
Author's Accepted Manuscript

MPEG-M: A Digital Media Ecosystem for
Interoperable Applications

Panos Kudumakis, Mark Sandler, Angelos-
Christos G. Anadiotis, Iakovos S. Venieris,
Angelo Difino, Xin Wang, Giuseppe Tropea,
Michael Grafl, Víctor Rodríguez-Doncel, Silvia
Llorente, Jaime Delgado

PII: S0923-5965(13)00166-5
DOI: http://dx.doi.org/10.1016/j.image.2013.10.006
Reference: IMAGE14817

To appear in: Signal Processing: Image Communication

Received date: 5 April 2013
Revised date: 23 October 2013
Accepted date: 23 October 2013

Cite this article as: Panos Kudumakis, Mark Sandler, Angelos-Christos G.
Anadiotis, Iakovos S. Venieris, Angelo Difino, Xin Wang, Giuseppe Tropea,
Michael Grafl, Víctor Rodríguez-Doncel, Silvia Llorente, Jaime Delgado, MPEG-
M: A Digital Media Ecosystem for Interoperable Applications, Signal Processing:
Image Communication, http://dx.doi.org/10.1016/j.image.2013.10.006

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/image

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148666243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.image.2013.10.006
http://dx.doi.org/10.1016/j.image.2013.10.006
http://dx.doi.org/10.1016/j.image.2013.10.006
http://dx.doi.org/10.1016/j.image.2013.10.006
http://dx.doi.org/10.1016/j.image.2013.10.006
http://dx.doi.org/10.1016/j.image.2013.10.006

MPEG-M: A Digital Media Ecosystem for Interoperable Applications

Panos Kudumakis1, Mark Sandler1, Angelos-Christos G. Anadiotis2, Iakovos S. Venieris2,
Angelo Difino3, Xin Wang4, Giuseppe Tropea5, Michael Grafl6, Víctor Rodríguez-Doncel7,

Silvia Llorente8, Jaime Delgado8
1 School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

2 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
3 CEDEO.net, Torino, Italy, 4 Huawei, Santa Clara, USA

5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Parma, Italy
6 Institute of Information Technology, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

7 Universidad Politecnica de Madrid, Madrid, Spain
8 Universitat Politècnica de Catalunya, Barcelona, Spain

Phone: +44 20 7882 6152

E-mail: panos.kudumakis@eecs.qmul.ac.uk

Keywords
MPEG Standard; MPEG-M; IPTV; Digital Media; Multimedia Architecture; Middleware; Cloud
Services; Multimedia Service Platform Technologies; Interoperable Digital Media Applications
and Services;

Abstract
MPEG-M is a suite of ISO/IEC standards (ISO/IEC 23006) that has been developed under the
auspices of Moving Picture Experts Group (MPEG). MPEG-M, also known as Multimedia
Service Platform Technologies (MSPT), facilitates a collection of multimedia middleware APIs
and elementary services as well as service aggregation so that service providers can offer users a
plethora of innovative services by extending current IPTV technology toward the seamless
integration of personal content creation and distribution, e-commerce, social networks and
Internet distribution of digital media.

1 Introduction
With the deployment of broadband networks enabling new ways to deliver and exchange
multimedia services and the improvement of hardware performance allowing many service
aspects to be implemented as web-service software, businesses related to media services are
facing significant changes. These changes are opening new business opportunities for
multimedia services, such as those generated by the recent introduction of IPTV services for
which several standards have been or are being developed. Examples of already developed
standards are: ITU-T Q.13/16, Open IPTV Forum, Alliance for Telecommunications Industry
Solutions IPTV Interoperability Forum, Digital Video Broadcasting IPTV, Hybrid Broadcast
Broadband TV and YouView.

However, most of the current IPTV efforts stem from rather conventional value chain structures
thus standing in stark contrast with the buoyant web environment where new initiatives –
sometimes assembling millions of users in a fortnight – pop-up almost daily with exciting new

features, such as Apple's and Google's Application Programming Interfaces (APIs) enabling third
parties to develop and provide applications and services [1], [2].

At the same time we are witnessing cases where the closed delivery and content bundles offered
by some operators are being either abandoned (e.g. mobile phone brands linked to a particular
content service) or complemented with the possibility offered to users to freely access services
(e.g., broadband, mobile and IPTV) of their choice. The latter becomes more eminent by the
appearance of new operators offering service components (e.g., cloud services) and the need for
these to be interoperable.

MPEG has been the provider of some enabling technologies and has developed a large portfolio
of standards that can be assembled to provide multimedia services [3]. Continuing its approach
of providing standards for the next generation of products, services and applications, MPEG has
developed MPEG-M, a standard for advanced IPTV services. MPEG-M is based on a flexible
architecture capable of accommodating and extending in an interoperable fashion many features
that are being deployed on the web for delivering and consuming multimedia content (e.g., Hulu,
Netflix or Apple TV), next to those enabled by the recent standard MPEG technologies (e.g.,
High Efficiency Video Coding and Dynamic Adaptive Streaming over HTTP [4], [5]).

Thanks to the MPEG-M suite of standards, aimed at facilitating the creation and provisioning of
vastly enhanced IPTV services, it is envisaged that a thriving digital media economy can be
established, where developers can offer MPEG-M service components to the professional market
because a market will be enabled by the standard MPEG-M component service API;
manufacturers can offer MPEG-M devices to the global consumer market because of the global
reach of MPEG-M services; service providers can set up and launch new attractive MPEG-M
services because of the ease to design and implement innovative MPEG-M value chains; and
users can seamlessly create, offer, search, access, pay/cash and consume MPEG-M services.

The MPEG-M suite of standards extends the devices capabilities with advanced features such as
content generation, processing, and distribution by a large number of users; easy creation of new
services by combining service components of their choice; global, seamless and transparent use
of services regardless of geo-location, service provider, network provider, device manufacturer
and provider of payment and cashing services; diversity of user experience through easy
download and installation of applications produced by a global community of developers since
all applications share the same middleware APIs; and innovative business models because of the
ease to design and implement media-handling value chains whose devices interoperate because
they are all based on the same set of technologies, especially MPEG technologies.

A brief overview of the MPEG-M suite of standards can be found in [6]. In contrast, this paper is
focused on the detailed description of the MPEG-M digital media services ecosystem and its
components providing all the necessary technical information (including access to the reference
software) needed by developers who would like to build MPEG-M compliant applications and
services; and, why not attract millions of users in a fortnight, too!

The rest of the paper is structured as follows: In section 2 the scope and objectives of the MPEG-
M digital media services ecosystem are explained. In section 3 each of the individual MPEG-M

standards described in detail including the functionalities offered by each of them. In section 4 a
number of MPEG-M related developments offering various digital media applications and
services are presented. In section 5 the critical decisions and choices that had to be made by the
MPEG-M ad hoc group during the MPEG-M's life cycle development followed by related future
developments are discussed. Finally, in section 6 the conclusions are presented by highlighting
the major MPEG-M achievements.

2 Scope and Objectives
The scope of the MPEG-M is to support the service providers’ drive to deploy innovative
multimedia services by identifying a set of Elementary Services (ESs) and defining the
corresponding set of protocols and APIs to enable any user in an MPEG-M value chain to access
those services in an interoperable fashion. Note that an MPEG-M value chain is a collection of
users, including creators, end users and service providers that conform to the MPEG-M standard.

Assuming that in an MPEG-M value chain there is a Service Provider (SP) for each ES, a User
may ask the Post Content SP to get a sequence of songs satisfying certain Content and User
Descriptions (metadata). The “mood” of a group of friends could be a type of User Description.

Figure 1: A possible chain of Services centred around Post Content Service Provider.

With reference to Figure 1, the End User would contact the Post Content SP who would get
appropriate information from both the Describe Content SP and the Describe User SP in order to
prepare the sequence of songs according to the friends "mood" by using, for example, a semantic
music playlist generator [7]. The End User would then get the necessary licenses from the
Manage License SP. The sequence of songs would then be handed over to the Package Content
SP, possibly in the form of an "MPEG-21 Digital Item", the latter being a container for
Resources, Metadata, Rights and their interrelationships [8]. The Package Content SP will get the
Resources from the Store Content SP and hand over the Packaged Content to the Deliver Content
SP who will stream the Packaged Content to the End User.

In many real-world MPEG-M value chains, service providers would not be able to exploit the
potential of the standard if they were confined to only offer ESs. Therefore service providers will
typically offer bundles of ESs, known as Aggregated Services (ASs). In general, as shown in
Figure 2, there will be a plurality of service providers offering the same or partially overlapping
ASs, for example, a SP offering User Description Services, may offer Content Description
Services as well.

Figure 2: MPEG-M standard-enabled digital media services eco-system underpinning and supporting the activities of content

creators and consumers.

Starting from MPEG-M elementary services, the aggregation of services can put together a
certain amount of services generating a complex MPEG-M value network, having different
topologies and associating services in several ways. For example, the Payment and Cashing and
Rights Negotiation ESs are aggregated to create AS#4, while Content Delivery and License
Provision ESs are both shared between AS#6 and AS#7.

3 Technology
MPEG-M (ISO/IEC 23006) is a suite of standards that has been developed under the auspices of
Moving Picture Experts Group (MPEG).

ISO/IEC 23006 is referred as MPEG Extensible Middleware (MXM) in its first edition, and it
specifies an architecture (Part 1), an API (Part 2), a reference software (Part 3) and a set of
protocols which MXM Devices had to adhere (Part 4).

MPEG-M
its second
stressing
elementa

More spe

• P
implemen
• P
(API): sp
• P
software
• P
applicatio
• P
elementa

These fiv

3.1 Pa
The first
enable M

A genera
running o
Engines
(PEs) to
aggregate
complex

Figure 3: M

M (ISO/IEC
d edition, an
its Service

ary services i

ecifically, th

art 1 - Archi
ntation;
art 2 - MPEG

pecifies the m
art 3 - Confo
implementa
art 4 - Elem
ons;
art 5 - Servi

ary services a

ve parts are d

art 1 – Arch
t part of the

MPEG-M com

al architectur
on an MPEG
(TEs) in the
communica

ed service pr
chain of TE

MPEG-M device

23006) is re
nd it conserv

Oriented A
into aggrega

he second edi

itecture: spe

G Extensible
middleware A
ormance and
ation of the s

mentary Servi

ce Aggregat
and other ser

described ne

hitecture (2
e standard de
mpliant devi

re of an MPE
G-M device
 middleware

ate with app
rotocols amo

Es and PEs.

 architecture; the
o

eferred as M
ves the archit

Architecture c
ated services

ition of MPE

cifies the arc

e Middlewar
APIs;
d Reference
standard;
ices: specifie

tion: specifie
rvices to bui

ext.

(23006 – 1)
escribes the
ces to be int

EG-M devic
could call,

e to access lo
plications run
ong them. T

e middleware is
one or more Orch

Multimedia Se
tecture and d
character. Fu
 (Part 5).

EG-M is sub

chitecture th

re (MXM) A

Software: sp

es elementar

es mechanism
ild aggregate

)
 MPEG-M
teroperable a

ce is given in
via an appli
ocal function
nning on ot

The role of th

populated by Te
hestration Engin

ervice Platfo
design philo
urthermore,

bdivided into

hat is part of

Application P

pecifies conf

ry service pro

ms enabling
ed services.

architecture
albeit made b

n Figure 3, w
ication-midd
nality modul
ther devices
he orchestrat

echnology Engin
nes (ORCH).

orm Technol
sophy of the
it specifies

o five parts:

an MPEG-M

Programmin

formance tes

otocols betw

 the combina

, its elemen
by different

where MPEG
dleware API
les, and the
by executin

tor engine is

nes (TEs), Proto

logies (MSP
e first edition
how to com

M

ng Interface

sts and the

ween MPEG-

ation of

nts and APIs
manufacture

G-M applica
, the Techno
Protocol En
ng elementa
s to set up a

col Engines (PE

PT) in
n, but
mbine

-M

s that
ers.

ations
ology
gines

ary or
more

Es) and

Typical technology engines include MPEG technologies such as Audio, Video, 3D Graphics,
Sensory Data, File Format, Streaming, Metadata, Search, Rendering, Adaptation, Rights
Management and Media Value Chain Ontologies [3].

Typical protocol engines include those implementing the elementary services, as described
earlier in the music "mood" example, such as Describe User, Describe Content, Manage License,
Package Content and Deliver Content.

The elements of the MPEG-M architecture are MPEG-M engines, MPEG-M engine APIs,
MPEG-M orchestrator engine, MPEG-M orchestrator engine API, MPEG-M device, and MPEG-
M application. MPEG-M engines are collections of specific technologies that can be
meaningfully bundled together; the MPEG-M engine APIs can be used to access functionalities
of MPEG-M engines; an MPEG-M orchestrator engine is a special MPEG-M engine capable of
creating chains of MPEG-M engines to execute a high-level application call such as “Photo Slide
Show”; the MPEG-M orchestrator engine API can be used to access the MPEG-M orchestrator
engine; an MPEG-M device is a device equipped with MPEG-M engines; and an MPEG-M
application is an application that runs on an MPEG-M device and makes calls to the MPEG-M
engine APIs and the MPEG-M orchestrator engine API.

In general an MPEG-M device can have several MPEG-M applications running on it such as an
audiovisual player or a content creator combining audio-visual resources with metadata and
rights information. Some applications may be resident (i.e., loaded by the MPEG-M
manufacturer) while some may be temporary (i.e., downloaded for a specific purpose).

When an MPEG-M application is executed, there may be “low-level” calls directly to some
MPEG-M engines through their APIs and “high-level” calls like, say, “Photo Slide Show”,
which will be handled by the orchestrator engine. The MPEG-M orchestrator is capable of
setting up a chain of MPEG-M engines for handling complex operations, orchestrating the
intervention and send/receive data to/from the particular chain of engines that a given high-level
call will trigger, thus relieving MPEG-M applications from the logic of handling them.

3.2 Part 2 – Application Programming Interface (23006 – 2)
The second part of the standard specifies a set of Application Programming Interfaces (APIs).
These APIs are the gateway to the MPEG-M middleware – providing access to its technology
engines as specified in Part 1 – for any application running on an MPEG-M device.

These APIs are designed in such a way so that an individual MPEG-M engine, which provides
access to a single MPEG technology (e.g., video coding), can be orchestrated with other engines.
In this way, chains of MPEG-M engines to execute "high-level" application calls can be created.
That is, calls to a group of MPEG technologies (e.g., creating a "Photo Slide Show") become
feasible.

Conceptually, these APIs are divided in four categories, namely creation APIs, editing APIs,
access APIs and engine-specific APIs. Creation APIs are used to create data structures, files and
elementary streams conforming to the respective standards; Editing APIs are used to modify an
existing data structure, file, elementary stream in order to obtain a derived object still conforming

to the respective standard; Access APIs are used to parse data structures, files, decode elementary
streams in order to retrieve the information contained within; and Engine-specific APIs are those
that do not fall into the above categories, such as APIs for license authorization and content
rendering.

Furthermore, Part 2 of the standard contains the description and the API specification of MPEG-
M engines, which are classified into three types: a) Protocol Engines (PEs), b) Technology
Engines (TEs), and c) Orchestrator Engines.

3.2.1 Protocol Engines
The protocol engines are instantiating the communication protocol of the elementary services
and, therefore, there is a one-to-one relationship between them. Their APIs have been designed
in a unified way by providing interfaces for creating and parsing protocol requests and responses,
as they are specified by the corresponding elementary services in MPEG-M Part 4, as well as for
performing the requests and receiving the responses.

A fundamental abstract protocol engine is the Base PE, corresponding to the base protocol of
MPEG-M Part 4, which contains the methods and interfaces for creating and parsing the MPEG-
M base schema. The Base PE cannot exist alone; all the other protocol engines must extend the
Base PE, in order to ensure the consistency between MPEG-M Parts 2 and 4.

The schema handler of a protocol engine is used to manipulate the schemata dictated by the
corresponding elementary services, where the technology handler provides the means to
implement the call to the orchestrator (local or remote) which manages the technology engines
that perform the actual elementary service operation. A typical protocol engine of the form
<Action><Entity>Engine (e.g., CreateContentEngine) has a specification similar to the one
shown in Listing 1. This specification is neither exhaustive nor aligned to all the engines; it is
just given as a typical example.

Listing 1: Typical Protocol Engine (PE) form
<Action><Entity>Engine:

• <Action><Entity>SchemaHandler:
o <Action><Entity>Request extends ProtocolRequest
o <Action><Entity>Response extends ProtocolResponse:

 <Action><Entity>Success extends ProtocolSuccess
 <Action><Entity>Failure extends ProtocolFailure

• <Action><Entity>TechnologyHandler:
o <Action><Entity>Protocol

3.2.2 Technology Engines
The technology engines are responsible for carrying out the actual operation of an elementary
service (even though a technology engine can be used by other components of the middleware or
application layer, their primary scope is the support of elementary services operation). They are
also organized in terms of schema and technology handlers. The schema handler is mainly used
for managing the schemata dictated by the standards used for implementing the corresponding
technology. For example, the Security TE schema handler provides interfaces which allow for

creating and parsing objects based on XML security schemata provided by W3C (e.g., digital
signatures) and OASIS (e.g., Security Assertion Markup Language). On the other hand, the
Digital Item TE is based on MPEG-21 technologies, such as the MPEG-21 DIDL schema and,
hence, its schema handler provides the interfaces to access this schema transparently, thereby
stimulating the interoperability features of MPEG-M implementations.

The technology handler of the technology engines is responsible for exposing the API that allows
handling of the underlying technology. With respect to the aforementioned Security TE example,
these APIs enable developers to use encryption and signature capabilities, which could be
provided by different implementations (e.g., smart card and/or other software security solutions).

Table 1 provides a list with the technology engines supported by the standard. These engines can
be deployed by several elementary services and can be accessed either directly or through an
orchestrator engine.

Table 1: List of Technology Engines (TEs)
Digital Item Engine The Digital Item Engine interface defines the APIs for

handling ISO/IEC 21000-2 and ISO/IEC 23000-7 Digital
Item Declaration (DID) data structures and providing
functionalities, such as: creation of Digital Items and data
retrieval from them; and, management of Item, Statement,
Descriptor, Component, Resource, License, Metadata and
Event Report Requests in Digital Items.

MPEG-21 File Format
Engine

The MPEG-21 File Format Engine interface defines the
methods for operating over ISO/IEC 21000-9 MPEG-21
File Format files and providing functionalities, such as:
creation of MPEG-21 files and accessing data contained in
them.

REL Engine The REL Engine interface defines the methods for handling
ISO/IEC 21000-5 Rights Expression Language (REL)
expressions and providing functionalities, such as: creation
of Rights' Expressions, accessing data contained in them
and users' authorization to exercise rights.

IPMP Engine The IPMP Engine interface defines the methods for
operating over ISO/IEC 21000-4 and ISO/IEC 23000-5
Intellectual Property Management and Protection (IPMP)
data structures and providing functionalities, such as:
creation of IPMP data structures and accessing data
contained in them.

Media Framework Engine The Media Framework Engine is a high level MXM Engine,
grouping together several media specific engines, such as:
Video, Image, Audio and Graphics Engines. It implements
common functionalities (independent on the media type)
such as resource loading and saving. The following media
specific engines are currently supported: VideoEngine,
AudioEngine, ImageEngine, Graphics3DEngine; each of

them exposes APIs for creation (encoding) and accessing
(decoding) elementary streams. The Media Framework
Engine provides functionalities, such as: creation and
accessing data to be provided in the aforementioned
supported engines.

Metadata Engine The Metadata Engine interface defines the methods for
handling creation and management of metadata structures.

Event Reporting Engine The Event Reporting Engine interface defines the methods
for operating over ISO/IEC 21000-15 Event Reporting data
structures.

Security Engine The Security Engine interface defines security-related
methods providing functionalities, such as: creation of new
credentials and management of public-key based
certificates; generation of symmetric keys and
encryption/decryption of data; storing of confidential
information such as licenses and keys in the secure
repository; certification of tools integrity; and, enabling
complex authentication protocols.

Search Engine The Search Engine interface defines the methods for
operating over metadata structures and providing
functionalities, such as: creation and parsing of MPQF
query structures.

CEL Engine The CEL Engine interface defines the methods for handling
ISO/IEC 21000-20 Contract Expression Language (CEL)
expressions and providing functionalities, such as: creation
of Contract Expressions and accessing data contained in
them.

Overlay Engine The Overlay Engine specifies a minimum set of interfaces
that should be implemented by any device participating in a
Content Delivery Network. Emphasis is given in peer-to-
peer networks, that are quite popular with users for content
discovery.

3.2.3 Orchestrator Engines
Orchestrator engines are managing the execution flow of technology engines in the context of an
elementary service, an aggregated service or an application. The standard contains one protocol
engine per elementary service. In contrast, one or more orchestrator engines can be specified
based on service or application requirements. Given that orchestration engines are specific to
applications, the focus of their APIs is in providing a standardized way to their instantiation,
rather than providing access to their functionalities which are, anyway, wrapped in generic
methods.

The standardized orchestrator engines APIs require at least one method that wraps the
orchestration. In the case of the elementary services orchestrations, this method corresponds to
the protocol request/response. All the orchestrator engines are accessible through a basic
OrchestratorEngine, which instantiates and returns to them, taking also into account any possible

requirements that they may have in technology engines. The OrchestratorEngine, on the other
hand, is initialized as any other protocol or technology engine.

3.2.4 Engine Load and Initialization
MXM has been designed to be modular following an engine-level granularity. The use of
standard APIs enables applications development regardless of the middleware implementation.
Moreover, different engines' instances can be provided in order to support different functionality,
provided by each engine. This is achieved through the runtime engine loading feature of MXM,
which is based on a configuration file, where the MPEG-M application developer indicates the
implementation that should be used for each involved engine. This configuration file is given as
an XML document, which is based on a standard schema. An example configuration file is given
in Listing 2.

Listing 2: An example of a Configuration File for loading and initialization of TEs.
<?xml version="1.0" encoding="UTF-8"?>
<mxm:MXMConfiguration xmlns:mxm="org:iso:mpeg:mxm:configuration:schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="org:iso:mpeg:mxm:configuration:schema mxmconfiguration.xsd">
 <MXMParameters>
 <entry key="username">JohnDoe</entry>
 <ComplexParameter>
 <bar:CustomMXMParam xmlns:bar="urn-x:bar">
 A complex MXM configuration parameter
 </bar:CustomMXMParam>
 </ComplexParameter>
 <MXMEnginesFolder>/usr/bin/MXMEngines</MXMEnginesFolder>
 </MXMParameters>
 <mxm:MXMEngine id="0" type="MPEG21FileTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG21FileEngine</ClassName>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="1" type="MetadataTE" isDefault="true">
 <ClassName>org.iso.mpeg.mxm.test.GenericMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">ALL</entry>
 </EngineParameters>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="2" type="MetadataTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">DEBUG</entry>
 </EngineParameters>
 </mxm:MXMEngine>
 <mxm:MXMEngine id="3" type="DigitalItemTE">
 <ClassName>org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine</ClassName>
 <EngineParameters xsi:type="mxm:MXMGenericParameterType">
 <entry key="verbosity">DEBUG</entry>

 </EngineParameters>
 <EngineDependencies>
 <DependentMXMEngine id="1"/>
 </EngineDependencies>
 </mxm:MXMEngine>
</mxm:MXMConfiguration>

The configuration given above contains some global MXM parameters and listing four MPEG-M
Engines: a DigitalItemEngine (implemented by class org.iso.mpeg.mxm.test.DIDEngine); an
MPEG21FileEngine (implemented by class org.iso.mpeg.mxm.test.MPEG21FileEngine); and,
two MetadataEngines (implemented by classes
org.iso.mpeg.mxm.test.MPEG7SMPMetadataEngine and
org.iso.mpeg.mxm.test.GenericMetadataEngine).

It should be noted that the "id" attribute of an MPEG-M Engine indicates the identifier of a
specific MPEG-M Engine. If two MPEG-M Engines of the same type, as in the case of
MetadataEngine, are listed in the MXM Configuration File, the "id" attribute is mandatory as it
is needed to differentiate the two implementations of the same engine. The default value of the
"id" attribute is zero indicating that it is the default engine of that type.

3.3 Part 3 – Conformance and Reference Software (23006 – 3)
The third part of the standard is about the conformance and reference software. The reference
software, a Java implementation of the engines, is licensed under a Berkley Software
Distribution (BSD) type of license. The software can be downloaded via Subversion (SVN)
software versioning and revision control system from
http://wg11.sc29.org/mxmsvn/repos/JAVA/trunk using "mxmpubro" as username and
"mpegmxmro" as password. The APIs and the ESs are given in MPEG-M Part 2 and MPEG-M
Part 4, respectively.

3.3.1 MXM Project Structure
The MXM project structure is dictated by Maven, a tool that provides flexibility in organizing a
large project in a modular way along with sophisticated dependency management. The MXM
implementation consisted of the following basic modules: a) MXM Core Module (mxm-core); b)
Engines Contained Module (mxm-engines); c) Schemata Container Module (mxm-dataobject); d)
Elementary Services Module (mxm-es); and, e) Applications Container Module (mxm-
applications). In the following these modules are described.

3.3.2 MXM Core Module
The fundamental (and the only normative) module of MXM reference software is the mxm-core,
which includes the implementation for the instantiation and dynamic engine loading through the
configuration file, whose schema is specified in MPEG-M Part 2. The mxm-core is the part of
MXM that essentially enables the interoperability between the various implementations of MXM
Engines and guarantees the conformance of the software to the standard. This is achieved by

using a general container to carry the MXM data units and by automatically instantiating the
engines and providing hooks to them only via their standard APIs. Moreover, mxm-core is
responsible for dependency management between the engines. This is achieved by checking the
MXM configuration file for possible dependency circles along with taking care for proper engine
initialization so as to make sure that all engines are loaded in the right order. The mxm-core
module contains all the abstract classes and interfaces that correspond to the engines' APIs
specified in MPEG-M Part 2. Any further engines, outside the MPEG-M context, or extensions
of MPEG-M engines in terms of APIs is suggested to be provided in a respective, project-
specific, module. For example, the xyz middleware, which extends MPEG-M will have a xyz-
core module, inheriting basic MXM functionality, such as initialization, which will also contain
the APIs for any custom engines of xyz.

3.3.3 Engines Container Module
The mxm-engines (informative) module is the container for all protocol, technology and
orchestrator engines implementation. This implementation should be in line with the APIs
specified in MPEG-M Part 2; in particular the engines should implement the full or part of the
functionality defined in the corresponding engine APIs. Each engine implementation must
implement the corresponding interface, so that the engine can be instantiated by the MXM Core
Module. Moreover, an engine may have several different implementations, each included as a
different module in mxm-engines and identified with a different identifier in the MXM
configuration file, used for loading. The application developer can select the engine
implementation by means of that identifier provided in the MXM configuration file. The mxm-
engines module also contains any custom implementations of third-party engines or MPEG-M
engines extensions.

3.3.4 Schemata Container Module
The mxm-dataobject (informative) module contains the implementations for handling the XML
schemata needed by the MXM engines. As explained in MPEG-M Part 2, the engines include a
schema handler module, which provides the APIs for managing any schemata related to the
engines. This implementation can be engine-specific and, therefore, the mxm-dataobject module
is not considered a mandatory component of MXM. However, in the reference software, a JAXB
based implementation is provided, which allows easy schema handling, with a similar API to the
one of the schema handlers. Moreover, the mxm-dataobject module includes the implementation
of a generic XML schema creator and parser that enables middleware developers to create
interoperable data objects out of the XML elements of the corresponding schemata.

3.3.5 Elementary Services Module
The mxm-es (informative) module includes the implementation of the elementary services,
specified in MPEG-M Part 4. MXM provides a reference elementary services implementation
using Web Services and the Enterprise Java Beans (EJB3) framework. This, however, is not
binding, since other emerging standards may be used as well, such as Representational State
Transfer (REST). The reference implementation is application-centered, in the sense that each
elementary service makes a call to the orchestrator engine that carries out the corresponding
operations to fulfill the application. The elementary service is invoked by the remote module of
the protocol engine, which runs on the client side.

3.3.6 Applications Container Module
The mxm-application (informative) module contains a set of reference implementations for
applications, which are based on MXM. These applications are provided as examples for MPEG-
M application developers to get easier accustomed to the use of MXM reference software,
especially with basic features, such as its instantiation and the use of the MXM configuration
file.

3.4 Part 4 – Elementary Services (23006 – 4)
The forth part of the standard is concerned with the specification of Elementary Services (ESs)
and their protocols. The latter being the key elements in achieving services interoperability in the
MPEG-M ecosystem.

The holistic view of MPEG-M Part 4 starts from a comprehensive list of Entities and the
Operations that can be performed on them, and identifies an ES to be specified whenever a
meaningful combination of them exists. ESs are understood as Services of atomic nature, which
cannot be usefully divided into smaller ones, but which can be combined to form more complex
services. The latter known as Aggregated Services are actually defined in MPEG-M Part 5 (as
described in the next section) and realize the concept of MPEG-M Services, which are an
integral part of the MPEG-M architecture.

Some of the ESs are considered as regular ESs, that is, when specific Operations are performed
on a specific kind of Entity (e.g., Search Content); some as generic ESs, with specified Entity but
generic Operations (e.g., Process Content); and, some as abstract ESs, with specified Operation
but generic Entities (e.g., Search Entity). A particular implementation of a service is known as a
Service Instance, as illustrated in Figure 4. It is typically described in terms of its provider,
connection end-points, and usage conditions. Furthermore, two Service Instances implementing a
single ES are shown in Figure 4; their connection end-points are http://example-a.com and
http://example-b.com, respectively. Each Service Instance is described by a Service Instance
Declaration (SID) XML document comprising the aforementioned information. Among others, it
may contain usage conditions specifying the terms and availability of the Service Instance.

Figure 4: Multiple Service Instances can Implement the same Elementary Service.

Each of the ESs is described by a narrative description, the protocol specification as an exchange
of XML messages, and the syntax (in XML Schema) and semantics of the messages and their
parameters. As a formal description of the Service’s workflow, the Business Process Model and
Notation (BPMN) 2.0 XML (see also section 3.5) representation of the collaboration and process
is also given, as well as the extension to the Service Instance Declaration. The machine-readable
representation of the Elementary Service workflows is further utilized in Part 5 for the
aggregation of Services.

In order to remain as open as possible, the standard does not specify the transport protocol,
which has to be given in the Service Instance Declaration of each particular implementation,
although the use of some HTTP responses is informatively described.

3.4.1 Table of Elementary Services
The list of MPEG-M Entities is restricted to seven elements: Entity (as an abstract
generalization), Content, Contract, Device, Event, License, Service and User. The list of
Operations comprises eighteen items: Authenticate, Authorize, Check With, Create, Deliver,
Describe, Identify, Negotiate, Package, Post, Present, Process, Request, Revoke, Search, Store,
Transact and Verify. These Entities and Operations cover the whole spectrum of elements and
possible actions in the MPEG-M ecosystem.

MPEG-M Part 4 describes thus a total number of 51 Elementary Services, as shown in Table 2.

Table 2: Elementary Services classified by Operations and Entities

 Content Contract Device Event License Service User
Authenticate X X X

 Content Contract Device Event License Service User
Authorize X
Check With X X
Create X X X
Deliver X X
Describe X X X X
Identify X X X X X
Negotiate X X
Package X
Post X
Present X X
Process X X
Request X X X X X
Revoke X X X
Search X X X X X X
Store X X X X
Transact X X
Verify X X X

Opening the standard to future extensions, Entities and Operations are foreseen to be further
specialized generating in turn new Services. In fact, some exemplary extensions as Service
Types are given for the Process Content: recognize and synthesize speech, process and translate
language, extract sensory information, making a content adaptation or a resource/stream
transcoding.

Third parties may define their own Elementary Services based on the MPEG-M architecture and
technologies. MPEG-M Part 4 specifies the mandatory information that a third-party ES
definition has to exhibit, such as the XML Schema definition of the protocol messages and a
description of the behavior of the ES.

3.4.2 Elementary Services in Action
In the following, the usage of an Elementary Service is described based on an example. Assume
a content producer wants to register his newest work at a dedicated registration authority in order
to have an identifier assigned to this work, a song in this case.

The creator uses the Identify Content ES for this purpose. As most Elementary Services, Identify
Content comprises a single request message from the client to the service provider and a
response message. The messages can be sent via various protocols as discussed later. In this
example, it is assumed that the request message is sent as an HTTP POST request and the
response message is sent as the corresponding HTTP response.

The creator sends a content request to an Identify Content service provider as shown in Listing 3.
Note that XML declaration tags and namespace definitions in the XML snippets are omitted for
readability reasons.

Listing 3: XML snippet of an Identify Content request message.
<IdentifyContentRequest>
 <mpegmb:TransactionIdentifier>60f717d62a3f7589</mpegmb:TransactionIdentifier>
 <dsig:Signature>
 <!-- Signature of the message... -->
 </dsig:Signature>
 <IdentificationContent>
 <didl:DIDL xsi:type="mpegm-didl:DIDLType">
 <mpegm-didl:Item>
 <mpegm-didl:Descriptor>
 <didl:Statement mimeType="application/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="mpeg7:CreationType">
 <mpeg7:Title>Raining Today</mpeg7:Title>
 <mpeg7:Creator>
 <mpeg7:Role href="urn:mpeg:mpeg7:cs:RoleCS:2001:SINGER">
 <mpeg7:Name>Singer</mpeg7:Name>
 </mpeg7:Role>
 <mpeg7:Agent xsi:type="mpeg7:PersonType">
 <mpeg7:Name>
 <mpeg7:GivenName>Sunny</mpeg7:GivenName>
 <mpeg7:FamilyName>Sunshine</mpeg7:FamilyName>
 </mpeg7:Name>
 <mpeg7:ElectronicAddress xsi:type="mpeg7:ExtendedElectronicAddressType">
 <mpeg7:InstantMessagingScreenName service="http://twitter.com">
 @Sunshine_Singer
 </mpeg7:InstantMessagingScreenName>
 </mpeg7:ElectronicAddress>
 </mpeg7:Agent>
 </mpeg7:Creator>
 <mpeg7:CreationCoordinates>
 <mpeg7:Date>
 <mpeg7:TimePoint>2012-11-02</mpeg7:TimePoint>
 </mpeg7:Date>
 </mpeg7:CreationCoordinates>
 </mpeg7:DescriptionUnit>
 </mpeg7:Mpeg7>
 </didl:Statement>
 </mpegm-didl:Descriptor>
 <mpegm-didl:Component>
 <mpegm-didl:Resource mimeType="audio/mp4" encoding="base64">
 <!-- base64-encoded audio file... -->
 </mpegm-didl:Resource>
 </mpegm-didl:Component>
 </mpegm-didl:Item>
 </didl:DIDL>
 </IdentificationContent>

</IdentifyContentRequest>

The message contains the content to be identified, which is represented as an MPEG-21 Digital
Item (DI) [8]. The DI describes the content by means of a title, its creator, and creation date. Of
course, the DI also contains the actual song as an inline MP4 audio bitstream.

The message further has a TransactionIdentifier, which ensures that the client can
unambiguously match a later response to its request, regardless of the transport protocol. The
client also signs the message via a Digital Signature to ensure its authenticity to the service
provider.

The service provider receives the request and assigns a new identifier to the content. In the
example, the identifier is doi:10.9999/123.456. The service provider sends this identifier via a
response message to the client as shown in Listing 4.

Listing 4: XML snippet of an Identify Content response message.
<IdentifyContentResponse>
 <mpegmb:TransactionIdentifier>60f717d62a3f7589</mpegmb:TransactionIdentifier>
 <dsig:Signature>
 <!-- Signature of the message... -->
 </dsig:Signature>
 <IdentifyContentSuccess>
 <IdentifiedContent>
 <dii:Identifier>doi:10.9999/123.456</dii:Identifier>
 </IdentifiedContent>
 </IdentifyContentSuccess>
</IdentifyContentResponse>

Now, that this simple protocol run has been completed, here are some details to explain how the
client knows which transport protocol to use for message exchange and how it discovers the
service provider in the first place. The Service Instance Declaration (SID), shown in Listing 5,
describes a particular implementation of a Service, providing a name and identifier, as well as a
communication end point for request messages and which transfer protocol to use for those
messages. Two transfer protocols can be currently defined via the ProtocolBinding element:
XML over HTTP and SOAP [9]. Similar to protocol messages, the authenticity of the SID can be
ensured via a Digital Signature. Note that the xsi:type of the ServiceInstanceDeclaration element
is IdentifyContentSIDType, which tells the client that this is an implementation of Identify
Content. Depending on the requirements of a Service, the SID may contain further configuration
information for the client, e.g., which metadata formats are supported by the service provider.
The client can obtain the SID either from outside the MPEG-M framework, e.g., from a website,
or it may use the Search Service ES to search inside a directory for any kinds of MPEG-M
Service Instances.

Listing 5: XML snippet for a Service Instance Declaration of a particular implementation of Identify Content.
<sid:ServiceInstanceDeclaration xsi:type="sid:IdentifyContentSIDType"
strictMetadataSupport="true">

 <mpegmb:SIDIdentifier>urn-x:example:identify-content:version-1.0</mpegmb:SIDIdentifier>
 <sid:Name>Example Implementation for IdentifyContent</sid:Name>
 <sid:Provider xsi:type="mpeg7:OrganizationType">
 <mpeg7:Name>Example Content Registration Authority</mpeg7:Name>
 </sid:Provider>
 <sid:EndPoint>http://example.com/identify-content</sid:EndPoint>
 <sid:ProtocolBinding href="urn:mpeg:mpegM:cs:03-es-NS:2012:ProtocolBindingCS:1">
 <mpeg7:Name>XML over HTTP</mpeg7:Name>
 </sid:ProtocolBinding>
 <dsig:Signature>
 <!-- Signature of the SID... -->
 </dsig:Signature>
</sid:ServiceInstanceDeclaration>

Similar to Identify Content, most Elementary Services are specified in a straight-forward
manner, with a request and a response message. However, there are some Elementary Services
that may require more time and protocol steps to complete, such as Negotiate License. Negotiate
License allows two parties to reach an agreement on the terms of a license through offers and
counter offers. Another example is Store Content, which allows uploading content to a storage
device. As this ES is designed in particular for content of large size, the uploading process might
be time consuming. For such Services with long-running sessions, two meta protocols exist for a)
session control (i.e., to pause, resume, or abort a session) and b) status polling.

3.5 Part 5 – Service Aggregation (23006 – 5)
The fifth part of the standard specifies how Elementary Services (ESs) and perhaps other existing
Aggregated Services (ASs) should be combined to build new ASs. To do so, it provides a
methodology which defines the basic steps for the definition of ASs. A set of representative
examples are also provided in Part 5 to illustrate new AS definitions. These are briefly
summarized next. The "Multimedia Content Registration and Sell" example shows how a content
creator can register her multimedia content in order to release it. The "Multimedia Content
Search and Purchase" example shows how a user can search some multimedia content, purchase
and consume it. The "Create and Identify Content" example shows how a content creator can
create and identify some multimedia content. The "TV-Multimedia Processing" example shows
how a user can process (e.g., adapt) content. The "Video On Demand Service via Speech
Interface" example shows how a user can access some multimedia content using a speech
interface. These examples are based on real business scenarios with the aim of demonstrating the
applicability of service aggregation.

Part 5 also describes the procedure for registration of both new ESs - not currently present in Part
4 - as well as new ASs. For this purpose, an MPEG-M ESs and ASs Registration Authority (RA)
has been set up. Its aim is twofold. On the one hand, services' developers may submit their ESs
or ASs compliant information to the RA for registration, while on the other hand, other
developers may utilize the RA services to find registered ESs or ASs for reuse.

During ESs and ASs registration, the RA will verify their syntactic correctness and will perform
regular checks to verify that the registered information and related links are valid.

The methodology for the ASs definition comprises the following steps:

1) Provision of a narrative description of the actions that a new AS would perform; in other

words, the use case or scenario to be implemented as AS.
2) Identification of ESs and ASs that are needed by a new AS in order to be implemented.

These ESs and ASs could be classified as those: a) described in Part 4 and Part 5,
respectively; b) registered with the corresponding RA; and, c) external ESs specifically
required by the new AS. The external ESs could also be registered with the RA for further
use by third parties.

3) Provision of a textual description of the AS workflow describing the interactions between the
Client and Service Provider.

4) Resulting AS service workflow formal description provision. It should describe both protocol
and service by including the service workflow graphical representation and optional its XML
serialization.

5) Optional registration of the resulting AS with the RA. The RA syntactically validates each
registered AS.

For the definition of the AS workflow, the Business Process Model and Notation (BPMN) has
been used [10]. It provides a standard notation that is readily understandable by all business
stakeholders, including the business analysts who create and refine the processes, the technical
developers responsible for implementing the processes, and the business managers who monitor
and manage the processes. Consequently, BPMN is intended to serve as common language to
bridge the communication gap that frequently occurs between business process design and
implementation. It is defined by the Object Management Group (OMG).

Thus, in Part 5, the use of two different service description types (bpmn:collaboration and
bpmn:choreography) based on BPMN has been adopted for illustration purposes regarding the
AS definition. However, it should be noted that Part 5 does not impose any restriction for the
service workflow representation (step 4 of the methodology) and any graphical workflow
notation could be used.

In the following an example is given on how an AS could be defined using the aforementioned
methodology:

Step 1. Narrative description
In this use case, a User asks for a sequence of songs satisfying certain “mood”, as described in
the "Scope and Objectives" section.

Step 2. Identification of ESs and ASs required by the AS in question
The ESs to be used are: Post Content, Describe Content, Describe User, Manage License,
Package Content, Store Content and Deliver Content. All of them are defined in Part 4. Manage
License is an AS which makes use of Create License and Store License ESs.

Step 3. Workflow textual description

In the f
graphical

• E

“m
• P
• P

li
• E
• T
• P
• S

st

Step 4. F
In this e
correspon

following, th
l representat

End User con
mood”.
ost Content
ost Content

ist of songs,
End User gets
The sequence

ackage Cont
tore Conten
treams the P

Formal descr
example, BP
nding diagra

he service
tion is given

ntacts Post

SP contacts
SP contacts
which is sen
s necessary l
e of songs is
tent SP will

nt SP hands
Packaged Con

ription of the
PMN 2.0 is
am is shown

workflow a
in Figure 5.

Figure 5: Mus

Content SP

Describe Co
Describe U

nt back to the
licenses from
handed ove
get the Reso

s over the P
ntent to the E

e service wor
s used for
in Figure 6.

associated to
.

sic "mood" AS w

to ask for

ontent SP to
User SP to ge

e End User.
m the Manag
r to Package
ources from
Packaged C
End User.

rkflow
the formal

.

o music "m

workflow.

a list of son

o get descript
t description

ge License S
e Content SP
Store Conte
ontent to th

description

mood" AS

ngs accordin

tions.
ns. After that

SP.
P.
ent SP.
he Deliver C

n of the pro

is described

ng to the fr

t, it can prep

Content SP

oposed AS.

d. Its

riends

pare a

who

 The

Figure 6: Music "mood" BPMN diagram.

4 Related Developments
• Open Connected TV (OCTV) has been set up by the Digital Media Project (DMP). The

outcome of OCTV is not a complete product or a running service, but a commercial-
grade implementation of MPEG-M software that may be used direct by DMP members
who implement commercial products and services. [Online]. Available:
http://octv.dmpf.org/

In particular, using OCTV platform, a Creator operates a Source to upload videos and
corresponding metadata to a Server. The Server prepares the videos for MPEG-DASH
streaming and presents them together with their corresponding metadata to a web page so
that an End User can operate a Sink to view information on videos and possibly request
MPEG-DASH streaming of a specific video. The Source, Server and Sink OCTV devices
make use of the following MPEG-M engines: Digital Item, Rights Expression Language,
Media Framework, Metadata and MPEG-21 File Format.

Furthermore, WimTV (Web/Internet/Mobile TV) is an ICT platform to support a digital
media ecosystem that enables diffuse trading and distribution of video content. Media
move from one user to the next with associated terms of use and payment conditions. The
WimTV server implements a number of MPEG-M engines and exposes a set of
application-oriented API. [Online]. Available: http://www.wim.tv/

• Another MPEG-M compliant implementation for secure management and distribution of
multimedia content, known as MIPAMS, has been developed by DMAG-UPC [11]. This
platform provides several MPEG-M Elementary Services that are accessible by third
parties to further develop their own Aggregated Services. [Online]. Available:
http://dmag.ac.upc.edu/mipams

In particular, the MIPAMS platform has been successfully used for the development of a
mobile application for the "Multimedia Content Search and Purchase" Aggregated
Service, mentioned in Part 5 of the MPEG-M standard. This Aggregated Service enables
a user to search, purchase and consume premium multimedia content on a mobile device.

In this case, the mobile application is the front-end interface to the MPEG-M middleware
providing the user with the requested functionality (i.e., content search, licensing
capabilities and event reporting). To do so, the mobile application accesses several ESs in
the MPEG-M middleware, such as: Authenticate User, Search License, Present License,
Create License and Authorize User.

The challenge faced by implementing this mobile application was to demonstrate that
MPEG-M ESs were able to run over the existing MIPAMS platform. This has been
achieved by implementing a mapping process between MPEG-M ESs and MIPAMS
operations. Integration was made on the data layer, as MIPAMS is based on the same
MPEG-21 standards as MPEG-M. However, since the format of MPEG-M ESs'
parameters and the respective MIPAMS operations' parameters can be different in certain
cases, the mapping process is needed. For instance, in an MPEG-M ES, an MPEG-21
REL license alone may be included as parameter, while, in the corresponding MIPAMS
operation, the MPEG-21 REL license together with its version number, may be both
required as parameters, before the MIPAMS operation is called and executed. In this
case, the mapping process adapts the MPEG-M ES’s parameters to match the MIPAMS
operation’s parameters, that is, the license together with its version number. Similarly, the
mapping process is also applied to transform the responses of MIPAMS operations back
to those required by MPEG-M, when needed.

It should also be noted that the aforementioned mobile application has been developed
for the Android mobile platform. However, the same mapping approach can also be
extended to other mobile or web based platforms providing – through MIPAMS platform
– to third party application developers MPEG-M compliant ESs and ASs.

• The EC funded project ALICANTE (FP7-248652), deploys MPEG-M Elementary

Services on the Service Provider side of the media handling chain to manage the
distribution of content to end-user devices. It also defines additional Elementary Services
for managing multimedia service offerings. [Online]. Available: http://ict-alicante.eu/

In particular, the ALICANTE project developed a new media ecosystem with a strong
collaboration between service/content providers and end users. This media ecosystem
relies on content-aware networking and context-awareness towards multimedia service
offerings in order to enable adaptive media delivery with advanced Quality of Experience
(QoE) management. Multimedia service offerings (which are called Services in the
ALICANTE architecture), can range from different streaming techniques such as MPEG-
DASH or RTP multicast to interactive media usage or even peer-assisted streaming
scenarios.

The challenge faced by the project was the interoperable registration and management of
multimedia service offerings for underlying content. In particular, the type of offering
and any associated configuration parameters that should be made available to the end
user.

This challenge was addressed by adopting MPEG-M Elementary Services for Post
Content and Search Content, as well as by defining counterparts for managing
multimedia service offerings (which may comprise one or more multimedia resources).
Based on these protocols, multimedia service offerings from multiple sources can be
enlisted by a common registration entity. End users can search for these offerings, filter
the results by the appropriate type of offering, retrieve the configuration parameters, and
– based on these parameters – establish the connections for accessing the content. The
content is then dynamically adapted to the usage context (e.g., display resolution) and
available resources during media delivery.

• The EC funded project CONVERGENCE (FP7-257123), offers an MPEG-M based

platform with additional Aggregated Services supporting publish, control, search for, and
content usage, where users are able to define their own policies on it, thus, enabling new
business models on content usage. [Online]. Available: http://www.ict-convergence.eu/

In particular, the project faced the challenge of deploying a publish/subscribe architecture
on top of an Information Centric Network layer (ICN): users can subscribe to content that
matches complex semantic queries (i.e., get movies tagged 'romantic' may also return
movies tagged 'sentimental' and 'love', that is, the synonyms of 'romantic'), and peers
participating in a collaborative network fetch it from the ICN and deliver it to end-
devices. The MPEG-M and MPEG-21 standards have been adopted and extended to
elegantly achieve this goal by:

Firstly, CONVERGENCE introduced an enhanced version of the DI concept, named VDI
for Versatile DI. It exploits RDF/OWL semantically typed relationships between DIs, and
DI versioning, building upon the Digital Item Engine.

Secondly, it uses a gossiping protocol over an overlay of peers to exchange and store
state about publications and subscriptions. The project started by specifying the
OverlayEngine, a generic framework able to support both structured and unstructured
protocols, and then provided reference software of an OverlayEngineOrchestrator,
implementing a gossip protocol that exploits the underlying ICN infrastructure and offers
PublishContent and SubscribeContent aggregated services. The information to be
gossiped is gathered from the Resource VDI, packaged into a transport package and
gossiped from peer to peer. The transport package is also a VDI, the Publication VDI (P-
VDI). Subscription VDIs (S-VDIs), issued by users searching for specific resources, play
a role symmetrical to that of Publication VDIs and also carry a license (REL Engine) and
an expiry date. The introduction of Publication and Subscription VDIs decouples the
functionalities of the middleware and the network level; the two levels are independently
managed and this makes the system more robust.

Thirdly, peers can perform matches between P-VDIs and S-VDIs and communicate any
match to specified peers in the form of ER (Event Reports), depending on licenses and
ERRs (Event Report Requests). S-VDIs contain one or more representations of the
semantic subscription to a set of resources, in the form of a SPARQL query or a list of

requested metadata, embedded in MPQF (thus bridging with yet another MPEG
standard). Two new MPEG-M compliant engines, the Match TE and CDS TE (Common
Dictionary Service) have been developed to perform the matching of semantic constructs
and their expansion by means of additional, external, well-known or custom supplied
supporting taxonomies.

• A collaborative music analysis, visualisation, annotation and repurposing service is also
currently under development based on Sonic Visualiser [12] integrated into MPEG-M
digital media trading platform. Sonic Visualiser supports multi-track audio with volume
sliders for DJ mixing and lyrics for Karaoke applications, thanks to MPEG-A: Interactive
Music Application Format (IM AF) [13][14][15], as well as chords and melody
extraction, automatic audio tracks alignment and audio effects. [Online]. Available:
http://www.isophonics.net/SonicVisualiser

Sonic Visualiser is an open source cross-platform framework for analysis of music and
audio. It has been developed to assist musicologists, music information retrieval and
signal processing researchers and anyone else looking for a friendly way to study at what
lies inside an audio file. An essential strength of Sonic Visualiser is its ability to support
third-party plug-ins, typically referred to as audio analysis plug-ins or audio feature
extraction plug-ins. Its native VAMP plug-in format has been adopted by several other
influential projects, including Audacity and Marsyas. Typical VAMP plug-ins include
chords and melody extraction, automatic tracks alignment and audio effects.

The MPEG-A: Interactive Music Application Format (IM AF) by providing multi-track
audio with volume sliders for DJ mixing and lyrics for Karaoke applications, enables an
environment that activates and stimulates passive listeners, to: a) enjoy enhanced
listening experience, b) develop musical/voice instrument skills through active learning,
and, last but not least, c) become creative music producers.

The integration of IM AF codec in Sonic Visualiser has recently been achieved - thanks
to a number of students' projects [16] - allowing the combination of their features (i.e.,
automatic chords extraction aligned with lyrics). However, the challenge of Sonic
Visualiser integration to MPEG-M digital media trading platform it is still work under
progress. The latter, would not only attract music fans but also create new revenue
opportunities for all parties involved in the music value chain.

5 Discussion and Future Developments
MPEG-M origins may even be traced back to couple of EC funded projects [17], whose
evolution, heavily influenced by DMP's vision and coordination efforts, as well as contributions
– among others – from a number of PhD theses [18][19][20][21], led to OCTV and MIPAMS
platforms. Start-ups influenced by MPEG-M have also been emerged, such as: wim.tv,
mediatg.com, bitmovin.net and netmust.eu.

This diversity of contributions by projects and people involved in MPEG-M standardization
process has imposed several requirements and challenges, which the MPEG-M ad hoc group
aspired to address in their whole.

The plurality of metadata formats challenge
A key challenge faced by the MPEG-M ad hoc group was the handling of metadata encapsulated
in a Digital Item (DI), since they can be used in several contexts; from content discovery to even
more practical cases of providing details useful to media players or other applications rendering
the content. Given the variety of different metadata formats available (i.e., MPEG-7, TV-
Anytime and EBUCore) requiring different technologies to manipulate them, it has been decided
to decouple the DI from metadata handling, by providing separate engines; moreover, the
Metadata TE has been designed considering the generic functionality that should be provided by
a standard, so that it can be extended to support any metadata format and related handling
technology, while also the other engines can still make use of the standard API.

The inter-dependencies of technology engines challenge
The fine granularity of MPEG-M engines, even though it has advantages - the aforementioned
case of decoupling the Digital Item TE from the Metadata TE being a representative example -
also introduces dependencies between them, which can lead to the creation of inter-dependency
cycles in their implementation. This challenge has been addressed by the MPEG-M ad hoc group
by defining the notion of an engines' orchestrator, which is capable of providing complex
functionality by combining a number of individual engines; as a result, information and
functionality overloading in individual engines' implementations is avoided. Moreover,
MXMConfiguration file schema allows the definition of engines' dependencies, which is used by
the reference software to automatically perform engine loading in the proper sequence, while
also tracing and providing feedback on dependency cycles.

The service aggregation workflow language challenge
This granularity has not only been followed by the MPEG-M engines but also in the elementary
services specification. For this reason, the standard has devoted a specific part on specifying how
service aggregation should be performed by combining a number of elementary ones. However,
even though there are several service aggregation workflow languages, it has been decided by
the MPEG-M ad hoc group to not rely on any specific one, due to that each one comes with its
own pros and cons [26]. Thus, the selection of the service workflow language could be decided
by the application developers, separately, depending on the application domain. Therefore, only
the guidelines for service aggregation are provided by the standard, while BPMN [10] is used for
informative examples.

MPEG-M evolution is ongoing since standards are living 'organisms' that need to be adapted to
emerging industry needs. Thus, couple of ISO/IEC MPEG activities closely related to MPEG-M
are worth to be mentioned. These activities will produce new MPEG-M engines and APIs to be
used by applications developers, for a) media recommendation, and b) virtual worlds services. In
the following, these are briefly explained.

• The first one, so called MPEG-UD (User Description) [22], is about enabling
interoperable recommendation services. For example, Smart TVs offering a large number
of both internet and broadcasting channels to the consumer. In such an environment, TV
manufacturers consider including recommendation services within the TV set, in order to
help their customers select a program (Service Description) according to their preferences
(User Description) and context (Context Description). In such a scenario, there are
benefits for the recommendation engines to be offered by third parties. However, this
could only be achieved if standardised APIs exist supported by TV manufacturers. Then,
a plurality of recommendation engine providers would be available for the consumer to
choose from. In particular, the standardised APIs ensure the following benefits: a) TV
manufacturers are not constrained to a specific recommendation engine provider neither
are needed to build one by themselves; b) consumers have the option of selecting a
recommendation engine that better fits their needs; and c) recommendation engine
providers would compete to provide better services, without being tied to a specific TV
manufacturer.

• The second one, so called MPEG-V (Media Context and Control) [23][24][25] provides
the architecture and specifies the associated information representations to enable
interoperable multimedia and multimodal communication within Virtual Worlds and the
real world. For example, it may be used to provide multisensory content associated to
traditional audio/video data to enrich multimedia presentations with sensory effects
created by e.g., lights, winds, sprays, tactile sensations and scents; or it may be used to
interact with a multimedia scene by using advanced interaction paradigms such as
hand/body gestures; or to access different virtual worlds with an avatar which looks
similar in all of them. As a result, in MPEG-V a piece of digital content is not limited to
an audio/video asset, but may be a collection of multimedia and multimodal objects
forming a scene, having their own behaviour, capturing their context, producing effects in
the real world and interacting with one or several users. Moreover, MPEG-V addresses
the need for interoperability between virtual worlds - and between any of them and the
real world - by describing virtual objects, and specifically avatars to be 'teleported' from
one virtual world to another.

At last but not least, MPEG-M is a standards-enabled digital media ecosystem facilitating
interoperable applications and services for the benefit of all stakeholders in media value chain:
creators, service providers and consumers. Innovative services and business models could take
advantage of MPEG-M middleware APIs and service aggregation mechanisms. With respect to
the latter – perhaps as an ultimate challenge to be addressed by an existing or a forthcoming
start-up, that in turn it could significantly affect MPEG-M's widespread use – of particular
interesting is the seamless and hassle free service aggregation using graphical notation; that is,
enabling not only application developers but any actor in the MPEG-M media value chain – with
no need for prerequisite knowledge of programming languages – to build their innovative
business models on the fly by linking boxes (representing predefined TEs and ESs) with their
finger on a tablet's touch screen!

6 Conclusions
Streaming audio and video now dominate net traffic, constituting around half of all data on
tablets and smart phones. Advances in compression, the spread of Wi-Fi, mobile connectivity,
and the proliferation of devices have created commercial potential but also pose threats to some
existing creative businesses. As a result of this, cross-platform production is becoming
increasingly central to content businesses. Furthermore, with the continued emergence of new
platforms, products and services, technical and service interoperability will be increasingly
important for creative businesses. MPEG-M ensures that services and content work across
different devices and environments to suit consumer's demands and expectations. MPEG-M by
addressing interoperability, help businesses develop new technologies, products and services in
response to the challenges and opportunities arising from convergence: authoring, producing and
distributing media, as well as advanced IPTV services, across multiple platforms and devices.

7 Acknowledgements
This work was partially supported by the European Commission under contracts FP7-257123
(CONVERGENCE project) and FP7-248652 (ALICANTE project); and, by the Spanish
Ministry of Economy and Competitiveness under contract TEC2011-22989 (PBInt project).
Panos Kudumakis would also like to acknowledge that this work has been partially done during
his visit at the University of Malaga in the context of the program Andalucía TECH: Campus of
International Excellence.

8 Standard
ISO/IEC JTC1/SC29/WG11 Information Technology - Multimedia Service Platform
Technologies (23006):
1. ISO/IEC 23006-1:2013 Information technology – Multimedia Service Platform Technologies

– Part 1: Architecture
2. ISO/IEC 23006-2:2013 Information technology – Multimedia Service Platform Technologies

– Part 2: MPEG Extensible Middleware API
3. ISO/IEC 23006-3:2013 Information technology – Multimedia Service Platform Technologies

– Part 3: Reference software and conformance
4. ISO/IEC 23006-4:2013 Information technology – Multimedia Service Platform Technologies

– Part 4: Elementary Services
5. ISO/IEC 23006-5:2013 Information technology – Multimedia Service Platform Technologies

– Part 5: Service Aggregation

9 References
[1] iOS, Apple [Online], Available: http://developer.apple.com/, Last accessed: 14/03/2013.
[2] Android, Google [Online], Available: http://developer.android.com/, Last accessed:

14/03/2013.
[3] L. Chiariglione, MPEG technologies [Online], Available:

http://mpeg.chiariglione.org/technologies, Last accessed: 14/03/2013.

[4] ISO/IEC 23008-2:2013 MPEG-H Part 2 and ITU-T H.265 -- High Efficiency Video Coding
(HEVC).

[5] ISO/IEC 23009:2012 Information technology -- Dynamic Adaptive Streaming over HTTP
(DASH).

[6] P. Kudumakis, X. Wang, S. Matone, M. Sandler (2011), MPEG-M: Multimedia Service
Platform Technologies, Signal Processing Magazine, IEEE 28 (6) (Nov.) 159-163. doi:
10.1109/MSP.2011.942296.

[7] SoundBite: Semantic Music Playlist Generator, Centre for Digital Music, Queen Mary
University of London. [Online]. Available: http://isophonics.net/content/soundbite, Last
accessed: 14/03/2013.

[8] ISO/IEC 21000-2:2005 Information technology -- Multimedia Framework (MPEG-21) --
Part 2: Digital Item Declaration.

[9] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C Recommendation,
Apr. 2007, [Online], Available: http://www.w3.org/TR/soap12-part1/, Last accessed:
14/03/2013.

[10] Business Process Model and Notation (BPMN), Version 2.0, Object Management Group,
Jan. 2011, [Online], Available: http://www.omg.org/spec/BPMN/2.0/, Last accessed:
14/03/2013.

[11] S. Llorente, E. Rodriguez, J. Delgado, V. Torres-Padrosa (2013), Standards-based
architectures for content management, MultiMedia, IEEE (99) 1-1.
doi:10.1109/MMUL.2012.58.

[12] Sonic Visualiser, Centre for Digital Music, Queen Mary University of London. [Online].
Available: http://www.isophonics.net/SonicVisualiser, Last accessed: 14/03/2013.

[13] ISO/IEC 23000-12:2012 Information Technology—Multimedia Application Format
(MPEG-A) -- Part 12: Interactive Music Application Format (IM AF)

[14] I. Jang, P. Kudumakis, M. Sandler and K. Kang (2011), The MPEG Interactive Music
Application Format Standard, Signal Processing Magazine, IEEE 28 (1) (Jan.) 150-154. doi:
10.1109/MSP.2010.939073

[15] G. Herrero, P. Kudumakis, L.J. Tardon, I. Barbancho, M. Sandler, An HTML5
Interactive (MPEG-A IM AF) Music Player, 10th International Symposium on Computer
Music Multidisciplinary Research (CMMR), Marseille, France, 15-18 Oct. 2013.

[16] P. Kudumakis, MPEG developments [Online], Available:
https://code.soundsoftware.ac.uk/projects/mpegdevelopments, Last accessed: 11/10/2013.

[17] C. Serrão, JMS. Dias, P. Kudumakis (2005), From OPIMA to MPEG IPMP-X: A
standard's history across R&D projects, Signal Processing: Image Communication, vol. 20,
(9-10) 972-994.

[18] Carlos Serrão, iDRM – Interoperability mechanisms for open rights management
platforms, PhD Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2008.

[19] Filippo Chiariglione, Technologies and platform to manage rights and value of digital
media, PhD Thesis, Università degli Studi di Firenze, Florence, Italy, 2009.

[20] Víctor Rodríguez Doncel, Semantic Representation and Enforcement of Electronic
Contracts on Audiovisual Content, PhD Thesis, Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain, 2010.

[21] Michael Grafl, Scalable Media Delivery Chain with Distributed Adaptation, PhD Thesis,
Alpen-Adria-Universität, Klagenfurt, Austria, 2013.

[22] Call for Proposals on MPEG User Description, ISO/IEC JTC1/SC29/WG11/N13879,
Vienna, Aug. 2013.

[23] ISO/IEC 23005:2011 Information technology -- Media Context and Control (MPEG-V)
[24] MPEG-V, Signal Processing: Image Communication 28(2), 2013. Eds: Marius Preda,

Francisco Morán Burgos, Christian Timmerer.
[25] WD 1.0 of MPEG-V Engines API, ISO/IEC JTC1/SC29/WG11/N13802, Vienna, Aug.

2013.
[26] M. Koukovini, E. Papagiannakopoulou, G. V. Lioudakis, N. Dellas, D. I. Kaklamani and

I. S. Venieris, An Ontology-Based Approach towards Comprehensive Workflow Modelling,
IET Software, 2013.

Highlights
Highlights are mandatory for this journal. They consist of a short collection of bullet points that
convey the core findings of the article and should be submitted in a separate file in the online
submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points
(maximum 85 characters, including spaces, per bullet point). See
http://www.elsevier.com/highlights for examples.
1. Interoperable IPTV services could enable a thriving digital media economy
2. MPEG-M facilitates the creation and delivery of vastly enhanced IPTV services
3. MPEG-M enables interoperable digital media applications and services
4. MPEG-M specifies extensible services for interactions along media-handling chains

