difference 
1 - e3 being smaller as either M2 or Z increase (see Fig. 4 
in the Appendix). Therefore, the electron temperature 
rises in region I from the upstream value 8r to almost its 
final value, so that the differences introduced by the non- 
local electron heat flux formulation in the shock structure 
will be located, if they exist at all, only in the electronic 
preheating region, Hence, the results given in the next sec- 
tion will be obtained taking into account only Eqs. (17)- 
(19) for that region. We shall see that the thickness of 
region I increases in relation to local predictions. But be- 
fore presenting these results we consider the limit Zs 1, for 
which the shock equations are considerably simplified. 

A. Limit Zgl 

In this limit one finds that the thickness of regions I 
and III is of order /ZQ daJ3’2. The equations in these 
zones become much simpler than Eqs. ( 17)-( 19) because 
the ionic temperature is decoupled from the electronic tem- 
perature and velocity at the lowest order in Z- ‘; from Eq. 
(17), one has 

o=r]-l+(38~5M;~), (23) 

which, when substituted into Eq. ( 18)) yields an integral 
equation where only 8, appears. Once ee and q are known, 
Bi is obtained from Eq. ( 19) (making Z+ CO ). Equation 
(23) is an algebraic solution of the problem in (e,,q) 
phase plane. It is easily shown (see Fig. l), that this solu- 
tion is uniformly valid thoughout the shock wave for 
Mi> 3/5 (or Mt <9/5), which is the limit Z%l of (20). 
When M,<3/5, a discontinuity should appears some- 
where in the shock in order for (23) to satisfy both bound- 
ary conditions, e,(v,) =& and e,(q,) =e2. This disconti- 
nuity, when looked at with the scale where ionic transport 
becomes important, constitutes, of course, the inner ionic 
shock. The position and intensity of this inner shock may 
be obtained, as in the case Z= 0( 1) (see Appendix), from 
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FIG. 2. Ekctron (0,) and ion ( Bi) temperature profiles with local (dashed lines) and nonlocal (continous lines) electron heat fluxe.s, for (a) 2=3, (b) 
Z= 10, (c) 2=30, and (d) Z= 100, and for the Mach numbers M,=3.6, 4.6, and 8 (@=0.25, 0.23, and 0.21, r~p&vely). 

the coupling of Eqs. ( 17)-( 19) with the equations govern- 
ing the inner scale. As a difference with respect to the case 
Z= 0( 1 ), when Z% 1 the ionic temperature rises enor- 
mously in this inner ionic shock, and becomes order Z. 
Consequently, the thickness of the inner shock is of order 
A,Z’. Defining now Hi, = 4pe&Z2/ @and 0: E e/Z, the 
equations governing v and f3y in this inner layer are the 
same Eqs. (21) and (22), but neglecting 1 against Z, drop- 
ping Z, and substituting ei by 0T. As in the case Z= O( 1 ), 
it is not necessary to solve these equations for the inner 
shock in the present study because 8,- 1 (more even so 
when Z)l, see Appendix) and the electronic heat flux is 
negligible in the inner shock and in the subsequent relax- 
ation zone. 

Ii!. RESULTS AND DISCUSSION 

To solve the integrodifferential Eqs. (17)-( 19) [or the 
simpler ones (23), (18), and (19) for Z>f] in the elec- 
tronic preheating region of interest we use an iterative 
scheme: We start with the local protiles 8,(y), q(y), and 
e,(y), assuming the ionic shock front as a discontinuity in 
the scale length HI (see the Appendix), and substitute 
them into Eqs. ( 17)-( 19) to obtain improved profiles; the 
procedure is repeated until the electron heat fluxes ob- 
tained by two successive iterations differ less than 0.1%. 
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The number of iterations for the cases solved ranged from 
9 for Z= 100, Mi=8, to 19 for Z=3, MI=3.6. 

Figure 2 shows some electron and ion temperature 
profiles, 8,(y) and @i(y), for different values of Ml and Z, 
and compares them with the corresponding local profiIes 
(only region I is shown because regions II and III coincide 
with local predictions; see Fig+ 5 in the Appendix for the 
complete local shock structure in a particular case). The 
differences between local and nonlocal predictions increase 
as either M, or Z increase, and they are located in the foot 
of the preheating region where the local gradients are the 
steepest. These differences are better quantified in Fig. 3, 
where we plot the dimensionless thickness of the preheat- 
ing region, defined as Ay= (e,-@,)/(dBJdy),,, for the 
same cases of Fig. 2, and for both the local and the non- 
local formulations. It is observed that Ay depends, mostly, 
on the Mach number, and that for high Ml and Z (e.g., for 
M1 = 8 and Z= 100 ) , the nonlocal value of Ay may be even 
three times larger than the local one. 

To check the validity of the above results it is interest- 
ing to compute the Knudsen number, ratio AT/H between 
the mean-free path for scattering of thermal electrons and 
the characteristic length of region I, as a function of M, 
and Z. The characteristic length of the electronic preheat- 
ing region is 
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FIG. 3. Dimensionless thickness Ay of the preheating region with local 
(continuous curves) and nonlocal (dashed curves) electron heat flux for 
Mach numbers Ml=(a) 3.6, (b) 4.6, and (c) 8. 

rfl~*s=aq-$& g (Iy$g))3/2 (kT2)2 e4n2 In A, ’ (24) 

where, for comparison sake, we use the local dimensionless 
thickness Ap given in Fig. 3, which is a function of M1 
and, in a lesser degree, of 2. A representative thermal 
mean-free path for electron scattering is given by’ 

(25) 

where r,, is defined in (6), and we shall evaluate it at 
downstream conditions. Comparing Eqs. (24) and (25) 
one obtains 

/IT 0.038 (l+Z)3’Z 
-=zy y&z) ( 1 1/3+z)z”z ’ 1 (26) 

where we have taken ,/=2 Y 60 (fully ionized plasma) 
and Z* = Z. Table I shows &/Z for some values of M1 and 
Z. Since &/Z<O( 1) for all values of M1 and Z, the present 
results are within the validity range of the nonlocal formu- 

TABLE I. Knudsen number 1,/Z, as defined by Eq. (26), for some values 
of 2 and M,. The relative difference 1 A,p-Afll/Afl between nonlocal 
A”p and local Ap preheating thickness (taken from Fig. 3) is shown in 
parentheses. 

Ml 
2 3.6 4.8 8 

3 0.0086(0.10) 0.017(0.21) 0.047( 1.86) 
30 0.0066(0.14) 0.011(0.53) 0.028( 1.96) 

100 0.0065(0.25) O.Oll(O.72) 0.023(2.05) 

lation, which just extends it to the original expectations of 
the collisional kinetic theory.’ However, even for very 
strong shocks, the Knudsen number is relatively small, 
thus explaining the fact that the global modifications in the 
shock structure introduced by the nonlocal formulation are 
less significant than one would expect for strong shocks. 
These modifications are, nevertheless, locally important 
(in the foot of the preheating region, see Fig. 2) for Knud- 
sen number even lower than lo-‘, as proved by the high 
values of the relative difference ] Anp--Ap ] /Ap between 
nonlocal A,p and local Ap thicknesses, also shown in Ta- 
ble I. This failure of the local heat flux for so small Kund- 
sen numbers is a well-known fact which makes it necessary 
the use of nonlocal formulations for some important prob- 
lems of plasma physics (e.g., inertial confinement 
fusion) .‘t6 Here, we give, quantitatively, the errors of the 
local theory, in relation to the nonlocal one, as a function 
of the Knudsen number in a physical problem of interest. 

A final comment should be made on the validity of the 
local transport for the ions used in this work. As the Mach 
number increases, the ionic gradients become steeper, and, 
obviously, the classical expressions for the ionic viscosity 
and thermal conduction are no longer valid inside the ionic 
shock front.7 However, this does not affect to the main 
scope of this work, which is to quantify the effect of the 
nonlocal electron heat transport on the shock structure, 
because these nonlocal effects are only important, as we 
have seen, in the initial part of the electronic preheating 
region (see Fig. 2), where the velocity and ionic tempera- 
tures change smoothly even for very strong shocks, and the 
classical transport expressions are valid. Thus, though a 
kinetic formulation should be used to describe the ionic 
magnitudes for strong shocks, which also will change the 
electron temperature, these changes are outside the region, 
where the nonlocal electron heat flux differs from the local 
one. 
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APPENDIX: LOCAL SHOCK STRUCTURE FOR ANY Z 

We describe here, briefly, the solution of Eqs. (2)-(5) 
in the local limit, generalizing the results of Jaffrin and 
Probstein3 for any Z. For the outer regions (regions I and 
III) one has the following differential equations for q and 
8, [from Eqs. (17)-( 19) in the local limit]: 

05/Z de, 
-=4@(77- 1) (rl1--rl), 

e dv 

l+Z 5 I----( 3 
gl4;(5-8~)+5 ) 1 -IZe drl 

3 rl dv 

4zlw; 
=-y-z- 

e 
(Ax) 
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FIG. 4. Electron temperature es at the ionic shock front as a function of 
the Mach number for different values of 2. 

where Bi is given by the algebraic equation (17). Linear 
analysis near the upstream singular point (f3,,7,) shows 
that it is a saddle for any value of M,( l/5 <Mi < 1). The 
downstream singular point ( e2,712) = ( 1,l) is a node for 
1 >Mi > M* [where W  is given by (ZO)], and a saddle 
point otherwise ( l/5 < M: CM*). To obtain the numerical 
solution of Eqs. (27) and (28) one starts the integration at 
the upstream point ( O,,ql) using the linear local behavior, 
and reaches the downstream point ( 1,l) provided that 
Mz >M*; thus, for Mi > W  one has a relaxation shock, 
without inner ionic shock. For Mg CM*, the solution leav- 
ing point 1 and reaching 2, which now is also a saddle, 
presents an unphysical electron temperature overshoot, so 
that a inner layer should appears (region II) where 8, 
remains almost constant, and 77 and ei change abruptly. To 
obtain the end points of this inner layer, (0e3,ei3,~3) and 
(0&,0i4,r/4), where 8,3=0e4=03, Eqs. (21) and (22) 
should be used (these equations are not affected by the 
nonlocal electron heat flux). Neglecting all the gradients in 
these equations and eliminating constant G, the following 
relation is obtained for the upstream and downstream ve- 
locities q3 and Q as a function of e3: 

5 gf;+ 1 
( 1 

(r/3-Q) -; @(71:--77:) = gz e3 In %  

(A3) 
On the other hand, one has the functions Q( 0) and qnI( 0) 
resulting from the numerical integration of Eqs. (27) and 
(28) starting at points 1 and 2, respectively. The value CJ3 
is that satisfying (29) if one identifies qI (0) = q3( 0,) and 
r~~~~(0) =Q( 0,). Figure 4 shows e3 as a function of 
M$( CM*) for some values of Z. It should be noticed that 
e3 is always very close to unity, so that the electron tem- 

FIG. 5. Shock structure in the local limit (Z= 5, M, = 8). 

perature undergoes almost all its change in region I. Once 
8,, q3, and r14 are known, ei3 and ei4 are given by Eqs. (2 1) 
and (22) with all the gradients dropped. At the scale 
length of the outer shock (HI - a,2 dxi), the shock 
structure is given by the numerical solution of Eqs. (27) 
and (28) from (et,??,) to (0s,v3) (region I), and from 
( 02,q2) to ( e3,v4) (region III), in addition to a disconti- 
nuity given by the jumps v3--v4 > 0 and ei4- 8, > 0 (re- 
gion II) situated at the electron temperature 0s (see Fig. 
5). The detailed structure of the inner ionic shock may be 
obtained from Eqs. (21) and (22) once the end points 3 
and 4 have been found. It can be shown3 that point 4 is a 
saddle, while point 3 is a node, so that the numerical inte- 
gration of Eqs. (21) and (22) is carried out starting from 
4 toward 3. 
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