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The derivative nonlinear Schdinger (DNLS) equation, describing propagation of circularly
polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent,
weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable
and the other waves damped. Imealucedthree-wave modelequal dampings of daughter waves,
three-dimensional flow for two wave amplitudes and one relative phasematter how small the
growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic
relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space
behavior occurs for left-handLH) polarized waves, paralleling the known fact that only LH
time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than
about (unstable wave frequeni4xion cyclotron frequency. The structural stability of the
transition was explored by going intofally 3-wave modeldifferent dampings of daughter waves,
four-dimensional floy; both models differ in significant phase-space features but keep common
features essential for the transition. ZD04 American Institute of Physics.

[DOI: 10.1063/1.1691453

I. INTRODUCTION ear mediums. The 3WRI is especially important in both un-
) i ) ) ~ magnetized and magnetized plasmas, where dispersive ef-
Nonlinear Alfven-wave interactions may be present in fects can keep nonlinearities weak and electromagnetic
astrophysical, space and laboratory plasmas, with effects thgf,\es make coupling to external energy sources easy. The

range from heating to driving of current. A recent space eX3\R| has been extensively studied and remains a basic non-
ample involves orbiting conductive tethers, which, if in elec-Iinear paradign?

trical contact with the ionosphere, radiate Alfvevaves: A The 3WRI evolution for lossless quadratic coupling,

steady current flowing along a tether results in continua\mth a mode linearly unstable and the two other modes

charge exchange with the ambient plasma, circuit closur . . g .
being accomplished by charge-carrying Alfvevaves ex- %qually damped, is described by a three-dimensi¢aa)

cited in the ionosphere by the passage of the system. Wa%ﬁ‘évegfgmz\%a\;ﬁt:rrgggijd9]? gggn Oirr:e rre;?égleegzﬁge;he
structures(called Alfven wing9 attached at or near both ping

tether ends present an Airy-functions behavior if Iinearlygrowth ratel” of the unstable mode the system is attracted to

described. Nonlinear effects, which should appear at thepOint sets of vanishing 3D volume, and its long-time behav-
’ jor may be chaoti¢®-*2For smalll’, a consistent analysis of

near wave front, might be affected by the magnetic self-fieldh f ) ltile fi | hod. led 1D
generated by the very current of the tether. the flow using a multiple time-scales method, led to an

An Airy-like linear structure is a feature common in chaotic map? Actually, the system exhibits a hard transition

fronts of dispersive waves radiated by a moving source, a® COMPlex phase-space dynamics: no matter how sitzall

with ion-acoustic waves excited by a charged body movinghere exists a fully developed attractor that is abserit<ad

mesothermally in a low ion-temperature plasma; the nonlin@nd is chaotic for some parametric domain; this is an ex-

ear wave front is then described by the Korteweg—de Vrie@MPple of a broad scenario for chaos also present in the reso-

equatior’ In the case of Alfva waves, some strong nonlin- nant coupling of two oscillators at frequency ratiog2:q

ear effects are known to be described by the derivative norinteger, with the first oscillator unstabléFor quadratic cou-

linear Schrdinger (DNLS) equatior which admits soliton ~ Pling (corresponding t@=1 in the two-oscillator cagethe

solution§ and has proved amenable to the inverse scatterinfardtransition and the effects of noise have been experimen-

method for obtaining general solutioh# variety of behav- tally verified using electronic oscillator$; also, the hard

iors allowed by the DNLS equation and its modificationstransition was found to persist when the daughter waves had

have been analyzéd. unequal dampings, the flow then being 4D rather than
Here we show how the DNLS equation may also serve3D.*®*’

to describe weak nonlinear effects represented by the coher- Cubic interaction, corresponding =2 (or 1:1 fre-

ent coupling of a few waves, and we explore its complexquency ratig in the two-oscillator case, allows a variety of

dynamics. The local, coherent interaction of three waves atoupling structures. Aeduced3-wave truncation of the non-

or near resonand@WRI) is an ubiquitous feature of nonlin- linear Schrdinger equation showed chaotic behavior at finite
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I';*® a hard transition was encountered in a two-oscillator To study weakly nonlinear interactions, we consider an
model of a spherical swintf:'° In the present paper we ex- approximate solution of Eq1) consisting of three traveling
plore weakly nonlinear dynamics in a truncation of thewaves,

DNLS equation that shows more complex cubic coupling, in 3
bothreducedand full 3-wave models. We want, in particular, ¢:22 d},(t)emj A=K 7Z— @t 3)
to ascertain whether gross features in dynamical behavior, = o "

like fully developed phase-space attractorsI'at0™", are
structurally stable, as suggested by their appearance for qu
dratic coupling in both 3D and 4D flows, and for the particu-
lar cubic coupling of Refs. 14 and 19.

Structural stability would be important because a 3WRI
model may fail on a number of conditions it requires. Coher-
ence is lost, leading to a random-phase approximation, when
the interaction time exceeds the inverse frequency widths of
the mode<$®?! The 3WRI model will also, strictly, fail for
wave amplitudes so large that the interaction time drops t
values comparable with wave periocdfsDynamics just tem-
poral, rather than spatiotemporal, may require long unifor
wave trains or standing wavé$;multiple waves may be

satisfying a resonance conditiok2= k,+ k3. Wave number
4nd frequency of modes are related by the lingassless
dispersion relation for circularly polarized Alfaewaves at
low wave number,wJ-:ijij/Z, or in dimensional form
(w— wlwgj, k—=kVplwg, k=k,>0),

3 1 VAkj)
o VAkJ( 1+2 oo )’
goth the growth/damping and the nonlinear terniipnmake
the complex amplitudeg); vary slowly in time. Introducing
nEd- (3) in (1) and considering only thk;, k,, andk; com-
ponents one arrives at

4

; 24,25 .
involved: b1+ yib1+iKi[ (| 1|>+2| ol *+ 2] p3l?) 1
In Sec. Il we present theeduced3-wave model of the . -
DNLS equation. In Sec. Il we analytically determine the +2¢7 hap3e’"]=0, (53
I'=0 attractor of the system. In Sec. IV we derive analytical : . 2 2 2
and numerical results on the small, positiVeattractofs). ot V2ot iko[(2[@1|*+ | hol*+ 2] 3l %) P2
The fgll 3—wa_ve modg(daughter waves w_ith d_ifferent d_amp- +p2pie "]=0, (5b)
ings) is considered in Sec. V. A discussion is given in Sec. .
VL. B3t vabstika[ (2] p1|*+2] ol >+ | p3l?) 3
+p2pie "]=0, (50)
Il. REDUCED 3-WAVE MODEL OF THE DNLS where ¢, is d¢;/dt and v=2w;~w,~ w3 is a frequency
EQUATION mismatch. We assume that all other components, in particu-

lar those involving wave numberskz—Kk;, 2kz—ky, 2k,
The derivative nonlinear Schiinger equation describes —k;, and X;—k,, arising from using(3) in the nonlinear
the evolution of circularly polarized Alfwe waves of finite  term of Eq.(1), are strongly dampetf.
amplitude propagating along an unperturbed uniform mag- ~ Setting ¢;(t) =a;(t)exdiy;(t)] in Egs. (58—(5¢) with
netic field in a cold, homogeneous and lossless plasma. Th®, ¢; real, and using the resonance condition, the above
description uses a two-fluid, quasineutral approximatiorthree complex equations are reduced to four real equations,
(with electron inertia and current displacement neglected

Taking the unperturbed magnetic fighg in the z direction, 8=~ 7181~ (Kot K3)213,35 Sin B, (63
the DNLS equation reads® a,=— y,a,+kya’a; sin B, (6b)
ap 9 l12\] i ¢ . as=— ysaz+ksala, sinp, (60)
_ J— S [ p— =
o T A )| g el @ a3
Q= 2( .28 72
where ¢, t, andz are dimensionless perturbed field and vari- B=vtia k2a2 +k3a3) 2(kztka)aza,
ables, 2.2 2_ .2
. X cosp—kj[a;—a;]—ks[a;—as], (6d)
BxilBy Wi
¢EB—’ wcit*)t' V—Z—)Z' (2) WhereBEW+ vt+ lﬂ2+lﬂ3_2¢l.
0 A At this point and throughout Secs. II-IV we restrict the

w; is the ion cyclotron frequency and, is the Alfven ve-  analysis, for simplicity, to the casg,= y;=y and return to
locity. The upperlowen sign in Eqs(1) and(2) corresponds  the full 3-wave system in Sec. V. Multiplying Eg6b) by
to a left-hand(right-hand circularly polarized wave propa- 2Ksa, Ed.(6¢) by 2k,a;, and subtracting from each other
gating in thez direction; ¥ would be some appropriate there results

growth/damping linear operatdt. Equation (1) is derived

under the following ordering scheme for perturbed quantities &(kgag— k,a3) = — 2y(kga5—k,a3); 7
(n andv, are plasma density and velocity along thaxis):
Eq. (7) showskza5—k,a3 (but nota3 or a3) to decay expo-
Bx By /nTho_ \/Z nentially with time. For a study of the long-time behavior of
Bo Bo No Va the system, we may then takgas=k,a3 from the outset.
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Note that the frequency mismatch is positive and negativevhere
for left-hand(LH) and right-handRH) polarization, respec- ho(al,,B)EB(a2=O)= v—Zaf(V— cosg). (13)

tively, using Eq.(4) one finds in dimensional form
) For I'=y=0, Eq. (11) rewritten in the original variables
Yo (ﬂ) ka—ks ®) would be a Manley—Rowe relation for conservation of action
g \@g) Katks) density in wave packets that follow Hamiltonian dynamics.
Equation (7) would be a second Manley—Rowe relation:
since phaseg; only enter Eqs(6a—(6d) through the com-
bination 2/, — ¢»— ¢35, there would be two cyclic angular
coordinates in the full 3-wave case. Equati@t?) with
I'=y=0, in turn, can be shown to express energy conserva-
tion when the constant-action laws are taken into account.
We note next that Eq9b) shows the plana,=0 to be
invariant. When combined with E12) it yields
2

2

This sign difference will later be shown to lead to fundamen-
tally different dynamics for the two polarizations. Finally we
may both takek;<k, and equal signs foa, andas with no
loss of generalityfor opposite signs, setting— =+ 8 would
again leave the system invarigrdalso, we may take all three
a,, ay, a; positive.

Writing y,=—1"<0 and introducing new variables

Vkokzai—a3,  (kp+ks)vks/k,ai—a3,

d a; a
— 2 o 2
system(6a)—(6d) is reduced to three real nonlinear equa- ¢ 0T 5y =—2ajsinBXx ho_ﬁ
tions,
a;=l"a; —a,a; sin B, (9a) +yy 2 (o= ). (14)
a,=—ya,+asa,sing, (9b)

_ o - In the conservative case, the surfMal,ﬁ)—a§/2V= 0,
B= v—2(ai—a§)(v—cosﬂ)—aglv, (9c)  Wwhich only exists for frequency mismateh0, i.e., for LH
polarization, would be invariant. In what follows we will

where only consider LH polarization.

— 1+ks/k, ks For I'<0, Eq.(11) proves the equ.illibr'ium .statal=a2
=——_"">1, k—<1 . (10 =0 to be a global attractor. This equilibrium is unstable for
2\ks/kz 2 I'>0. In this section we consider the long-time attractor of

The limit caseV=1 would exactly recover a truncation of System(9a—(9¢) at I'=0. Note that the eptirezﬂoyv is now
the 1D nonlinear Scfitinger equation describing the para- 8symptotic to the surfaca,=0, becausa; +a; will keep
metric excitation of linearly damped waves by the oscillatingdiminishing in Eq.(11) unlessa, vanishes. Since that surface
two-stream instability in plasmad&.We also note that some IS invariant, trajectories should be asymptotic to its critical
resonant interactions of two oscillators with frequency ratioelements with transverse stable manifolds.

1:1, which have been analyzed bygar-Rebollal and San- ~ Consider then the flow om,=0 atI'=0, Eq.(93) then

martin, are described by syste®8)—(9¢c) with the last term  Yielding a; =constant. The intersection of the plaag=0

in (9¢) missing***° and the cylindrical surfachy(a;,8)=0 is a lineA of fixed
points,

lll. T=0 ATTRACTOR FOR THE REDUCED 3-WAVE a,=0, (153

MODEL ho=v— 2a2(V— cospB) =0. (15b)

In this section we discuss analytical results that can be-;
readily obtained from systei®a)—(9¢) and we determine its
I'=0 attractor. A trivial result concerns the flow divergence
in (3D) phase-spaca?, a3, and 3, reading

gure 1 shows both and the surfacé,=0 for V>1; A
would reach up to infinity foV=1. Linearizing the vector
field at the fixed points we find eigenvalu&q=—2a§
XsinB, and\,=0, for eigenvectors tangent to the liag
J daf J dag 9 dp =constant through the corresponding fixed point, and tan-
a2 Tagar 2 gent toA, respectively. From the sign af; it follows that,
98y 9 A for fi —0, A points with
or flow ona,=0, A points with 8< are stable an@>

Nonlinear conservative coupling naturally preserves volumepoints are unstable; twa, = constant heteroclinic orbits join
For I'<y, as assumed here, the long-time attractor of theeach symmetric pair oA points.
system will be a point-set of vanishing 3D volume. The third eigenvalue is clearly the factor multiplyiag

Again from systen(9a—(9¢) one obtains equations that in Eq.(9b), \3= — y+aj sin 8, with the associated eigenvec-
would represent conservation laws in the no-dissipatiorior parallel to thea, axis. It follows that for motion offa,

limit, =0 the B> branch is stable, whereas in the bramgt,
d under condition
a(afwt a3)=2Taj—2ya3, (12) V2< 1+ (v12y)2, (16)
) o ) ) N there are pointﬁ’_o andP§ that haver;=0 and are given by
gt| 82| ho— E) =2Fa2(h0—v)—2ya2( ho— V) , Y VrENP—4yA(VP-1) a7

(12) 4 sing ~ 2(V2-1)
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still off the planea,= 0, makinga, positive in Eq.(9a); the
orbit will then emerge ap=0 with a;>a;o and again reach

a
1 L
a point in the ar@Q P, from the left.

Q*,

IV.T—0%" ATTRACTOR

WhenT is made positive under conditidd6), assumed
here, there are just two fixed point8,and P*, given by

equations
vsinB=2(y—T)(V—cosB)+T/V, (183
0 yla3=sinp, (18b)
I'/a5=sinp, (180
275\[3 which recover(17) for P4 and P§ asI'—0. The characteris-

tic equation for the stability of those two points is
FIG. 1. Line A of fixed points on invariant plana,=0 atI'=0, and peri- (N+2y— 2I‘)()x2+47I‘)
odic orbits above and below; fgg< only the arcsQP, and P§Q* are
stable offa,=0. Also shown is the cylindrical surfadg(a;,B)=0. 24T

LW 2
W V— ( —COS,B) —Zv
for — and + signs, respectively, wittB(Pg)<m/2 always,  For I'=0, Eq.(19) again recovers the values=—27y, \,
but B(Pgy)>m/2 for v/2y>V. Only A points in the arc =\;=0 of Sec. Ill. ForT" positive and small, one finds to
PoP§ are unstable offi,=0. For the flow in the entire 3D order,T,

space the stable fixed points are those ingker branch of

442 4 2n\2_ o1 .
A below P, and aboveP§ . Note thata,(Pg)—« asV NodPH)= £V =4y (VI-1)xy2I'Xay(Pg);  (20)
—1. P* at smallT" is thus a saddle node with a 1D unstable

In the planea,=0 there is another type of critical ele- manifold.
ments. There are periodic orbits that move below the bottom  For the stability ofP we must go to ordeF,
Q of A at constang; <a,q, from g=0 to g=2m, and that

are described by Eq9c) now reading8=hy(a;,8); again, N P)~=i{12 =492 (V2—1)x 2T Xa;(Pg) + T,

there are periodic orbits abo@* in Fig. 1.[Their period is 1y 1 (21
I[(Va2,— vi2)?—at]¥% which diverges for a = — )

wl[(Vayy— v/2) 10] g 10 2@ngly Vsing

=a,q (a0=a1+), when the periodic orbit becomes an ho- o B
moclinic trajectory aQ (Q*), as seen in the figurkClearly,  The sign ofa is obtained by takingg(v/y,V) from Eq.(17)

a,=0 perturbations of any such orbits leave the systemyith the upper sign. We find tha, which only exists under
moving in another nearby orbit. Also, all these periodic or-.,4ition (16) and is defined folv>1, is stable above the

bits are stable offa,=0: At vanishing a, we have_,B line (v/2y)?=V2 [with B(Po)> /2 as noticed in Sec. I
=0(1) whereasa; changes at a rate of orde?; taking and below the line

d(Inay)/dt from (9b), its average over a period isy<0, the
contribution of the sirB term vanishing. v
Under condition(16) one may say that the stable arc (5
QPy and the periodic orbits belo® make up one attractor _
of the flow and the stable afe} Q* and the periodic orbits in the parametric planen(2y)?, V2. PointP goes through a
aboveQ* make up a second attractor. There is a fundamenHopf bifurcation,\ becoming positive, when crossing either
tal difference between these two attractors however. Since line. Figure 2 summarizes the stability Bffor ' —0*. Fig-
points in the ard,P§ have an 1D unstable manifold trans- ure 3 uses Eqg8) and(10) to represent stability domains in
verse toa,=0 there exist singular, heteroclinic orbits that terms of parameterks/k, and wc;y/Vaki, where Vak,
leave this plane at those points, and returnto it at a layer ~ g, .
as seen from Eq(1l) with I'=0. Equation(14) with I'=0 Now consider the long-time behavior of the systemIfor
proves that an orbit leaving betweenP, and P§ has the very small. Away from the surface,=0 the flow will
guantity ho—a§/2V, and thereforeh,, itself, non-negative closely follow I'=0 trajectories. If a trajectory approaches a
thereafter, corresponding to it moving below the cylindricalperiodic orbit aboveQ*, the terml’a; in Eq. (93 will make
surfacehy(a;,8) =0 (Fig. 1). The singular orbit may reach a a; ultimately diverge, as the system slowly drifts through the
point in the araQ Py from the left, keeping3<<ar throughout,  set of periodic orbits; if thd’=0 trajectory approaches the
or may approach the set of periodic orbits. It may also pasarc P§Q*, the system will first have, slowly rising along
just below the surfachy(a;,B)=0 to reach the rangg>#  and very close ta\, until reaching the set of periodic orbits

2 1

:m (for Vi< %) (22
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FIG. 2. Stability of fixed pointP atI'—0", in parametric plane(2y)?,
V2, LinesA, (v/2y)?=V2-1; B, (v/2y)?=V?; C, given by Eq.(22).

at pointQ*. The case fol'=0 trajectories approaching ei-
ther the ard@Q P, or the periodic orbits below is dramatically
different.

Consider flow in the vicinity of thd’=0 heteroclinic
orbit corresponding to &-point M on theP,P§ arc, in the
approach back to the surfaeg=0, below P,. If the orbit
approaches some point betweenQ and P, and because of
the termI’a;, a; should eventually start growing at rake
keeping close ta\. In terms of the eigenvalug; of Sec. I,
Eqg. (9b) can be written asal,/dt=X\3a,; since\; is nega-
tive for A points belowP, and positive fromP, to P§ , and
the a; rise takes times of order 1/ a, will become expo-
nentially small <Ina,~1/MT"). OncePy, is reached, however,
a, will start growing; when values,~ (I" are attaineda;
can finally reach a maximurkl’ below P} , and the trajec-
tory again start separating frorh. If the heteroclinic orbit
approaches some periodic orbit bel@yva, will first slowly

Sanmartin et al.

FIG. 4. Limit 1-cycle attractor foN=61/60 k5 /k,=25/36), I'/y=0.001,
v/y=1.3, settingy=1.

=61/60 (k3/k,=25/36), I'/y=0.001 and v/y=1.3 (with
v=1), which is determined by numerically following a single
trajectory for long times; Fig. 5 shows a map for the attractor
of Fig. 4. Figure 6 shows a chaotic attractor for the same

values ofV andI'/y, andv/y=2.0.Periodic orbits are usu-
ally involved at greatel. Figures 7 and 8 show the lower
parts of a limit 2-cycle attractor and of a chaotic attractor
projected in thea;, B plane, for V=13/12 k3/k,=4/9),
I'/y=0.001 and two values of/y. For V2>3/2 (ky/k,<2
—y3), and above but close to lirein Fig. 2, the ardP P, is
short, leavinga, still exponentially small when the system
reachesPy ; with a, decreasing and, remaining positive
thereaftera, will diverge, as in the case of trajectories ap-
proaching the ar®g Q*.

Consider the limit cycle in Fig. 4. In generalJa—0*
attractor nested somehow around pdminay be described
by an exact 1D map representing every maximum of

increase while the system drifts among the lower set of ped1 (a1m-) in @ trajectory within its bassin of attraction, ver-

riodic orbits to reach\.

In the parametric domain of Fig. 2 wheRis stable,
trajectories starting within somwassinof attraction in phase
space have a sequence of poiktsm, M',..., converging to
point P as given, to lowest order ifi, by Eqgs.(17) and a%

sus the preceding maximuna{y). This map can be deter-
mined by a two-step algorithm. In the first step, one numeri-
cally follows the heteroclinic orbit from any poit in the
PoP§ arc of A to the corresponding poimh below Py. The
second step is the rise oA at vanishing rate(I'—0, t

=T"xa?/y. The general attractor structure following the loss ~ 1/I') up to the next maximunM’, which can be analyti-

of stability of P at crossing lineB (or C) at fixedV, giving
rise to a limit cycle, depends on the value\éf At V very

close to unity the set of periodic orbits is rarely involved in

the attractor. Figure 4 shows a limit-cycle attractor %or

No fixed points

FIG. 3. Stability of fixed poinP atI'—0", in parametric plane;y/V2k?,
Ks /K, .

cally determined by noting that, no matter how close the
solution to a heteroclinidVl—m orbit, Eq. (9a) will ulti-
mately readda; /dt=Ta; .

Using dh,/dt=A3a,, one obtains

assing—y

1

da;=I'dIna,,

with a; and g8 related through the equatidmy(a;,B8)=0.
The integral of the left-hand side above, for the entire rise
from m to M’ [with In(1/a,) small compared with 1J at
either end, will vanish in the limitl’'—07". We thus find an
equation relating pointsnandM’ for the slow rise oM\,

G sz,V,%w2—1)=6(§m§,%¢v2—1),

_ 2 _
(=(V2-1)-ai-V,
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19 : : : — 078
1.8 l a
17 1
16 -

1.5 A

1.3 A

1.2 A

1.1 A

0.68
0

FIG. 5. 1D map ofa;,, maxima for the attractor of Fig. 4, with fixed points

at the fixed point? of the flow, unstable, and at tte), maximum of the

limit cycle (LC), stable. The crosses correspond to the sequence of maxima
determined numerically on a single trajectory; the continuous line is the
exactl' — 0" map. The inset shows another view of the limit map.

' B 6 0
— FIG. 6. Chaotic attractor fol/=61/60 k3 /k,=25/36), I'/y=0.001, and
Z . T 1 \/2r " 1+V{ v/y=2.0 with y=1. Also shown is the lower part of the attractor projected
G=V1-{°+Vsin ~{—\VV°=1sin V—i—{ on thea,—g plane.

27\/?2—1 _
——In(V+).
v

G( {mr ,V,%\/Vz—l =— g(V— VV2-1)
- 2yVV2-1
14

Figure 5 shows thi§ — 0~ limit map of the sequence of IN(V+¢n).
maximaay ), for the values oV, », andvy of Fig. 4. The map

has two fixed points, where it cuts the diagonal. Que-

stable fixed point of the map is the fixed point of the flow V. FULL 3-WAVE MODEL OF THE DNLS EQUATION
P~P,, lying at a; just above unity. The secon@table
fixed point of the map corresponds to the maximum in th
limit cycle, lying ata, just above 1.5. Between both fixed
points the map lies barely above the diagonal. Figure 5 also

shows, to the right of the limit-cycle maximum, the ap- 2 2 \/E

We now briefly consider how changing to a full 3-wave
€nodel affects the dynamics of the system. In E§s)—(6d)
e set

proaching sequence of maxima for a single trajectory, at the a§—> a ,
values ofV, v, and y indicated, withI/y=0.001, in good \/@
agreement with the limit map; this is more clearly seen in the
zoom of the inset.

The inset of Fig. 6 shows the lower part of the chaotic
attractor projected on the plare,, B. The inset shows
clearly a fork in the attractor, with the trajectory sometimes
approaching theB<w branch of A from the right. This is
possible because the last term in E@4) can make
ho(a;,B) negative whera, reaches down to values of order
of T', the trajectory crossing above the cylindrical surface
ho(ay,B)=0.

Consider now Figs. 7 and 8. If thE=0 heteroclinic
orbit leaving some poinM in the arcPy,P§ approaches a
periodic orbit belowQ with a;=a,,,, we will first havea,
slowly increasing while the system drifts among the lower 0.567 , , , , , ,
set of periodic orbits to reach. During this rise Eq(9c) 0 3 B6
will read B=hg(a,B8)=0(1). With thecontribution of the
sin B term in(9b) averaging out during that stage, the overallFiG. 7. Lower part of limit 2-cycle attractor projected on tag-3 plane,
relation betweemrm and M’ would come out to be for V=13/12 (k3 /k,=4/9), T/y=0.001, andv/y=1.601 22 withy=1.

0.7
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0.7 Next, we consider the flow oa,=0, wherea, is now
constant in(239. There exists a line of fixed points given

a, by the equations
(vs— y2)r =ai(1-r?)sinB, (243
vr=aZ[2Vr — (1+r2)cospl]. (24b)

Eliminatinga; in (248 and(24b) yields a relation betweef
andr that can be written as

- . 2Vr
0.56f co§B—p (r)]=T, (25
0 3 6 ]
B where we defined
FIG. 8. Lower part of chaotic attractor projected on tne-8 plane, for . . 1+r? 55 N
V~13/12 (s /K,=4/9), T/y=0.001, /y=1.6, andy=1. B* =cos . A=V(1+19)2+(1-r2)%2,
— 14
a2, a3 \/E Y3~ Y2
3 "Kkyt+ks Vky A solution to Eq.(25) for B(r) only exists if the RHS does

. . . not ex nity, requirin
and, assuming,< y3, introduce a new variable, ot exceed unity, requiring

r=as/a,, O<r=r, <1, or lf=Sr<oo,
to replaceas. We then find 5 v°+2Ve-1
. 5 . IMhae & a’—1, a=—>1;
a,=l'a;—ra,assing, (239 P+l
a,=— y2a2+rafa2 sin g, (23b only for V= 1, (i.e., ky=k, making a=1), would r reach
) 2 unity. The line of fixed points has therefore two branches,
r=—(ys=yr+(1-ragsing, (230 forr<1 andA, for r>1.
) — 14r2 For branchA,, B,(r) is given by
=p—2ai V- cos, )—Zra2 —
prv=2a or OB 2 12 ovr
Bi=cos +C0S "——. (27
a5 [k, ,Ks A A
X cosB+ N k_s +r k_2> (23d The plus sign in Eq(27) applies as; is increased from 0 to

= ) a1(rmay, given as
with V(< 1) andks/k, still related by Eq(10), where we do

not needk;/k,<1. For y3=1v, the solutionr=1 of Eq.
(230 would recover systeni®a—(9¢) in Egs. (23a), (23b),

8y (T mad V= V(L PA)VIZA (V2 1);

and (23d). Note also that if a trajectory reaches the surface®! 3 decrE?sezs from C‘_)_é(ll Vitv9)+m/2 1o
r=1,r will remain less than unity thereafter in E@30); the ~ €0S “(V1+v/V*/y1+»7); andr increases from O t0py.

For greaterm; the minus sign applies i(27), andr decreases

3D spacea,=0 will then be invariant. ord 1 :
with increasinga, ; asa;—« one findsg,—0 and

If damping is resistive one hag=resistivity X e,ck?
or, in dimensionless form(setting y— yX w¢i, k—Kk
X weiIVp), y=k?[2w¢ee, Where wge and 7, are electron
cyclotron frequency and Braginskii collision time,
respectively® We then haveys/y,=(ks/k;)? with kg

r—r,=V—JV2—1. (29)

Note that botha; and 8, are double-valued functions of
r betweenr,, andr .. FOr branchA, we havepg,(r>1)

>k,. For near-parallel propagation at angle< 2w/ w;
and nonzero electron temperaturg, we may have Landau
damping, reading in dimensionless form= k6% X (me/m;)

X (k To/32meV34) 2X exp(—mVa/2kTe) .27 Now, v3/v,
=Kks3/k,, with k3>k, again.

=27—B(1lr) and a;(r>1)=ay(1/f). Figure 9 shows
the projection of the line of fixed points on tteg—r and
B—r planes. It may be shown that throughout the brangh
the right-hand side of Eq(24b) is positive; A, thus only
exists for LH polarization.

As in Sec. lll, the long-time attractor of the system will Three eigenvalues of the linearized vector field at the
be a point set of vanishinmhow 4D) volume, which can be fixed points have eigenvectors tangent to the invariant space
readily determined foF'=0. First, Eq.(11) is recovered from a,=0, determining the stability of flow on i,

(233 and (23b), meaning tha{for I'=0) the entire flow is
asymptotic to the spaas, =0, which is an invariant surface,
trajectories being asymptotic to its critical elements with
transverse stable manifolds.

2+ 2

)\3: 0,
(29)

— T
N o=(Y3—72) +i(v—_2a3V) ,
1,2=(Y3™ 72 12_1 12
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FIG. 9. Projection on plang#\) a;—r and(B) B8—r of branches\, andA,
of line of fixed points on invariant plares,=0, atI'’=0, given by Eqs(248
and (24b).

with the null value\ ; corresponding to an eigenvector tan-
gent toA. The eigenspace associatechtoandX , is tangent
to the invariant planea;=constant at the respective fixed
point; as seen i(29), for flow on the spaca,=0, points on
the branchA, are stable and points ofv}, are unstable. In
each planea;=a;p<a;(rma) Wwithin the spacea,=0 the
flow is determined by Eqg23c) and(23d), giving

dB  aZy1+r2)cosp—(2VaZ,— v)r
r——= .
dr afy(1-r?)sinB—(ys= yo)r

(30
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motion off that surface, all points on th&, branch are
stable, whereas only those points on thebranch with

r<~vy2lvs, (32

if any, are stable. Hence, for the flow in the entire 4D space,
the stable fixed points ol are those on the<<1 branch
satisfying condition(32).

Under conditiony/y,/ y3<rf nhax reading as

(y2+ ¥3)2+ 12
4y,3

there will be a poinPg in the arca;<a;(rma) of A, having
N,=0; points on that arc abov, [i.e., a;>a;(Pg)] will
be unstable. Note thaB3) recovers condition(16) for vy
=1v,. Under the additional condition, <<y, /vy there will
also be a poinPj in the arca;>a;(rma) of A; havinga,
=0; points on that arc abovey will also be unstable. The
full arc would be unstable in the opposite cas@zlqg
<r., which reads as

V2< (33

— 1+ y,/
V< Y2 7’3'
2\ y2lys

This condition cannot be satisfied withs="y,, when it
readsvV<1.

We may then conclude that, fér=0, and under condi-
tions (33) and (34), the attractor of the flow is the,
<ay(rmay Aj-arc belowP in the space,=0. Note thatA,
points abovePy have an 1D unstable manifold transverse to
a,=0, corresponding to the positive sign of the eigenvalue
N4. There are thus singular orbits that leave that surface at
those points and end on tiAg-points belowP,, all of which
have stable manifolds transverseagp=0 (and lie in ther
<1 domain. If the opposite of(34) holds, that is, ifP§
exists, the attractor includes tlag>a;(rma0, A;-arc above

&, but singular orbits leaving the unstable arc still end at
lower a; on the stable arc below,.

The full 3-wave model differs from the reduced 3-wave
model, for['=0, in a number of significant phase-space fea-
tures. There are sets of periodic orbits no longer; the line of
fixed pointsA covers the entire €a; <« range; there may
just exist one point or that is neutrally stable off the space
as;=a,=0. Yet, the fundamental features leading to the hard

(34

One readily verifies that, except for particular separatricesyansition in phase-space dynamics wihgis made positive,
all trajectories start and end at the fixed points that are intefgitnin some parametric subdomain, are common to both

sections of branche&, and A, with the a;, plane(2D foci
with the eigenvaluea, ,).'” Also, one can verify that once
reached the line=1 in that plane all trajectories keepess
than unity. The entire flow i630) tends to the stable focus at
r<1. In the spacea,=0, the entire flow moves from the
unstable branch,, to the stable branch, .

The eigenvalue for stability ol\-points off the surface
a,=0, which is the factor multiplyinga, in Eq. (23b), \,
=— y,+ra?sinB, can be rewritten usin24a as

:73r2_7’2
1-r2

The associated eigenvector is transverse to the sudace
=0 (parallel to thea, axis). Equation(31) shows that, for

A4 (3D

models. Fol'=0, the entire flow is asymptotic to the space
a;=a,=0; there is a line of fixed pointa in that space
with two branches having different stability character; one
branch has an stable arc of fixed points at a &gwange and

an arc unstable ofly=a,=0 at a highera; range. These
features are all that is needed for the hard transition to be
present.

VI. DISCUSSION OF RESULTS

We have truncated the derivative nonlinear Sdimger
(DNLS) equation describing the interaction of circularly po-
larized Alfven waves of finite amplitude, to explore weakly
nonlinear dynamics in the coherent cubic coupling of three
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waves near resonand8WRI), wave 1 being linearly un- Such field may excite two growing Alfvewaves at half
stable and waves 2 and 3 damped. We have consideredtlde modulation frequency and propagating along the mag-
broad scenario for chaos which several 3WRI systems, fonetic field in opposite directiorfS,each one representing the
both cubic and quadratic coupling, had exhibited: No mattemother wave 1 of our problem. This would determine a defi-
how small the growth ratE of the unstable wave there exists nite wave numbek; ~ w;/Vao= 30meq/Va - The ratioks/k,,
certain parametric domain with a fully developed attractorand thus both daughter wave numbedes and ky;=2k;
(chaotic in some subdomaithat is absent af'<<0. To ex- —Kk,, might then result from minimum-damping or
plore the structural stability of this hard transition to complexmaximum-amplitude considerations. A proper model may re-
phase-space dynamics we have considered botretheed  quire, however, an analysis that includes more than a pair of
3-wave modellequal dampings of daughter waves, leadingdaughter waves. It is here important thlga; /a,)/dt proved
to a 3D flow for wave amplitudes,, a, and a relative negative atag/a,=1 in Sec. V; that made the surfaeg
phase and thefully 3-wave modeldifferent dampings, 4D =0 effectively invariant, which was essential for the transi-
flow). Structural stability(suggested by the appearance oftion. This suggests the transition could hold under multiple-
that transition elsewhere as mentioned abaveuld be im-  wave interaction, with the excited and less damped waves
portant because any 3WRI model has limited validity. playing the fundamental role.

Both reducedand full models showed the hard transition
only occurring for left-hand circularly polarized waves, ACKNOWLEDGMENTS
paralelling the known fact that LH time-harmonic solutions ~ This work was supported by Ministerio de Ciencia y
of the DNLS equatiorifor cold plasmasare modulationally ~Tecnologia of Spain, under Grant No. BFM01-3723. Work
unstable, a case opposite RH polarized solutfoimsthere- by S. Elaskar was supported by Ministerio de Ciencia y Tec-
ducedmodel, transition occurs at damping less than abounologia of Spain, under Grant No. SB01-0080.
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