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Abstract-Resonant absorption of p-polarized light shined on a plane-layered plasma with a step profile, 
is discussed as a function of wavelength (or critical density n,) of the light: for simplicity the incidence 
angle is assumed small. If n, lies within or above the step, the absorption A is given by Ginzburg’s result 
modified by strong reflections at the foot and top of the step. The absorption above is total for particular 
values of nc and U. For n, crossing the top of the density step the absorption is not monotonical: i t  
exhibits a minimum that vanishes for zero radius of curvature U there ( A  - /In .I-’), and zero collision 
frequency 1’ ( A  - Iln VI-’). The results are applied to the profile produced by irradiating a solid target with 
a high-intensity pulse that steepens the plasma by radiation pressure. 

1 I N T R O D U C T I O N  
P-POLARIZED light incident at angle 8 on a plane layered plasma is known to ex- 
perience resonant absorption at the critical density n,(w), where the light frequency 
o and the local plasma frequency are equal (GINZBURG, 1970). For a cold, collision- 
less plasma with a gentle, linear density profile the absorption A of low intensity 
light is a function of just one parameter: A = A,(q) with q (L/R)’ sin2 8, where 
i = c/w and L n,/(density gradient). Absorption is at most 50%, the maximum 
occurring at q E 0.5 (FORSLUND er al., 1975). 

If the profile is only piece-wise linear, total or near total absorption may take 
place under some stringent conditions. ALIEV er al. (1977) considered a density step: 
a thin layer of sharp density gradient with L comparable to 2, the plasma being 
gently inhomogeneous at higher and lower densities; he assumed a, to lie within the 
step, and n, cos2@, where reflection occurs, below it. KIKDEL et al. (1975) analysed a 
double step, and KULL (1983) a high-density background coated with a thin layer. 

Here we consider how absorption in a single step depends on the light frequency; 
for simplicity 8 is assumed to be small. We let the critical density for the light range 
from within to above the step. We find that if the reflections occurring there, and at 
the region around critical, are matched, there is total absorption above; specific 
values of both n, and 8 are required, however, for this result. On the other hand, the 
absorption is found to exhibit a sharp minimum just at the top of the step 
independently of 8. That simple feature, apparently paradoxical because the density 
gradient is monotonical and AG(q) has no minimum, could be used, we suggest, as a 
diagnostics tool; probing p-polarized light, at a few frequencies and a weak enough 
intensity (so as not to affect the profile) should be shined on the plasma and A 
measured. 

In Section 2 we calculate absorption within and above the step; in Section 3 we 
study in detail absorption around the top. In Section 4 we apply this analysis to a 
particular plasma profile. Results are discussed in Section 5. 
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FIG. 1.-Model of plasma step profile. P-polarized light is incident from the left at small 
incidence angle. The critical surface is considered to lie in either region I or 11, depending 

on wave frequency (I) = c / i .  

2. ABSORPTION I N  A P R O F I L E  S T E P  
Consider the plasma profile of Fig. 1, stratified along the z-axis, and let p-polarized 

light of frequency w = c /k  be incident on the plasma at a small angle 8. Reflection 
occurs at n, cos28, very close to the critical density n, where absorption takes place. 
For each straight piece of the profile and for each wavelength ,? we can define a 
length L n,(,?)/(dn/dz) so that the dielectric function takes the form 

n . v  --z + const . v  
L 0 nc 0 

+ 1-. (1) &(Z, i) 1 - - + 1- = 

Thus L-' = Idejdzl. The imaginary part of E, due to a small collision frequency v, is 
neglected except where needed to take care of a singularity at n = n,. 

We consider here absorption in regions I and 11, with n,/n2 of order unity. We 
assume Lj,? of order unity for region I and large for region 11. Since L, is compar- 
able to ,? and since the slope changes suddenly at points 1 and 2, usual results 
(GINZBURG, 1970; FORSLUND et al., 1975) are invalid. Thus absorption is not just A ,  
and a self-consistent calculation is needed (for n, < n,, i.e. < 0, we trivially have 
A = AG). It suffices to study the magnetic field, which is perpendicular to the plane 
of incidence and may be written as Re[B,(z) x exp(i2'ysin 8 - iot)]; B, is a 
complex quantity determined by the equation 

d2B, 1 dsdB, E - sin2 6 
B, = 0. ~ - 

dz2 E dz dz + 22 

Absorption in region I(n, < n, < n2). 
Since L, - k and 8 4 1 we have q, = (LI/;t)2'3 sin28 small. This suggests that 

absorption in region I should be low; the simplest way to determine it is then to use 
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a standard formula for absorbed energy per unit time and area (LANDAU and LIFSHITZ, 
1960), which here reads 

\id: A’ d l n  B, 
En(absorbed) = 71B,/2 sin’ 8 1 + v- k,l [ sin2 81 d; i’]’ (3) 

In the limit \‘/CO -+ 0, and setting 1 - rz/n, = -=/L,, we get v/ l&I ’  -+ noG(z/L,). In 
addition, the profile being linear around n,, one may show that the bracket in (3) 
behaves as 1 + [rk-’ sin 8 In(;k-’ sin 8)]’ for :/R+ 0 (LANDAU and LIFSHITZ, 1960). 
Equation (3) then becomes E“ = (LI/8i)c~B,1’ sin’ 0, where B, E B,(O). If IB,l is the 
amplitude of the incident magnetic field in vacuum, we have 

A = ~q,(L,/,?)”31B,/B,/2. (4) 

We may now determine BJB,, as if there was no absorption, that is, we may neglect 
q, and Y ~ C O .  

Within the step, equation (2) becomes 

d2B, 1 dB, 
d t 2  5 d( 

+ (B, = q,B, 0 ~ - -~ 

whose solution is 

Ai’( - 5) + /zBi’( - 5) 
Aid + /?Bib 

B, = Bc- 

Here h is a constant, 5 E (L,/ ,?)2’3~, Ai; = Ai’(O), Bib Bi’(0) and Ai’, Bi’ are the 
derivatives of Airy functions (ANTOSIEWICZ, 1964). Below point 1 the field consists of 
incoming and outgoing WKB waves: 

Continuity of dln B,/dz at point 1 gives 

where 

and z l  = z(t1), r l t  is its complex conjugate, and so on. If I? is real (as found below), 
one gets IRJ = 1, in agreement with our computing B,/B, as if there was no absorp- 
tion. Next, continuity of B, at 1, yields BJB, and thus A in (4): 
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We used Bib/Aib = -3’12, and 4n2IAibl2q N &(q) for q small; note also that 
/Aib12 31 0.067. 

To find h we require continuity of dln BJdz at point 2; using (6) we get 

Ai; + (;t/L,)”352Ai2/D 
Bi; + ( ~ I ’ L , ) ’ / ~ ~ , B ~ ~ / D ’  

h =  - 

Beyond z2  the wave is evanescent; since Lll,i,? is large, the wave may be written 
in WKB form (as long as c2  is not close to zero): B, zc / & I 1  x exp 

Equations (10) and (13) yield A(y,, r l ,  5,). Note that smoothing the step (setting 
dn/dz + 0 in I) and letting 8 --+ 0 appropriately, we have gl, 15,1 + x and qr fixed; 
using next the asymptotic behaviour of the Airy functions, we first get h + 0 and 
then A -+ AG(q,)  in (10). The limit of this same equation for the opposite case, 
dnldz + m in I or L I / i  -, 0 (a density jump), may be easily obtained too; this case 
was studied by KULL ( 1  983) for arbitrary 8. 

Absorption in region IT (n2 < nJ 
Here A need not be small because qII  E ( L l l / i ) 2 i 3  sin2 8 can be of order unity. Since 

absorption cannot be ignored while calculating BJB, there is now no advantage in 
using equation ( 3 ) .  Hence we instead determine R in ( 7 )  and then A = 1 - 1R12. 

Since the critical density lies above the step, (5) remains valid inside, the solution 
being again B, K Ai’( - 5 )  + hBi’( - t). Also, equation (8) is still valid for point 1 .  
Above and near point 2 we may use a WKB approximation if n, is not close to n,; 
hence 

Continuity of dln B,/dz at point 2 yields 

h = (z2t - r ~ ( , ) / ( - f i ~ ~  + r f i2) .  (15) 

Use of (8) and (15) finally gives 

where 
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Here 11'1 '  is the reflectivity of the critical region, clearly determined in Ginzburg's 
problem: AG(qII) = 1 - 11'1' (a simple, accurate approximation to A ,  is given in 
Appendix I). Ipl2 is the reflectivity of the step; for instance, for a density jump 
(L ,  '7 + 0) we have 

which is the usual Fresnel formula for normal incidence (0 having been neglected in 
the step). Note that if L,/,?-+ e, then we have t l ,  t2 -+ e and thus x 1 j 2  - 
j l r z  + 0, yielding A = A G ( & ) .  Finally, the phase difference cp between the WKB 
waves at z: is given by 

cp rr 2j:e1 'dz,'i + (phase difference at z;). 

The second term on the right goes from -n /2  for q,, < 1 to n12 for q,, $ 1 
(GINZBURG, 1970), while the first one is roughly 46: 2L,,/31r, a large quantity. The 
absorption A in (16) is then a function of tl, c2 ,  q,,, and L,/L,,. We may write these 
parameters in the form 

(4ne2/m,c2)' 
L,/L,, = (a,/a,,)3 2 ,  a = - 

( d n i d ~ ) ~ ' ~  ' 

If the phases are such that cos(cp + $) = 1, equation (16) gives 

Thus, there will be total absorption if, in addition, IpJ = 1 1 ' 1 .  Note that these are the 
usual conditions to get zero reflection of a wave propagating through two partly 
reflecting layers (the fact that the second one is here absorbing instead of trans- 
mitting makes no difference). Conditions 1pI = 1 1 ' 1  and cp + $ = arc cos 1 determine 
values of nc/n2 and 8 in terms of nlrin2, uln2, and a,/a,,. 

Note finally that absorption as found throughout this section is not really depen- 
dent on the profile being straight in region IT: it just requires that L,, $ 7, so as to 
make valid the WKB approximation there. 

3. A B S O R P T I O N  A T  T H E  T O P  C O R N E R  
The analysis of Section 2 predicts zero absorption when the critical density lies at 

the top of the step ( c 2  = 0). For t2 + 0 -  in equation (13) we have h --+ 3-1'2 leading 
to A = 0 in (10). For r 2  + 0' in equation (17), r2  and p2 become real so that 
lpleiw + 1, leading to A = 0 in (16). 
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This result is not a trivial one. For a gentle, curved profile n(z)  the absorption, as 
function of incident wavelength, would be A ( 2 )  N A,(q) with q 3 (L/2)2’3 sin2 8 and 
L(2) = n/(dn/dr) evaluated at the point where n(r) = tiC( i ) .  For dn/dz positive and 
decreasing with increasing n, q varies monotonically with 2 so that A(A could not 
present a minimum. The profile 1-11 of Section 2 is not gentle however, so that strong 
reflections could be expected to affect the absorption. 

Actually equations (13) and (14) are invalid for e 2  small, because, as already 
noticed, the W K B  approximation of region I1 fails. T o  analyse the small c2 case in 
detail we define, for that region, y~ = - c ( L , , / ~ ) ~ ’ ~  and rewrite (2) in the form 

Also, to simplify the discussion, we here take q,, to be large. 
Consider first absorption in region I; then q > q 2  > 0 throughout 11. Since 

equations ( I O )  and ( 1  1 )  remain valid we just need to find D in (12). For  q > vi2 % 
4,; ‘ I * ,  equation (20) becomes 

and thus, within the same approximation, 

d 
-In B, = - ( q  + qll)1#2;  
dvl 

this is still a W K B  solution, which is valid down to ‘1 not too small because of the 
large value of qI1. For  u 2  < qll  (a range that overlaps the previous one) the solution to 
equation (20) is still (22), if ’1 % qlY1l2; if, on the other hand, v 2  < 4 qll, then 
equation (20) becomes 

The solution to this equation matching smoothly (22) is 

KO and K ,  being usual Bessel functions. 
From equations (22) and  (24) one gets 

D = -sin d(1 + q2/qll)1’2 = -(sin2 d + 1 ~ ~ 1 ) ’  (25) 

and 
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respectively. For / e2 /  + sin2 8, equation (25) recovers (13). For k/LIl  x 
sin 0 4 / E ~ (  < sin2 8, one gets D = -sin 8 from either (25) or (26). Finally for lc21 
much less than 2/Lll sin 0, all the way down to zero, equation (26) yields 

where y = 0.577 . . . is Euler's constant. Using this value of D in (1 1) yields 
A - (In \e2i)-2 as E~ -+ 0 - .  

Consider, next, absorption in region 11, omitting details for brevity. We still have 
equations (8) and (15) so that A = 1 - /RI2 again leads to (16). Now, however, r is 
not a given function [equation (15) is here a definition of r ]  and is to be found from 
continuity of dln BJdz at point 2. When c2 is small enough equation (26) is still valid, 
but now q 2  is negative so that both KO and K ,  are complex. One finally finds that as 
c2  -+ O +  both p and Y approach unity and equation (16) yields A - (In E ~ ) - ~ .  

The above shows that indeed A vanishes at n, = n2. The vanishing is tied to the 
fact that B, + 0 as n, -+ n 2 ,  a fact due to the slope discontinuity at point 2 (zero 
radius of curvature o there). If cr is small but finite, A(n,)  exhibits a minimum near 
nJn2 = 1, A,,, - (In a)-2, which only vanishes in the limit cr + 0 (App. 11). Again, if 
a = 0 but a finite, though small, collision frequency L' is retained, A presents a 
minimum near nc/n2 = 1. 

To study this finite-), case we obtain B,/B,, as previously, equating (6) and (7) at 
point 1, leading to 

(Ai; + hBib) x (1 - 31'2h). B, - &:'4(1 + R)' - _  
B, Ai; + hBi; 

Next h is found from (1 1) using equation (27), where here we let nc/n2 --+ 1 so that, 
from ( l ) ,  = vito. Then 

Hence, B,I'B, - (In q/w)-' and A - (In V / W ) - ~ .  

To conclude, we note, first, that retaining the small term qlB, in equation (5) for 
region I does not modify the above results; in fact, if v -+ 0 and o -+ 0, A vanishes at 
n, = n2 for q1 arbitrary (a case analysed in work to be published). Secondly, A 
vanishes at point 1 too [as suggested by equation (10) for -+ 01. However, a 
detailed analysis of absorption for n, -+ n ;  is not simple; furthermore, it is also 
useless for the application of interest considered in next section (see below). 

4. A P R O F I L E  S T E E P E N E D  B Y  R A D I A T I O N  P R E S S U R E  
We shall now apply the results of Section 2 to a particular density profile: the 

corona of expanding, stratified plasma that a solid target ejects when irradiated with 
a pulse of laser light; at high enough intensity the pressure of the radiation steepens 
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FIG. 2.-Plasma step produced by a high-intensity light of frequency c : i * ,  normally incident 
on a solid target to the right; the steepening is due to its radiation pressure. Light is 
reflected at point r in region I. The rippling below is due to the radiation pressure of the 
standing wave; the average density here decreases slowly to the left. Region I1 consists of a 
plateau and a gentle isothermal wave. P-polarized light of frequency c. i i  is shined on the 

profile at small angle 0. 

the plasma around the reflection point r (Fig. 2) and produces a profile that is 
similar to the one discussed in Section 2; the rippling at the bottom of the step will 
be dealt with by using the mean (n, ,  + n,")/2 wherever a value of n ,  is necessary in 
the formulae of that section. The structure of the profile is well known for either 
normal incidence or s-polarization (LEE et al., 1977; SANMARTIK and MONTAGES, 
1980~).  Details convenient for our purposes are given in Appendix I11 for the case of 
normal incidence which, for simplicity, will be the one discussed here (we briefly 
comment on s-polarization at  the end). 

Neither case presents resonant absorption. Further, inverse bremsstrahlung is 
entirely negligible for such a thin region as that shown in Fig. 2. Hence, the electro- 
magnetic wave will be a standing one there. Call E,,, the last maximum of the 
electric field, before becoming evanescent, and n,* and c/k* the critical density and 
the frequency of the light. We then have, first, nl/n,* = F,(E~,,/n:T,) and n2/n,* = 
F2(Ei,,/'n,*T,) for the densities at the ends of the step; and secondly, dnldzl, = 
(n:/k*)F,(E&Jn,*T,) for the slope at point r,  which we use to approximate the slope 
throughout the step. T,  is the electron temperature and F,, F2 and F3 are functions 
given in Appendix 111. Finally, above the step, and for T,  roughly constant in time, 
the profile is that of a gentle isothermal wave (following a plateau next to point 2), 
for which n K exp (z /c , t ) ;  thus dnldz = n/c,t in region 11. Here t is the time from the 
beginning of the pulse, c, is (ZiTe/mi)'i2, and mJZi is the ion mass per unit charge. 

Let now a pulse of p-polarized light be shined on the plasma as in Section 2 (this 
pulse will be assumed short compared with the main one, so that t above is well 
defined). Using nCA2 = n:R*, and the previous results for n ,  and n,, we obtain 

1 - E,  = n2/nc = (k/k*)2F2(Ei,,/n,*Te). (29) 



Resonant absorption in a plasma step profile 427 

n2 < n c  
Absorption Above The Step 

I 
2 -  

I 

FIG. 3.-Parameter domains for absorption to occur in regions I or I1 of Fig. 2; the ordinate 
is the critical density ratio ( n ’ ~ i f )  for probing and main light pulses. and the abscissa is a 
radiation to thermal pressure ratio (E,,,, is the last maximum of the standing electric field). 
The loaer  and upper curves represent the functions F ,  and F ,  of equations (28) and (29). 

These equations lead to Fig. 3, which shows the domains of the ( k* / i )* ,  E;,,ln,*T, 
plane where conditions n, < n,,  1 1 ,  < H ,  < 11,, and n2 < n,, apply; note that the 
lower and upper curves represent the functions F ,  and F2 respectively. We also get 

Figure 4 shows (L,Ji)( i ,k*)3.  Finally equation (lo), with h(S2)  given by (13) and 

A, 2. 2.64q,, q1 h ( k * / i ) 2 F ; 2  sin’ 0 
<1,2 = [(k*:k)’ - F,,‘]F;2 3,  

yields the absorption in the range n ,  < n, < n,; 0 being small, we have 

A = 0’ x (function of i * l k  and E;,,/n:T,). (31)  

Equation (16), giving the absorption in region IT, simplifies considerably here. 
From (19) we obtain 

the proportionality constant being a function of k*ik and E:,,/nTT,, of order unity 
in general. Thus cp changes rapidly with time; for instance, a change Acp = requires 
typically a fraction of picosecond. Thus absorption measurements will usually aver- 
age out the q-dependence in (16). We then have 
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FIG. 4.-Normalized value of L, n,,’(dn/dz) (at n = n:) versus radiation to thermal 
pressure ratio. 

where p ( t , ,  t2) is to be obtained from equation (17). Here a value for L,, is required 
in q,, (L,,/it)2’3 sin2 8: since the slope to be used for absorption in region I1 is that 
at n = n,, we get dnldz = n,/c,t or L,, = est. Thus, finally, for n, < n,, 

A = function of A*/,?, Ei,,/n:T,, and ( c ~ ~ / A * ) ~ ~ ~ H ~ .  (33) 

Equations (31) and (33) are easily extended to the case of a main pulse incident at 
angle e,, and s-polarized; i t  just suffices to write 2*/cos for is* in the equations. We 
also note that the rippling below point 1’ makes quite difficult the analysis of 
absorption at the bottom of the step, as suggested at the end of Section 3; the 
rippling does not impede, however, to relate E,,, to the main pulse intensity, Z,,, in 
the vacuum (Appendix HI). 

Figure 5 shows the absorption, given by equations (31) and (33), as function of 
R*/2 for a few values of Ei,,/n,*T,, a few values of ( ~ ~ t / k * ) ~ ’ ~ Q ~  (range n, > n,) and 
0 = 8” (range n ,  < n, < n,; here A scales like 8’). Since the corner at the top of the 
step is rounded, equations (31) and (33) are not valid near n, = n2 (Section 3 and 
Appendix 11); the minimum of A is not zero and is here left undetermined, as indi- 
cated in the figure. The failure of the results for n, 5 n ,  is indicated in the figure too. 

5. D I S C U S S I O N  
We have studied how resonant absorption of p-polarized light, shined at a small 

angle on a collisionless step-profile plasma, depends on the critical density n,(is) for 
the light. We found that above the step the absorption is total if n, and 8 take 
particular values corresponding to equal reflectivities of both step and region around 
critical, and to some appropriate phase condition. 

We also found that as n, crosses the top of the step A goes through a minimum. 
For the case of Fig. 1 ,  which has a slope discontinuity (that is, zero radius of curv- 
ature a) at point 2, that minimum vanishes. With growing o the minimum fills up, 
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FIG. 5.-Absorption A ofp-polarized light in the profile of Fig. 2, taken from equations (31) 
and (33). The minima of A occur at n, z n ,  and 11,  e n 2 ,  and their values are left undeter- 
mined. Between minima [equation (31)] the curves drawn correspond to 0 = 8". A scaling 

like 02 .  

disappearing at about 10% of (n2 - n,)/(dn/dz), although a precise condition 
depends on local details of the profile. If the slope is discontinuous but collisions, 
though unfrequent, are considered, that minimum is again non-zero. 

For the case of Fig. 1 the reflectivity IpI2 of the step itself goes to unity as n, --$ n2 ,  
suggesting an evanescent field behind. Indeed in the limit of a density discontinuity 
the reflectivity is given by Fresnel formula for normal incidence, equation (18) (0 
was neglected in the analysis of the step), which for = 1 - n2/nC --f 0 gives 1pI = 
1; as well known the field behind a dielectric discontinuity is not zero even with 
total reflection. 

Since resonant absorption always occurs in a region of evanescent field, the fact 
that lpl+ 1 as n 2  -+ n, need not imply null absorption. Further, if the small value of 
0 is retained in the analysis of the fields within the step, it is found that there is 
absorption for n, = n2/cos2 0 (a value then leading to IpI = 1) and there is not for 
n, = n2. The fact is that resonant absorption is proportional to the square of the 
magnetic field at the critical surface, and this field, we find, cannot but vanish when 
that surface lies at a sharp turn of the density slope. 

We applied our results to the step profile produced by irradiating a solid target 
with a high-intensity laser pulse that steepens the plasma by radiation pressure; this 
main pulse, of frequency clit", was taken to be normally incident, though results are 
easily extended to a s-polarized pulse. The absorption A of probing p-polarized 
light, shined on the plasma, is given in Fig. 5, and depends on Ei,,/n,*T,, PI?, and 
8 (within the step) or ( C ~ ~ / , ? * ) ~ / ~ Q ~  (above the step). E,,, is the last maximum of the 
electric field just before becoming evanescent, c, is the ion-acoustic speed, T ,  the 
electron temperature, and t the time from the beginning of the main pulse. The 
change of A ,  and its minimum, around n, = n2, is dependent on the ratio E;,,/n,*T,, 
and could be used to determine T,. 
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A P P E N D I X  I 
A very simple and accurate analytical expression for A , ( q )  for use in equations (16) and (33), is 

It  behaves correctly at small q ( A G  3 ay) and large q [ A ,  1 2 exp (-4q3 23'3)], and has a single maximum 
of 0.499 at q z 0.460, values indistinguishable from corresponding results obtained with a numerical 
solution of the wave equation (FOKSLUND et al., 1975). Figure 6 shows the general agreement with such a 
solution. 

A P P E N D I X  I1  
We here assume that the head of the step of Fig. 1 is rounded. As in Section 3 we take for simplicity q,, 

large: we also take L," i  large (though retaining q, small). Within and in the corner itself (Fig. 7) A is given 
by the expression (10) times the factor L,!L,, that accounts for the turn of the slope in the corner; in going 
around i t ,  L,, which is dz;dlnln=,c, grows from L, to Lll. 

Since c l  9 1 (except for 11, near n , )  we have 

(11.1) 

For n, not too close to n 2 ,  AIA,(q,)  is unity; note that h is then given by (11) and is negligible because l < 2 i  
is large. Since q1 is nearly constant throughout the corner, to obtain the minimum absorption i t  suffices to 
study how, the right-hand side of (11.1) drcips below unity inside the corner, when E2(nc)  = I - n2!nc is 
varied (2, L,, L,,, and q,,, may be taken constant as 4,). 

We consider a profile locally given by 

(11.2) 

The parameter T is related to the minimum radius of curvature U in the plane iz/n2, z:'L, (T z 015.3). As 
T .+ 0 the profile of Fig. 1 is recovered; we shall assume that 5 4 ( L l ~ L , J 1  * and 5 sin 0 4 L,JL,,. We called 
n,  the density where the two asymptotes ($ti2 = 1 + z /L , ,  or 1 + z/L, , )  meet, having set 2 = 0 there. 

From equation (11.2) one obtains 

where 

(11.3) 

(11.4) 

To next obtain h(n,) we integrate the exact equation for B, between z, and zb, just outside the corner (Fig 
7), though satisfying Iz,/ 9 sL,, zb 9 T(L,L,,)' *: 
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FIG. 6.-Ginzhurg’s absorption function A,(q) from the approximate formula in Appendix 
I (continuous line). and  from numerical calculations (data  points. FOKSLUNU (’I ( I / . ,  1975). 

FIG. 7.-Head of the step in Fig. I ,  for a small hut finite radius of curvature.  For z < :,, and 
: > zb the profile is assumed straight and  the field is given by equations (6) and (24) 

respectively. 

(11.5) 

We may set B,  2 B,. neglect the last integral, and  write the first one a s  B,.Isin2 0. Using equations (6) 
and (24) for : < zu and  : 3 zb respectively and  a small argument expansion of all Bessel functions. 
equation (11.5) becomes 

(11.6) 

(11.7) 
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Using the above equations one obtains AIA,(q,)  as a function of ~~(n,), 5, L,IL,,, Lll/2 and q,,. A 
minimum exists for p 9 L,/L,, 

Amin 5.6(L,,’L,,)2’3 
e 

A,(q,) q h ( 1  + Pd’ 
where 

2(1 + p,) + In p ,  = In 

hence Amin - l /pi  - Jln o/-,. For T Y 0/5.3 = 0.01, LJL,, = 0.02, Llik = 2, and qlr = 2, we get 
Amin Y 0.12 A,(q , ) .  

A P P E N D I X  111 
Here we briefly recall some features of the structure in Fig. 2 for normal incidence (LEE et ai., 1977; 

SANMARTIN and MONTA~ES,  1980~). The structure is determined by conservation laws for mass and 
momentum, an uniform temperature Te, and the wave equation, and is characterized by a single parameter, 
E&,:n:T,. This ratio measures the importance of radiation pressure against thermal pressure; E,,, is the 
electric field at the last maximum (point 1’) of the standing wave (absorption being negligible in the thin 
region of interest). 

Let M be the plasma-flow Mach number at any point in the region, in  a frame moving with the step. 
We have 

g(M2) = E$,,/8nn:Te, M ,  < 1 

where n: is the critical density for the incident light, and 

g(M) = M Z  - In M2 - 1; 

then, defining 2n,  n ,  + n, ’, we have 

nl:n: = ( 1  + M I  )(M,,q);4Ml(l - M,I2 = F I ( E i a x / n ; T e ) ,  

n2,’n: = g(M2)/2(1 - M2)2 F2(E:ax/n;Te),  

M ,  being given by 

At the reflection (critical) point r ,  where )z = n:, we also have 

here 

E,,, is related to the intensity of the light incident from the vacuum, I,. For the values of interest 
( I ,  > I O ”  W cm-’ for i. = 1.06 pm, say) absorption, due to inverse bremsstrahlung, is small throughout 
(NICOLAS and SANMARTIN, 1985). I n  a rough approximation one may neglect it and use a WKB analysis 
that averages the underdense rippling, to obtain (LEE et d, 1977) 

A formulation that takes into account the rippling was given by SANMAKTIN and MONTAGES (1980b); at 
the lowest intensities to consider, differences are about 10%. 


