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The derivative nonlinear Schro¨dinger ~DNLS! equation, describing propagation of circularly
polarized Alfvén waves of finite amplitude in a cold plasma, is truncated to explore the coherent,
weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable
and the other waves damped. In areducedthree-wave model~equal dampings of daughter waves,
three-dimensional flow for two wave amplitudes and one relative phase!, no matter how small the
growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic
relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space
behavior occurs for left-hand~LH! polarized waves, paralleling the known fact that only LH
time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than
about ~unstable wave frequency!2/43ion cyclotron frequency. The structural stability of the
transition was explored by going into afully 3-wave model~different dampings of daughter waves,
four-dimensional flow!; both models differ in significant phase-space features but keep common
features essential for the transition. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1691453#

I. INTRODUCTION

Nonlinear Alfvén-wave interactions may be present in
astrophysical, space and laboratory plasmas, with effects that
range from heating to driving of current. A recent space ex-
ample involves orbiting conductive tethers, which, if in elec-
trical contact with the ionosphere, radiate Alfve´n waves.1 A
steady current flowing along a tether results in continual
charge exchange with the ambient plasma, circuit closure
being accomplished by charge-carrying Alfve´n waves ex-
cited in the ionosphere by the passage of the system. Wave
structures~called Alfvén wings! attached at or near both
tether ends present an Airy-functions behavior if linearly
described.2 Nonlinear effects, which should appear at the
near wave front, might be affected by the magnetic self-field
generated by the very current of the tether.3

An Airy-like linear structure is a feature common in
fronts of dispersive waves radiated by a moving source, as
with ion-acoustic waves excited by a charged body moving
mesothermally in a low ion-temperature plasma; the nonlin-
ear wave front is then described by the Korteweg–de Vries
equation.4 In the case of Alfve´n waves, some strong nonlin-
ear effects are known to be described by the derivative non-
linear Schro¨dinger ~DNLS! equation,5 which admits soliton
solutions6 and has proved amenable to the inverse scattering
method for obtaining general solutions.7 A variety of behav-
iors allowed by the DNLS equation and its modifications
have been analyzed.8

Here we show how the DNLS equation may also serve
to describe weak nonlinear effects represented by the coher-
ent coupling of a few waves, and we explore its complex
dynamics. The local, coherent interaction of three waves at
or near resonance~3WRI! is an ubiquitous feature of nonlin-

ear mediums. The 3WRI is especially important in both un-
magnetized and magnetized plasmas, where dispersive ef-
fects can keep nonlinearities weak and electromagnetic
waves make coupling to external energy sources easy. The
3WRI has been extensively studied and remains a basic non-
linear paradigm.9

The 3WRI evolution for lossless quadratic coupling,
with a mode linearly unstable and the two other modes
equally damped, is described by a three-dimensional~3D!
flow of two wave amplitudes and one relative phase~a re-
duced 3-wave interaction!. If damping rates exceed the
growth rateG of the unstable mode the system is attracted to
point sets of vanishing 3D volume, and its long-time behav-
ior may be chaotic.10–12For smallG, a consistent analysis of
the flow using a multiple time-scales method, led to an 1D
chaotic map.13 Actually, the system exhibits a hard transition
to complex phase-space dynamics: no matter how smallG.0
there exists a fully developed attractor that is absent atG<0
and is chaotic for some parametric domain; this is an ex-
ample of a broad scenario for chaos also present in the reso-
nant coupling of two oscillators at frequency ratio 2:q, q
integer, with the first oscillator unstable.14 For quadratic cou-
pling ~corresponding toq51 in the two-oscillator case!, the
hard transition and the effects of noise have been experimen-
tally verified using electronic oscillators;15 also, the hard
transition was found to persist when the daughter waves had
unequal dampings, the flow then being 4D rather than
3D.16,17

Cubic interaction, corresponding toq52 ~or 1:1 fre-
quency ratio! in the two-oscillator case, allows a variety of
coupling structures. Areduced3-wave truncation of the non-
linear Schro¨dinger equation showed chaotic behavior at finite
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G;18 a hard transition was encountered in a two-oscillator
model of a spherical swing.14,19 In the present paper we ex-
plore weakly nonlinear dynamics in a truncation of the
DNLS equation that shows more complex cubic coupling, in
both reducedand full 3-wave models. We want, in particular,
to ascertain whether gross features in dynamical behavior,
like fully developed phase-space attractors atG501, are
structurally stable, as suggested by their appearance for qua-
dratic coupling in both 3D and 4D flows, and for the particu-
lar cubic coupling of Refs. 14 and 19.

Structural stability would be important because a 3WRI
model may fail on a number of conditions it requires. Coher-
ence is lost, leading to a random-phase approximation, when
the interaction time exceeds the inverse frequency widths of
the modes.20,21 The 3WRI model will also, strictly, fail for
wave amplitudes so large that the interaction time drops to
values comparable with wave periods.22 Dynamics just tem-
poral, rather than spatiotemporal, may require long uniform
wave trains or standing waves;23 multiple waves may be
involved.24,25

In Sec. II we present thereduced3-wave model of the
DNLS equation. In Sec. III we analytically determine the
G50 attractor of the system. In Sec. IV we derive analytical
and numerical results on the small, positiveG attractor~s!.
The full 3-wave model~daughter waves with different damp-
ings! is considered in Sec. V. A discussion is given in Sec.
VI.

II. REDUCED 3-WAVE MODEL OF THE DNLS
EQUATION

The derivative nonlinear Schro¨dinger equation describes
the evolution of circularly polarized Alfve´n waves of finite
amplitude propagating along an unperturbed uniform mag-
netic field in a cold, homogeneous and lossless plasma. The
description uses a two-fluid, quasineutral approximation
~with electron inertia and current displacement neglected!.
Taking the unperturbed magnetic fieldB0 in the z direction,
the DNLS equation reads5–8
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wheref, t, andz are dimensionless perturbed field and vari-
ables,
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vci is the ion cyclotron frequency andVA is the Alfvén ve-
locity. The upper~lower! sign in Eqs.~1! and~2! corresponds
to a left-hand~right-hand! circularly polarized wave propa-
gating in the z direction; ĝ would be some appropriate
growth/damping linear operator.18 Equation ~1! is derived
under the following ordering scheme for perturbed quantities
~n andvz are plasma density and velocity along thez axis!:
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To study weakly nonlinear interactions, we consider an
approximate solution of Eq.~1! consisting of three traveling
waves,

f52(
j 51

3

f j~ t !eil j , l j5kjz2v j t, ~3!

satisfying a resonance condition 2k15k21k3 . Wave number
and frequency of modes are related by the linear~lossless!
dispersion relation for circularly polarized Alfve´n waves at
low wave number,v j5kj7kj

2/2, or in dimensional form
(v→v/vci , k→kVA /vci , k[kz.0),

v j5VAkj S 17
1

2

VAkj
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D . ~4!

Both the growth/damping and the nonlinear term in~1! make
the complex amplitudesf j vary slowly in time. Introducing
Eq. ~3! in ~1! and considering only thek1 , k2 , andk3 com-
ponents one arrives at

ḟ11g1f11 ik1@~ uf1u212uf2u212uf3u2!f1

12f1* f2f3eint#50, ~5a!

ḟ21g2f21 ik2@~2uf1u21uf2u212uf3u2!f2

1f1
2f3* e2 int#50, ~5b!

ḟ31g3f31 ik3@~2uf1u212uf2u21uf3u2!f3

1f1
2f2* e2 int#50, ~5c!

where ḟ j is df j /dt and n[2v12v22v3 is a frequency
mismatch. We assume that all other components, in particu-
lar those involving wave numbers 2k22k1 , 2k32k1 , 2k2

2k3 , and 2k32k2 , arising from using~3! in the nonlinear
term of Eq.~1!, are strongly damped.18

Setting f j (t)5aj (t)exp@icj(t)# in Eqs. ~5a!–~5c! with
aj , c j real, and using the resonance condition, the above
three complex equations are reduced to four real equations,

ȧ152g1a12~k21k3!a1a2a3 sinb, ~6a!

ȧ252g2a21k2a1
2a3 sinb, ~6b!

ȧ352g3a31k3a1
2a2 sinb, ~6c!
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22a2

2#2k3@a1
22a3

2#, ~6d!

whereb[p1nt1c21c322c1 .
At this point and throughout Secs. II–IV we restrict the

analysis, for simplicity, to the caseg25g3[g and return to
the full 3-wave system in Sec. V. Multiplying Eq.~6b! by
2k3a2 , Eq. ~6c! by 2k2a3 , and subtracting from each other
there results

d

dt
~k3a2

22k2a3
2!522g~k3a2

22k2a3
2!; ~7!

Eq. ~7! showsk3a2
22k2a3

2 ~but nota2
2 or a3

2) to decay expo-
nentially with time. For a study of the long-time behavior of
the system, we may then takek3a2

25k2a3
2 from the outset.
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Note that the frequency mismatch is positive and negative
for left-hand~LH! and right-hand~RH! polarization, respec-
tively, using Eq.~4! one finds in dimensional form

n

vci
'6S v1

vci
D 2S k22k3

k21k3
D 2

. ~8!

This sign difference will later be shown to lead to fundamen-
tally different dynamics for the two polarizations. Finally we
may both takek3,k2 and equal signs fora2 anda3 with no
loss of generality~for opposite signs, settingb→p1b would
again leave the system invariant!; also, we may take all three
a1 , a2 , a3 positive.

Writing g1[2G,0 and introducing new variables

Ak2k3a1
2→a1

2, ~k21k3!Ak3 /k2a2
2→a2

2,

system~6a!–~6d! is reduced to three real nonlinear equa-
tions,

ȧ15Ga12a1a2
2 sinb, ~9a!

ȧ252ga21a1
2a2 sinb, ~9b!

ḃ5n22~a1
22a2

2!~V̄2cosb!2a2
2/V̄, ~9c!

where

V̄[
11k3 /k2

2Ak3 /k2

.1, S k3

k2
,1D . ~10!

The limit caseV̄51 would exactly recover a truncation of
the 1D nonlinear Schro¨dinger equation describing the para-
metric excitation of linearly damped waves by the oscillating
two-stream instability in plasmas.18 We also note that some
resonant interactions of two oscillators with frequency ratio
1:1, which have been analyzed by Lo´pez-Rebollal and San-
martin, are described by system~9a!–~9c! with the last term
in ~9c! missing.14,19

III. GÄ0 ATTRACTOR FOR THE REDUCED 3-WAVE
MODEL

In this section we discuss analytical results that can be
readily obtained from system~9a!–~9c! and we determine its
G50 attractor. A trivial result concerns the flow divergence
in ~3D! phase-spacea1

2, a2
2, andb, reading
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Nonlinear conservative coupling naturally preserves volume.
For G,g, as assumed here, the long-time attractor of the
system will be a point-set of vanishing 3D volume.

Again from system~9a!–~9c! one obtains equations that
would represent conservation laws in the no-dissipation
limit,

d
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~a1

21a2
2!52Ga1

222ga2
2, ~11!

d

dt Fa2
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a2
2

2V̄
D G52Ga2
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2S h02
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2

V̄
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~12!

where

h0~a1 ,b![ḃ~a250!5n22a1
2~V̄2cosb!. ~13!

For G5g50, Eq. ~11! rewritten in the original variables
would be a Manley–Rowe relation for conservation of action
density in wave packets that follow Hamiltonian dynamics.
Equation ~7! would be a second Manley–Rowe relation:
since phasesc j only enter Eqs.~6a!–~6d! through the com-
bination 2c12c22c3 , there would be two cyclic angular
coordinates in the full 3-wave case. Equation~12! with
G5g50, in turn, can be shown to express energy conserva-
tion when the constant-action laws are taken into account.

We note next that Eq.~9b! shows the planea250 to be
invariant. When combined with Eq.~12! it yields

d

dt Fh02
a2

2

2V̄
G522a1

2 sinb3Fh02
a2

2

2V̄
G

1g
a2

2

V̄
12G~h02n!. ~14!

In the conservative case, the surfaceh0(a1 ,b)2a2
2/2V̄50,

which only exists for frequency mismatchn.0, i.e., for LH
polarization, would be invariant. In what follows we will
only consider LH polarization.

For G,0, Eq. ~11! proves the equilibrium statea15a2

50 to be a global attractor. This equilibrium is unstable for
G.0. In this section we consider the long-time attractor of
system~9a!–~9c! at G50. Note that the entire flow is now
asymptotic to the surfacea250, becausea1

21a2
2 will keep

diminishing in Eq.~11! unlessa2 vanishes. Since that surface
is invariant, trajectories should be asymptotic to its critical
elements with transverse stable manifolds.

Consider then the flow ona250 at G50, Eq. ~9a! then
yielding a15constant. The intersection of the planea250
and the cylindrical surfaceh0(a1 ,b)50 is a lineL of fixed
points,

a250, ~15a!

h0[n22a1
2~V̄2cosb!50. ~15b!

Figure 1 shows bothL and the surfaceh050 for V̄.1; L
would reach up to infinity forV̄51. Linearizing the vector
field at the fixed points we find eigenvaluesl1522a1

2

3sinb, and l250, for eigenvectors tangent to the linea1

5constant through the corresponding fixed point, and tan-
gent toL, respectively. From the sign ofl1 it follows that,
for flow on a250, L points withb,p are stable andb.p
points are unstable; twoa15constant heteroclinic orbits join
each symmetric pair ofL points.

The third eigenvalue is clearly the factor multiplyinga2

in Eq. ~9b!, l352g1a1
2 sinb, with the associated eigenvec-

tor parallel to thea2 axis. It follows that for motion offa2

50 theb.p branch is stable, whereas in the branchb,p,
under condition

V̄2,11~n/2g!2, ~16!

there are pointsP0 andP0* that havel350 and are given by

a1
25

g

sinb
5

V̄n7An224g2~V̄221!

2~V̄221!
~17!
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for 2 and 1 signs, respectively, withb(P0* ),p/2 always,
but b(P0).p/2 for n/2g.V̄. Only L points in the arc
P0P0* are unstable offa250. For the flow in the entire 3D
space the stable fixed points are those in theb,p branch of
L below P0 and aboveP0* . Note thata1(P0* )→` as V̄
→1.

In the planea250 there is another type of critical ele-
ments. There are periodic orbits that move below the bottom
Q of L at constanta1,a1Q , from b50 to b52p, and that
are described by Eq.~9c! now readingḃ5h0(a1 ,b); again,
there are periodic orbits aboveQ* in Fig. 1. @Their period is
p/@(V̄a10

2 2n/2)22a10
4 #1/2, which diverges for a10

5a1Q (a105a1Q* ), when the periodic orbit becomes an ho-
moclinic trajectory atQ (Q* ), as seen in the figure.# Clearly,
a250 perturbations of any such orbits leave the system
moving in another nearby orbit. Also, all these periodic or-
bits are stable offa250: At vanishing a2 we have ḃ
5O(1) whereasa1 changes at a rate of ordera2

2; taking
d(lna2)/dt from ~9b!, its average over a period is2g,0, the
contribution of the sinb term vanishing.

Under condition~16! one may say that the stable arc
QP0 and the periodic orbits belowQ make up one attractor
of the flow and the stable arcP0* Q* and the periodic orbits
aboveQ* make up a second attractor. There is a fundamen-
tal difference between these two attractors however. SinceL
points in the arcP0P0* have an 1D unstable manifold trans-
verse toa250 there exist singular, heteroclinic orbits that
leave this plane at those points, and return to it at a lowera1 ,
as seen from Eq.~11! with G50. Equation~14! with G50
proves that an orbit leavingL betweenP0 and P0* has the
quantity h02a2

2/2V̄, and thereforeh0 itself, non-negative
thereafter, corresponding to it moving below the cylindrical
surfaceh0(a1 ,b)50 ~Fig. 1!. The singular orbit may reach a
point in the arcQP0 from the left, keepingb,p throughout,
or may approach the set of periodic orbits. It may also pass
just below the surfaceh0(a1 ,b)50 to reach the rangeb.p

still off the planea250, makingȧ1 positive in Eq.~9a!; the
orbit will then emerge atb50 with a1.a1Q and again reach
a point in the arcQP0 from the left.

IV. G\0¿ ATTRACTOR

WhenG is made positive under condition~16!, assumed
here, there are just two fixed points,P and P* , given by
equations

n sinb52~g2G!~V̄2cosb!1G/V̄, ~18a!

g/a1
25sinb, ~18b!

G/a2
25sinb, ~18c!

which recover~17! for P0 andP0* asG→0. The characteris-
tic equation for the stability of those two points is

~l12g22G!~l214gG!

1
2gG

tanb F l

sinb H 1

V̄
24~V̄2cosb!J 22nG50. ~19!

For G50, Eq. ~19! again recovers the valuesl1522g, l2

5l350 of Sec. III. ForG positive and small, one finds to
orderAG,

l2,3~P* !'6A4 n224g2~V̄221!3A2G3a1~P0* !; ~20!

P* at small G is thus a saddle node with a 1D unstable
manifold.

For the stability ofP we must go to orderG,

l2,3~P!'6 iA4 n224g2~V̄221!3A2G3a1~P0!1l̄G,
~21!

l̄[
1

2 tanb S n

g
2

1

V̄ sinb D .

The sign ofl̄ is obtained by takingb(n/g,V̄) from Eq. ~17!
with the upper sign. We find thatP, which only exists under
condition ~16! and is defined forV̄.1, is stable above the
line (n/2g)25V̄2 @with b(P0).p/2 as noticed in Sec. III#
and below the line

S n

2g D 2

5
1

8V̄224V̄421
~ for V̄2, 3

2! ~22!

in the parametric plane (n/2g)2, V̄2. PointP goes through a
Hopf bifurcation,l̄ becoming positive, when crossing either
line. Figure 2 summarizes the stability ofP for G→01. Fig-
ure 3 uses Eqs.~8! and~10! to represent stability domains in
terms of parametersk3 /k2 and vcig/VA

2k1
2, where VAk1

'v1 .
Now consider the long-time behavior of the system forG

very small. Away from the surfacea250 the flow will
closely follow G50 trajectories. If a trajectory approaches a
periodic orbit aboveQ* , the termGa1 in Eq. ~9a! will make
a1 ultimately diverge, as the system slowly drifts through the
set of periodic orbits; if theG50 trajectory approaches the
arc P0* Q* , the system will first havea1 slowly rising along
and very close toL, until reaching the set of periodic orbits

FIG. 1. LineL of fixed points on invariant planea250 at G50, and peri-
odic orbits above and below; forb,p only the arcsQP0 and P0* Q* are
stable offa250. Also shown is the cylindrical surfaceh0(a1 ,b)50.
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at point Q* . The case forG50 trajectories approaching ei-
ther the arcQP0 or the periodic orbits below is dramatically
different.

Consider flow in the vicinity of theG50 heteroclinic
orbit corresponding to aL-point M on theP0P0* arc, in the
approach back to the surfacea250, below P0 . If the orbit
approaches some pointm betweenQ andP0 and because of
the termGa1 , a1 should eventually start growing at rateG,
keeping close toL. In terms of the eigenvaluel3 of Sec. III,
Eq. ~9b! can be written as da2 /dt5l3a2 ; sincel3 is nega-
tive for L points belowP0 and positive fromP0 to P0* , and
the a1 rise takes times of order 1/G, a2 will become expo-
nentially small (2 ln a2;1/G). OnceP0 is reached, however,
a2 will start growing; when valuesa2;AG are attained,a1

can finally reach a maximumM 8 below P0* , and the trajec-
tory again start separating fromL. If the heteroclinic orbit
approaches some periodic orbit belowQ, a1 will first slowly
increase while the system drifts among the lower set of pe-
riodic orbits to reachL.

In the parametric domain of Fig. 2 whereP is stable,
trajectories starting within somebassinof attraction in phase
space have a sequence of pointsM, m, M 8,..., converging to
point P as given, to lowest order inG, by Eqs.~17! anda2

2

5G3a1
2/g. The general attractor structure following the loss

of stability of P at crossing lineB ~or C! at fixed V̄, giving
rise to a limit cycle, depends on the value ofV̄. At V̄ very
close to unity the set of periodic orbits is rarely involved in
the attractor. Figure 4 shows a limit-cycle attractor forV̄

561/60 (k3 /k2525/36), G/g50.001 and n/g51.3 ~with
g51!, which is determined by numerically following a single
trajectory for long times; Fig. 5 shows a map for the attractor
of Fig. 4. Figure 6 shows a chaotic attractor for the same

values ofV̄ andG/g, andn/g52.0. Periodic orbits are usu-
ally involved at greaterV̄. Figures 7 and 8 show the lower
parts of a limit 2-cycle attractor and of a chaotic attractor
projected in thea1 , b plane, for V̄513/12 (k3 /k254/9),
G/g50.001 and two values ofn/g. For V̄2.3/2 (k3 /k2,2
2A3), and above but close to lineA in Fig. 2, the arcPP0 is
short, leavinga2 still exponentially small when the system
reachesP0* ; with a2 decreasing andȧ1 remaining positive
thereafter,a1 will diverge, as in the case of trajectories ap-
proaching the arcP0* Q* .

Consider the limit cycle in Fig. 4. In general, aG→01

attractor nested somehow around pointP may be described
by an exact 1D map representing every maximum of
a1 (a1M8) in a trajectory within its bassin of attraction, ver-
sus the preceding maximum (a1M). This map can be deter-
mined by a two-step algorithm. In the first step, one numeri-
cally follows the heteroclinic orbit from any pointM in the
P0P0* arc ofL to the corresponding pointm below P0 . The
second step is the rise onL at vanishing rate~G→0, t
;1/G) up to the next maximumM 8, which can be analyti-
cally determined by noting that, no matter how close the
solution to a heteroclinicM→m orbit, Eq. ~9a! will ulti-
mately readda1 /dt5Ga1 .

Using da2 /dt5l3a2 , one obtains

a1
2 sinb2g

a1
da15Gd ln a2 ,

with a1 and b related through the equationh0(a1 ,b)[0.
The integral of the left-hand side above, for the entire rise
from m to M 8 @with ln(1/a2) small compared with 1/G at
either end#, will vanish in the limitG→01. We thus find an
equation relating pointsm andM 8 for the slow rise onL,

GS zM8 ,V̄,
g

n
AV̄221D5GS zm ,V̄,

g

n
AV̄221D ,

z[~V̄221!
2

n
a1

22V̄,

FIG. 2. Stability of fixed pointP at G→01, in parametric plane (n/2g)2,
V̄2. LinesA, (n/2g)25V̄221; B, (n/2g)25V̄2; C, given by Eq.~22!.

FIG. 3. Stability of fixed pointP at G→01, in parametric planevcig/VA
2k1

2,
k3 /k2 .

FIG. 4. Limit 1-cycle attractor forV̄561/60 (k3 /k2525/36), G/g50.001,
n/g51.3, settingg51.
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G[A12z21V̄ sin21 z2AV̄221 sin21S 11V̄z

V̄1z
D

2
2gAV̄221

n
ln~V̄1z!.

Figure 5 shows thisG→01 limit map of the sequence of
maximaa1M for the values ofV̄, n, andg of Fig. 4. The map
has two fixed points, where it cuts the diagonal. One~un-
stable! fixed point of the map is the fixed point of the flow
P'P0 , lying at a1 just above unity. The second~stable!
fixed point of the map corresponds to the maximum in the
limit cycle, lying at a1 just above 1.5. Between both fixed
points the map lies barely above the diagonal. Figure 5 also
shows, to the right of the limit-cycle maximum, the ap-
proaching sequence of maxima for a single trajectory, at the
values ofV̄, n, and g indicated, withG/g50.001, in good
agreement with the limit map; this is more clearly seen in the
zoom of the inset.

The inset of Fig. 6 shows the lower part of the chaotic
attractor projected on the planea1 , b. The inset shows
clearly a fork in the attractor, with the trajectory sometimes
approaching theb,p branch ofL from the right. This is
possible because the last term in Eq.~14! can make
h0(a1 ,b) negative whena2 reaches down to values of order
of G, the trajectory crossing above the cylindrical surface
h0(a1 ,b)50.

Consider now Figs. 7 and 8. If theG50 heteroclinic
orbit leaving some pointM in the arcP0P0* approaches a
periodic orbit belowQ with a15a1m , we will first havea1

slowly increasing while the system drifts among the lower
set of periodic orbits to reachL. During this rise Eq.~9c!
will read ḃ5h0(a1 ,b)5O(1). With thecontribution of the
sinb term in ~9b! averaging out during that stage, the overall
relation betweenm andM 8 would come out to be

GS zM8 ,V̄,
g

n
AV̄221D52

p

2
~V̄2AV̄221!

2
2gAV̄221

n
ln~V̄1zm!.

V. FULL 3-WAVE MODEL OF THE DNLS EQUATION

We now briefly consider how changing to a full 3-wave
model affects the dynamics of the system. In Eqs.~6a!–~6d!
we set

a1
2→

a1
2

Ak2k3

, a2
2→

a2
2

k21k3
Ak2

k3
,

FIG. 5. 1D map ofa1M maxima for the attractor of Fig. 4, with fixed points
at the fixed pointP of the flow, unstable, and at thea1M maximum of the
limit cycle ~LC!, stable. The crosses correspond to the sequence of maxima
determined numerically on a single trajectory; the continuous line is the
exactG→01 map. The inset shows another view of the limit map.

FIG. 6. Chaotic attractor forV̄561/60 (k3 /k2525/36), G/g50.001, and
n/g52.0 with g51. Also shown is the lower part of the attractor projected
on thea1–b plane.

FIG. 7. Lower part of limit 2-cycle attractor projected on thea1–b plane,
for V̄513/12 (k3 /k254/9), G/g50.001, andn/g51.601 22 withg51.
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a3
2→

a3
2

k21k3
Ak3

k2
,

and, assumingg2,g3 , introduce a new variable,

r[a3 /a2 ,

to replacea3 . We then find

ȧ15Ga12ra1a2
2 sinb, ~23a!

ȧ252g2a21ra1
2a2 sinb, ~23b!

ṙ 52~g32g2!r 1~12r 2!a1
2 sinb, ~23c!

ḃ5n22a1
2S V̄2

11r 2

2r
cosb D22ra2

2

3cosb1
a2

2

2V̄
S k2

k3
1r 2

k3

k2
D , ~23d!

with V̄(,1) andk3 /k2 still related by Eq.~10!, where we do
not needk3 /k2,1. For g35g2 the solutionr 51 of Eq.
~23c! would recover system~9a!–~9c! in Eqs. ~23a!, ~23b!,
and ~23d!. Note also that if a trajectory reaches the surface
r 51, r will remain less than unity thereafter in Eq.~23c!; the
3D spacea250 will then be invariant.

If damping is resistive one hasg5resistivity 3e0c2k2

or, in dimensionless form~setting g→g3vci , k→k
3vci /VA), g'k2/2vcete , wherevce and te are electron
cyclotron frequency and Braginskii collision time,
respectively.26 We then haveg3 /g25(k3 /k2)2 with k3

.k2 . For near-parallel propagation at angleu!A2Av/vci

and nonzero electron temperatureTe , we may have Landau
damping, reading in dimensionless form,g5ku23(me /mi)
3(pkTe/32meVA

2)1/23exp(2meVA
2/2kTe).

27 Now, g3 /g2

5k3 /k2 , with k3.k2 again.
As in Sec. III, the long-time attractor of the system will

be a point set of vanishing~now 4D! volume, which can be
readily determined forG50. First, Eq.~11! is recovered from
~23a! and ~23b!, meaning that~for G50! the entire flow is
asymptotic to the spacea250, which is an invariant surface,
trajectories being asymptotic to its critical elements with
transverse stable manifolds.

Next, we consider the flow ona250, wherea1 is now
constant in~23a!. There exists a line of fixed pointsL given
by the equations

~g32g2!r 5a1
2~12r 2!sinb, ~24a!

nr 5a1
2@2V̄r 2~11r 2!cosb#. ~24b!

Eliminatinga1 in ~24a! and~24b! yields a relation betweenb
and r that can be written as

cos@b2b* ~r !#5
2V̄r

D
, ~25!

where we defined

b* [cos21
11r 2

D
, D[A~11r 2!21~12r 2!2n̄2,

n̄[
n

g32g2
.

A solution to Eq.~25! for b(r ) only exists if the RHS does
not exceed unity, requiring

0,r<r max,1, or 1/r max<r ,`,
~26!

r max
2 [a2Aa221, a[

n̄212V̄221

n̄211
.1;

only for V̄51, ~i.e., k35k2 making a51!, would r reach
unity. The line of fixed points has therefore two branches,L l

for r ,1 andLh for r .1.
For branchL l , b l(r ) is given by

b l5cos21
11r 2

D
6cos21

2V̄r

D
. ~27!

The plus sign in Eq.~27! applies asa1 is increased from 0 to
a1(r max), given as

a1~r max!/An5A~11 n̄2!V̄/2n̄2~V̄221!;

b l decreases from cos21(1/A11 n̄2)1p/2 to
cos21(A11 n̄2/V̄2/A11 n̄2); and r increases from 0 tor max.
For greatera1 the minus sign applies in~27!, andr decreases
with increasinga1 ; asa1→` one findsb l→0 and

r→r `[V̄2AV̄221. ~28!

Note that botha1 andb l are double-valued functions of
r betweenr ` and r max. For branchLh we havebh(r .1)
52p2b l(1/r ) and a1h(r .1)5a1l(1/r ). Figure 9 shows
the projection of the line of fixed points on thea1–r and
b –r planes. It may be shown that throughout the branchL l

the right-hand side of Eq.~24b! is positive; L l thus only
exists for LH polarization.

Three eigenvalues of the linearized vector field at the
fixed points have eigenvectors tangent to the invariant space
a250, determining the stability of flow on it,

l1,25~g32g2!
r 211

r 221
6 i ~n22a1

2V̄!
r 221

r 211
, l350,

~29!

FIG. 8. Lower part of chaotic attractor projected on thea1–b plane, for
V̄'13/12 (k3 /k254/9), G/g50.001,n/g51.6, andg51.
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with the null valuel3 corresponding to an eigenvector tan-
gent toL. The eigenspace associated tol1 andl2 is tangent
to the invariant planea15constant at the respective fixed
point; as seen in~29!, for flow on the spacea250, points on
the branchL l are stable and points onLh are unstable. In
each planea15a10,a1(r max) within the spacea250 the
flow is determined by Eqs.~23c! and ~23d!, giving

r
db

dr
5

a10
2 ~11r 2!cosb2~2V̄a10

2 2n!r

a10
2 ~12r 2!sinb2~g32g2!r

. ~30!

One readily verifies that, except for particular separatrices,
all trajectories start and end at the fixed points that are inter-
sections of branchesL l andLh with the a10 plane~2D foci
with the eigenvaluesl1,2).

17 Also, one can verify that once
reached the liner 51 in that plane all trajectories keepr less
than unity. The entire flow in~30! tends to the stable focus at
r ,1. In the spacea250, the entire flow moves from the
unstable branchLh to the stable branchL l .

The eigenvalue for stability ofL-points off the surface
a250, which is the factor multiplyinga2 in Eq. ~23b!, l4

52g21ra1
2 sinb, can be rewritten using~24a! as

l45
g3r 22g2

12r 2
. ~31!

The associated eigenvector is transverse to the surfacea2

50 ~parallel to thea2 axis!. Equation~31! shows that, for

motion off that surface, all points on theLh branch are
stable, whereas only those points on theL l branch with

r ,Ag2 /g3, ~32!

if any, are stable. Hence, for the flow in the entire 4D space,
the stable fixed points ofL are those on ther ,1 branch
satisfying condition~32!.

Under conditionAg2 /g3,r max, reading as

V̄2,
~g21g3!21n2

4g2g3
, ~33!

there will be a pointP0 in the arca1,a1(r max) of L l having
l450; points on that arc aboveP0 @i.e., a1.a1(P0)] will
be unstable. Note that~33! recovers condition~16! for g3

5g2 . Under the additional conditionr `,Ag2 /g3 there will
also be a pointP0* in the arca1.a1(r max) of L l havingl4

50; points on that arc aboveP0* will also be unstable. The
full arc would be unstable in the opposite case,Ag2 /g3

,r ` , which reads as

V̄,
11g2 /g3

2Ag2 /g3

. ~34!

This condition cannot be satisfied withg35g2 , when it
readsV̄,1.

We may then conclude that, forG50, and under condi-
tions ~33! and ~34!, the attractor of the flow is thea1

,a1(r max) L l-arc belowP0 in the spacea250. Note thatL l

points aboveP0 have an 1D unstable manifold transverse to
a250, corresponding to the positive sign of the eigenvalue
l4 . There are thus singular orbits that leave that surface at
those points and end on theL l-points belowP0 , all of which
have stable manifolds transverse toa250 ~and lie in ther
,1 domain!. If the opposite of~34! holds, that is, ifP0*
exists, the attractor includes thea1.a1(r max), L l-arc above
P0* , but singular orbits leaving the unstable arc still end at
lower a1 on the stable arc belowP0 .

The full 3-wave model differs from the reduced 3-wave
model, forG50, in a number of significant phase-space fea-
tures. There are sets of periodic orbits no longer; the line of
fixed pointsL covers the entire 0,a1,` range; there may
just exist one point onL that is neutrally stable off the space
a35a250. Yet, the fundamental features leading to the hard
transition in phase-space dynamics whenG is made positive,
within some parametric subdomain, are common to both
models. ForG50, the entire flow is asymptotic to the space
a35a250; there is a line of fixed pointsL in that space
with two branches having different stability character; one
branch has an stable arc of fixed points at a lowa1 range and
an arc unstable offa35a250 at a highera1 range. These
features are all that is needed for the hard transition to be
present.

VI. DISCUSSION OF RESULTS

We have truncated the derivative nonlinear Schro¨dinger
~DNLS! equation describing the interaction of circularly po-
larized Alfvén waves of finite amplitude, to explore weakly
nonlinear dynamics in the coherent cubic coupling of three

FIG. 9. Projection on planes~A! a1–r and~B! b –r of branchesL l andLh

of line of fixed points on invariant planea250, atG50, given by Eqs.~24a!
and ~24b!.
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waves near resonance~3WRI!, wave 1 being linearly un-
stable and waves 2 and 3 damped. We have considered a
broad scenario for chaos which several 3WRI systems, for
both cubic and quadratic coupling, had exhibited: No matter
how small the growth rateG of the unstable wave there exists
certain parametric domain with a fully developed attractor
~chaotic in some subdomain! that is absent atG<0. To ex-
plore the structural stability of this hard transition to complex
phase-space dynamics we have considered both thereduced
3-wave model~equal dampings of daughter waves, leading
to a 3D flow for wave amplitudesa1 , a2 and a relative
phase! and thefully 3-wave model~different dampings, 4D
flow!. Structural stability~suggested by the appearance of
that transition elsewhere as mentioned above! would be im-
portant because any 3WRI model has limited validity.

Both reducedand full models showed the hard transition
only occurring for left-hand circularly polarized waves,
paralelling the known fact that LH time-harmonic solutions
of the DNLS equation~for cold plasmas! are modulationally
unstable, a case opposite RH polarized solutions.6 In the re-
ducedmodel, transition occurs at damping less than about
0.253~wave-1 frequency!2/ion cyclotron frequency. A num-
ber of features determine the phase-space dynamics of the
transition: ForG50, the entire flow is asymptotic to the
spacea35a250, where a line of fixed pointsL covers a
limited a1 range with periodic orbits below and above that
range. A branch ofL has an arc of fixed points unstable off
the spacea35a250, in between stable arcs; singular, het-
eroclinic orbits off the unstable arc return to that space at
lower a1 . Chaotic attractors involve repeated slow rises on
L, and possibly in the lower set of periodic orbits, followed
by fast motion along the heteroclinic orbits. In the full
3-wave model there are no sets of periodic orbits; the line of
fixed pointsL covers the entire 0,a1,` range; there may
exist just 1L-arc stable off the spacea35a250.

The easiest feature to detect in the transition would be
the associated sudden break ina2 behavior. The strictG
→01 limit has theoretical interest but is impractical; during
the slow rises onL, time would diverge anda2 would drop
below any noise level.15 The basic feature to consider in
practical terms is thata2 keeps null for negativeG whereas,
at G positive and finite, but small compared with dampings
and with frequency mismatch, the ratioa2 /a1 changes re-
peatedly from almost vanishing values during the long times
on L to values of order unity in the short times near hetero-
clinic orbits. Our scenario for chaos is a hard transition to
relaxationoscillations that can be chaotic.

The DNLS equation has been used in relation to nonlin-
ear MHD waves observed in the Earth’s bow shock.28 In our
model, the required growth rateG could result, in general,
from some plasma instability, due, say, to a beam–plasma
interaction or to the plasma carrying a current that makes for
negative Landau damping. The plasma does carry a current
in the tether case. More to the point, however, tether signal
detection would require modulating the current in the tether
circuit, the Alfvén-radiation impedance being weak in the
case of a steady tether current.1 The magnetic self-field of the
tether3 would then result in a background magnetic field time
modulated~at some frequencyvmod).

Such field may excite two growing Alfve´n waves at half
the modulation frequency and propagating along the mag-
netic field in opposite directions,29 each one representing the
mother wave 1 of our problem. This would determine a defi-
nite wave numberk1'v1 /VA5 1

2vmod/VA . The ratiok3 /k2 ,
and thus both daughter wave numbersk2 and k352k1

2k2 , might then result from minimum-damping or
maximum-amplitude considerations. A proper model may re-
quire, however, an analysis that includes more than a pair of
daughter waves. It is here important thatd(a3 /a2)/dt proved
negative ata3 /a251 in Sec. V; that made the surfacea2

50 effectively invariant, which was essential for the transi-
tion. This suggests the transition could hold under multiple-
wave interaction, with the excited and less damped waves
playing the fundamental role.
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